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Abstract

Model uncertainty remains a challenge to researchers in different applications.
When many competing models are available for estimation, and without
enough guidance from theory, model averaging represents an alternative to
model selection. Despite model averaging approaches have been present in
statistics for many years, only recently they are starting to receive attention
in applications.

The Bayesian Model Averaging (BMA) approach sometimes can be diffi-
cult in terms of applicability, mainly because of the following reasons: firstly
two types of priors need to be elicited and secondly the number of models un-
der consideration in the model space is often huge, so that the computational
aspects can be prohibitive.

In this paper we show how Bayesian model averaging can be usefully
employed to obtain a well calibrated model, in terms of predictive accuracy
for credit risk problems. In this paper we shall investigate how BMA performs
in comparison with classical and Bayesian (single) selected models using two
real credit risk databases.

1 Motivation

In this paper we concentrate our attention on a general class of parametric
classification models aimed at explaining a binary target response variable,
a credit default event as a function of a set of explanatory variables.
In the above context, statistical models are usually chosen according to a



model selection procedure that aims at selecting the most performing struc-
ture. The chosen model is, once selected, taken as the basis for further
actions, such as parameter estimation, default prediction and predictive clas-
sification.
However, relying upon a single model may not be the best strategy, as the
uncertainty over the model space is not adequately taken into account.
Few papers have investigated the comparison between single selected models
and model averaging in credit risk modelling. Among them, we recall the
paper of Hayden et al. (2009), which presents a comparison between stepwise
selection in logistic regression and Bayasian Model Averaging for credit risk
models. Another reference is Tsai et al. (2010) that show a statistical crite-
rion and a financial market measure to compare the forecasting accuracy of
different model selection approaches: Bayesian information criterion, model
averaging and model mixing.
The main objective of this paper is to extend the previous contributions,
comparing the relative performance of single credit risk models with that
of models constructed by means of a model averaging approach. Ley and
Steel (2007) and Eicher et al. (2011) show that prior assumptions can be
extremely critical for the outcome of a model averaging analysis. Here we
focus the hierarchical prior analysis of Ley and Steel (2007).

In order to show how our proposal work we compute different kind of
measures aimed at measuring the predictive ability, the discriminant power
and the selectivity of each model proposed (see e.g. Hand et al. 2010, Figini
and Giudici 2011).

The paper is structured as follows: Section 2 describes the background of
our proposal; Section 3 reports our proposed model; Section 4 reports and
compares the empirical evidences achieved on the simulated and on the real
data sets. Finally, conclusions and further ideas of research are reported in
Section 5.

2 Background

The common practice in empirical research is selecting a single model after
what amounts to be a search in the space of all possible models. Then, re-
searchers typically base their conclusions acting as if the model chosen were

2



the true model. However, this procedure tends to understate the variability
contained in the analysed data, that may support a plurality of competing
models. A way to overcome this problem is to use a model averaging ap-
proach (see e.g. Hoeting et al. 1999).
The literature proposes different approach to treat model averaging, both in
the frequentist and in the Bayesian framework. Here we consider the latter.

Let us suppose that a researcher has q possible models in mind, h =
1, . . . , q. This implies that there are q different estimates of the parameter of
interest depending on the model considered, say (β̂1, . . . , β̂q). The key idea
of model averaging is to consider and estimate all the q candidate models
and then report a weighted average as the estimate of the effect of interest.
Such model averaging estimate is:

ˆβMA =

q∑

h=1

ωhβ̂h, (2.1)

where ωh is the weight associated to model h. Here we focus on the
Bayesian approach to model averaging. Given q variables we obtain 2q pos-
sible models, M1, . . . ,M2q . Given an observed data vector y, the posterior
distribution for the parameters of model Mj, βj, can be obtained from:

g(βj|y, Mj) =
f(y|βj, Mj)g(βj|Mj)

f(y|Mj)
. (2.2)

Formula (2.2) shows that, for each model Mj, we need to calculate a likeli-
hood f(y|βj, Mj) and a prior distribution g(βj|Mj), from which the posterior
distribution g(βj|y, Mj), can be obtained and, then, summarised by the pos-
terior mean βj = E(βj|y, Mj), the optimal estimate under a quadratic loss
function (see e.g. Bernardo and Smith 1994).
We have thus obtained the first component of the model averaged estimate
in equation 2.1. The second component is the model weight, that can be
obtained as the posterior distribution of a model:

p(Mj|y) =
f(y|Mj)p(Mj)

f(y)
, (2.3)
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where f(y|Mj) is the marginal likelihood of a model j, and p(Mj) is the
prior belief on the same model.

From the above premises, note that Bayesian Model Averaging (BMA
hence forth) involves two different priors beliefs, one on the parameter space
g(βj|y, Mj) and another one on the model space p(Mj).

In this paper we focus on the choice of the prior on the model space,
assuming a non informative prior on the parameter space, following the ap-
proach of Hoeting et al. (1999). This because our main aim is to compare
fairly the predictive capacity of the BMA approach not only with respect
to a single chosen Bayesian model, but also with respect to a classical, non
Bayesian approach, that can be assimilated to a Bayesian approach with a
non informative prior on the parameter space (see e.g. Bernardo and Smith,
1994).

A key aspect of our work is the comparison with (single) selected models
with BMA by means of key performance indicators able to measure the pre-
dictive capability. In order to detect the predictive capability of a model, we
employ the confusion matrix and related measures of interest (see e.g. Ko-
havi et al., 1997). The models will be compared using different cut-offs. The
literature proposes optimisation techniques able to derive the best cut-off re-
sorting for example to the minimisation of the difference between sensitivity
and specificity (P-fair in Schrder and Richter 1999) or to the maximisation of
the correct classification rate (P-opt, calculated from the ROC as described
in Zweig and Campbell, 1993) taking into account different costs of false
positive or false negative predictions). In our example we fix, for the sake of
comparison, a cut-off =0.5 and a cut-off equal at the observed frequency of
the event of interest, the credit default in our case.

Further predictive performance measures that we shall consider do not
depend on the choice of a cut off: the Receiver Operating Characteristic
curve (ROC), the area under it (AUC) and the H measure (see e.g. Hand et
al. 2010).

So far we have discussed the issue of predictive performance. Another im-
portant characteristic that a model should have is discriminant power. The
discriminant power of a predictive model can be measured by a confusion
matrix which compares actual and predicted classifications for a fixed cut-off.
From the confusion matrix we can derive the percentage of correct classifica-
tion, the sensitivity (the percentage of default events correctly identified by
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the model) and the specificity (the percentage of non default events correctly
identified by the model).

3 Proposal

The choice of a prior distribution over the model space remains an open
area of research in model averaging approaches. A common assumption for
a prior on the model space is to assume that each model is equally likely,
with all prior model probability equal to 1

2q , where 2q is the total number of
models to be considered. In this case the posterior model probabilities are
determined only by the marginal likelihoods and therefore only the priors on
the parameters affects the results of BMA.

Fernandez et al. (2001), Ley and Steel (2007) and Eicher et al. (2011)
argue that prior assumptions can be extremely critical for the outcome of
the analyses, and that uniform priors are not neutral at all. Instead, they
suggest, in the context of linear regression models, to use hierarchical priors,
that lead to more stable results, in terms of posterior model probabilities.
Here we extend this approach and, in particular, Ley and Steel (2007), to
logistic regression models, widely employed in credit risk modelling starting
from the seminal paper of Altman 1968. Hierarchical model priors can be
assigned considering that a model can be seen as made up by ”marking”
each of the available variable as present or not in the model. It becomes thus
natural to consider a model to be described by the number of variables to be
included, with the latter being modelled as a Binomial distribution. Accord-
ing to this prior, each variable is independently included (or not) in a model
so that the model size M follows a Binomial distribution with probability
of success θ: M ∼ Bin(q, θ) where q is the number of candidate regressors
considered and θ is the prior inclusion probability for each variable.
Given the above, the prior probability of a model Mj, with m regressors, is
given by:

P (Mj) = θm(1− θ)q−m. (3.1)

As a special case of this prior structure, if we assume that every model has
the same a priori probability, we obtain a uniform prior on the model space,
which is what assumed by many authors including Hoeting et al. (1999).
This uniform prior corresponds to the assumption that θ = 0.5 so that the
previous equation reduces to: P (Mj = 2−q).
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Ley and Steel (2007) propose an alternative prior specification in which θ is
treated as random rather than fixed. The proposed hierarchical prior implies
a substantial increase in prior uncertainty about the model size M, and makes
the choice of prior model probabilities much less critical.
In particular, their proposal is the following:

M ∼ Bin(q, θ), (3.2)

θ ∼ Beta(a, b) (3.3)

where a, b > 0 are hyper-parameters to be fixed by the analyst. If we choose
a Beta prior for θ with hyper-parameters a, b > 0, the prior mean model size
is E(M) = (a/a + b) ∗ q. The implied prior distribution on the model size is
then a Binomial-Beta distribution. In the case where a = b = 1 we obtain
a discrete uniform prior for model size with P (M = m) = 1/(q + 1). This
prior depends on two parameters (a, b) and Ley and Steel (2007) propose to
facilitate prior elicitation fixing a = 1. This still allows for a wide range of
prior distributions and makes it attractive to elicit the prior in terms of the
specification prior mean model size E(M) = m. The number of regressors, q
will then determine b through b = (q −m)/m.
Thus, in this setting, the analyst only needs to specify a prior mean model
size m, which is exactly the same information one needs to specify for the
case with fixed θ which should than equal θ = m/q.
We remark that both the Binomial and the Binomial-Beta priors have in
common the implicit assumption that the probability of one regressor appears
in the model is independent of the inclusion of others, whereas regressors are
typically correlated. This is related to the dilution problem raised by George
(1999).
On the basis of the previous remarks, our proposal for model averaging can
be summarised in the following steps:

• Given q candidate regressors, we consider all the possible variables
combination and we obtain the model space M of dimension 2q.

• For each model we compute its marginal likelihood. The marginal
likelihood in logistic regression analysis under model Mj can be ob-
tained resorting to the approximation provided by Chib (1995) and
Groenewald et al. (2005), which is the approach we follow here. An
alternative approach would be that of Holmes and Held (2006) who
adopt auxiliary variable approaches.
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• We assume the Ley and Steel (2007) on the model space, with different
specifications of the hyper parameters involved, and we compare them
in a sensitivity analysis framework.

• For each model we obtain its posterior model probability.

• For each model we derive all predictive values for the events to be
forecasted and then we calculate the final forecast for a specific event
is the average of the predictions made by each model weighted by the
relative posterior model probability.

4 Empirical Evidences

4.1 Musing data

Our empirical analysis is based on two different data bases in credit risk
analysis. We first concentrate on a database that is based on annual 1996–
2004 data from Creditreform, one of the major rating agencies for Small
and Medium Enterprises (SME) in Germany, obtained from the European
Musing Project. In this case we have a small number of available covariates
selected in advance.

When handling bankruptcy data it is natural to label one of the categories
as success (healthy) or failure (default) and to assign them the values 0 and
1 respectively. Our data set consists of a binary response variable (default)
values Yi and a set of 4 explanatory variables X1, . . . , X4, selected by the
company. More precisely we have the following candidate regressors:

• Equity ratio =(V1): it measures the financial leverage of a company
calculated by dividing a measure of equity by the total assets.

• Liabilities ratio=(V2): it is a measure of financial exposure calculated
by dividing a gross measure of long-term debt by the assets of the
company.

• Result ratio=(V3): this is an index of how profitable a company is
relative to its total assets.

• ZwsUrt=(V4): this variable summarises the payment history of each
SME company. The levels are 0 if the payment is within time and 1 if
irregular payments are present.
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We have constructed all the possible model combinations and precisely:
16 models in total with different complexities. The resulting model space is
reported in Table 1:

Table 1 about here

As we can observe from Table 1, for K = 0 the number of corresponding
models is equal to 1; for K = 1 the number of possible models is equal to 4;
if K = 2 the number of possible models is equal 6; if K = 3 the number of
possible models is equal to 4 and if K = 4 the number of possible models is
equal to 1 and it corresponds to the saturated model.
We now specify the prior distribution on the model space. Following Ley
and Steel (2007) we employ a hierarchical approach assuming θ random.
The results for each model in terms of posterior probabilities are reported
in Table 2. In Table 2 we report besides posterior model probabilities also
predictive performance measures and specifically the H and the AUC indexes.

Table 2 about here

From Table 2 we observe that M4 is the best model in terms of posterior prob-
ability, for all considered parameterisations of the Beta prior distribution.
However, it is not the best in terms of predictive performance, as model M1
is clearly superior both in terms of AUC and H. However, the model chosen
by a standard, single model, Bayesian analysis would be M4, because it shows
the highest posterior model probability. Therefore, a standard Bayesian ap-
proach loses predictive performance. Note however that the model that would
be selected by a classical logistic regression approach (CLR) is M11, which
performs considerably worse than the standard Bayesian model.

A second remark from Table 2 is that the use of a hierarchical prior
reduces the dependence of the posterior distribution (and, therefore, of pre-
dictive results) on prior assumptions: this can be seen observing that in
Table 2, regardless of the chosen prior hyperparameters, model posteriors
are quite stable. This would not be the case with a non-hierarchical prior,
as our results show.

We now proceed with a Bayesian model averaged approach, whose pre-
dictive power will be assessed using the AUC and the H index, as before.
It turns out that the averaged model using θ ∼ Beta(1, 1) reports an AUC
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equal to 0.910 and an H index equal to 0.377 while the averaged models using
θ ∼ Beta(1, 2) and θ ∼ Beta(1, 3) both report an AUC equal to 0.909 and an
H index equal to 0.376. Similar results have been obtained on the same data
by Figini and Giudici (2011), using a weighted average of two models one
based only on quantitative variables and the other based only on qualitative
variables.

In order to draw further comparisons among the models at hand in terms
of discriminatory power we have derived, for two different cut-offs: 0.5 a
”neutral value” and 0.125, which correspond to the observed frequency of
defaults, the sensitivity, the specificity and the percentage of correct clas-
sifications. Of main interest in credit risk model is the sensitivity, which
measures the capability of the model to correctly predict the rarest event,
the credit default. The results are in Table 3, using a Beta (1,1) prior distri-
bution.

Table 3 about here

Table 3 shows that the Bayesian averaged model is superior in terms of
sensitivity, especially for the more realistic 0.125 cut-offs, while keeping a
similar percentage of correct classifications. Different parametrisations for
the prior Beta distribution do lead to similar results.

4.2 Munich data

We now consider a second credit risk database, with a larger amount of
predictors. This implies that we will not be able to perform exact calculation
of model posterior probabilities, as the model space is too large. Rather, we
shall follow the BMA approach suggested by Hoeting et al (1999) which
includes an Occam’s razor approach to reduce the number of models to be
compared. In such an approach, model priors are taken as uniform.

The dataset we consider is the Munich dataset (see e.g. Giudici and Fig-
ini, 2009), and comprises, besides the target variable, 20 possible explanatory
predictors which have been transformed in a binary scale. The results for
the best models in terms of posterior probability are reported in Table 4.
In Table 4 we report, besides posterior model probabilities, also the model
characterisation in terms of variables included for the best 5 models.

Table 4 about here
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From Table 4 we observe that M1 and M2 are the best in terms of posterior
probability. The chosen single model, in a standard Bayesian analysis, would
be M1, because it shows the highest posterior model probability. This should
be compared with the model selected by a classical logistic regression which
is not included in the best five models summarised in Table 4. Such a model
selects as relevant the following variables: Deadline, Previous response, Pur-
pose, Bank book, Working years, Monthly interests, Age and House.
We are now able to compare the predictive powers of the chosen Bayesian
model (M1), the Bayesian Model average and the Classical Logistic Regres-
sion. It turns out that the averaged model using BMA reports an AUC equal
to 0.77 and an H index equal to 0.09 while the chosen Bayesian model report
an AUC equal to 0.69 and an H index equal to 0.065. Finally, the AUC for
the classical logistic regression is equal to 0.77 and the H index equal to 0.09.
Therefore, for the larger database, the predictive performance of BMA is
similar to that of the selected logistic regression model, with the best chosen
Bayesian model legging behind.
The good predictive performance of classical models with respect to Bayesian
ones, on large data sets, is known in the literature. Our contributions shows
that a model averaged Bayesian model can overcome this problem. In order
to make a more precise comparison among the models we have derived for two
different cut-offs: the neutral (0.5) and the observed frequency one (0.3), the
sensitivity, the specificity and the percentage of correct classifications. The
results are in Table 5.

Table 5 about here

From Table 5 note that the best model is the Bayesian model averaged,
for both cut-offs in terms of sensitivity. It is slightly superior in terms of
sensitivity, with respect to the CLR, with a slightly better performance also
in terms of percentage of correct classifications. The single best Bayesian
model clearly underperforms.

5 Conclusions

In this paper we have proposed a novel approach for credit risk modelling,
that use Bayesian model averaging. Our aim is to obtain a good model that
predicts well credit default events, on the basis of the estimated probability
of default. In the paper we suggest the use of hierarchical priors, that lead to

10



more stable results in terms of posterior model probabilities and, therefore,
in terms of predictive performances.
A non uniform prior over the model space is suitable when the number of
covariates at hand is small (as in our first application), so that specific subject
matter considerations can be employed to assess prior opinions over the model
space. When the number of variables is large (as in our second application),
instead we suggest to consider a model averaging approach with a uniform
prior over the model space.
In both applications the proposed model averaging approach overperforms
classical logistic regression models and best single Bayesian models in terms
of accurate predictions of default events, while keeping the percentage of
correct classifications at roughly the same level.
We can suggest our approach to credit risk default prediction especially when
the main aim of the analysis is a selective detection of default events, rather
than a detection of both good and bad occurrences, for which a simpler
classical logistic regression model may be more appropriate.
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Table 1: Model Space for the Musing data

Model V1 V2 V3 V4
M1 1 1 1 1
M2 1 1 1 0
M3 1 0 1 1
M4 0 1 1 1
M5 1 1 0 1
M6 1 1 0 0
M7 1 0 1 0
M8 0 0 1 1
M9 0 1 0 1

M10 1 0 0 1
M11 0 1 1 0
M12 1 0 0 0
M13 0 1 0 0
M14 0 0 1 0
M15 0 0 0 1
M16 0 0 0 0

6 Tables
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Table 2: Model posterior probabilities for the Musing data

Modelli K θ ∼ Beta(1, 1) θ ∼ Beta(1, 2) θ ∼ Beta(1, 3) H AUC
M1 4 0.37 0.22 0.16 0.379 0.911
M4 3 0.50 0.61 0.66 0.374 0.908
M3 3 0.14 0.17 0.18 0.374 0.907
M8 2 0.00 0.00 0.00 0.274 0.879
M5 3 0.00 0.00 0.00 0.337 0.877
M10 2 0.00 0.00 0.00 0.332 0.8746
M9 2 0.00 0.00 0.00 0.334 0.874
M2 3 0.00 0.00 0.00 0.161 0.843
M7 2 0.00 0.00 0.00 0.154 0.838

M11=CLR 2 0.00 0.00 0.00 0.157 0.836
M15 1 0.00 0.00 0.00 0.14 0.786
M6 2 0.00 0.00 0.00 0.097 0.775
M14 1 0.00 0.00 0.00 0.116 0.769
M13 1 0.00 0.00 0.00 0.089 0.768
M12 1 0.00 0.00 0.00 0.085 0.766
M16 0 0.00 0.00 0.00 0.12 0.686

13



Table 3: Predictive model assessment for the Musing data

Chosen Bayesian Model (M4) P=0.5 P=0.125
cut-off 0.5 0.125

sensitivity 0.543 0.4259
specificity 0.958 0.9662
% correct 0.906 0.8405

Bayesian Model Average P=0.5 P=0.125
cut-off 0.5 0.125

sensitivity 0.543 0.4325
specificity 0.959 0.8017
% correct 0.907 0.843

CLR Model P=0.5 P=0.125
cut-off 0.5 0.125

sensitivity 0.05 0.43
specificity 0.985 0.9691
% correct 0.868 0.844

Table 4: Selected Models (BMA)

Variable M1 M2 M3 M4 M5
Intercept 1 1 1 1 1
Deadline 1 1 1 1 1

Previous Rep 1 1 1 1 1
Purpose 1 1 1 1 1

Bank book 1 1 1 1 1
Working years 1 1 1 1

Monthly interests 1 1
Age 1 1 1 1

House 1 1 1 1 1
Foreign 1 1 1 1

Posterior Model Probability 0.127 0.123 0.09 0.087 0.083
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Table 5: Predictive model assessment for the Munich data

Chosen Bayesian Model (M1) P=0.5 P=0.3
cut-off 0.5 0.3

sensitivity 0.08 0.03
specificity 0.98 1
% correct 0.714 0.711

BMA P=0.5 P=0.3
cut-off 0.5 0.3

sensitivity 0.78 0.72
specificity 0.65 0.85
% correct 0.75 0.73

CLR Model P=0.5 P=0.3
cut-off 0.5 0.3

sensitivity 0.74 0.71
specificity 0.8 0.85
% correct 0.75 0.71
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