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Constraint quali�cations for programming problems

with axiomatic directional derivatives

G. Giorgi1 and C. Zuccotti2

Abstract
We give an overview of constraint quali�cations and optimality conditions for a nonlinear pro-

gramming problems where the functions involved have directional derivatives de�ned in an axiomatic

way. We consider mainly the approach of Elster and Thierfelder (1985, 1988a, 1988b) and the approach

of Giannessi (1989).
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1. Introduction

Among the axiomatic approaches considered to unify the various de�nitions of
generalized directional derivative for a function of several variables, the constructions pro-
posed by Elster and Thierfelder (1985, 1988a, 1988b) and by Giannessi (1989) are perhaps
the most known. The �rst approach is based on the concept of K-directional derivative,
the second approach is based on the concept of G-derivative and G-semiderivative.
In the present paper we shall be concerned with some constraint quali�cations for the

mathematical programming problem

(P) minf(x); gi(x) � 0; i 2 I = f1; 2; :::;mg ;

where f; gi : R
n ! R; are functions whose generalized (directional) di�erentiability is

de�ned in an axiomatic way.
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Obviously, extensions to topological spaces are possible, as shown by the authors
previously quoted.

The paper is organized as follows.

In section 2 we shall be concerned with the axiomatic approach of Elster and Thier-
felder and on constraint quali�cations based on this approach.

In section 3 we shall be concerned with the axiomatic approach of Giannessi and on
constraint quali�cations based on this approach.

In section 4 we make some comparisons between the two approaches considered and
make some other remarks on a third axiomatic approach, proposed by Komlosi (1993) and
by Komlosi and Pappalardo (1994).

2. Constraint quali�cations with the K-directional derivatives
of Elster and Thierfelder

The various local cone approximations used in optimization theory, beginning
from the works of Abadie (1967), Arrow, Hurwicz and Uzawa (1961), Hestenes (1966,1975),
Kuhn and Tucker (1951) and many others, have induced Elster and Thierfelder (1985,
1988a, 1988b) to propose the following axiomatic de�nition of a �rst-order local cone
approximation of a set M � Rn at a point x 2 Rn:

De�nition 1

A map K : 2R
n

� Rn ! 2R
n

is called a local cone approximation if for any set
M � R

n and any point x 2 Rn a cone K(M;x) is associated, verifying the following
axioms:
(a) K(M;x) = K(M � x; 0);

(b) K(M;x) = K(M \N(x)); 8 neighborhood N(x);

(c) K(M;x) = ;; 8x =2cl(M);

(d) K(M;x) = Rn; 8x 2 int(M);

(e) K('(M); '(x)) = '(K(M;x)) for any linear homeomorphism ' : Rn ! R
n;

(f ) 0+M � 0+K(M;x); where 0+M = fd 2 Rn : x+ �d 2M; 8� > 0;8x 2Mg is the
recession cone of the set M: It is assumed that 0+; = Rn:

Elster and Thierfelder (1988a) have proved that the axioms a)-f ) are independent;
moreover, they prove that if K(M;x) and Ki(M;x); i 2 I = f1; 2; :::;mg ; are local cone
approximations, then also int(K(M;x)), cl(K(M;x)); conv(K(M;x)); Rnn [K(RnnM;x)] ;
[
i2I
Ki(M;x); \

i2I
Ki(M;x);

P

i2I

Ki(M;x); are local cone approximations.

The class of local cone approximations, de�ned by the axioms (a)-(f ) is nonempty
and, in particular, contains the following cones, often used in optimization theory.
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De�nition 2

Let M � Rn and x 2 Rn:

� The set

T (M;x) = fy 2 Rn : 8N(y);8� > 0;9y0 2 N(y);9t 2 (0; �) such that x+ ty0 2Mg

is the Bouligand tangent cone or contingent cone.

We recall that the closure of its convex hull is called pseudotangent cone (Guignard
(1969)) and denoted by P (M;x) :

P (M;x) = cl (conv(T (M;x))) :

This cone is important in establishing the \weakest" constraint quali�cations for the
problem (P). See Gould and Tolle (1971).

� The set

A(M;x) = fy 2 Rn : 8N(y);9� > 0;8t 2 (0; �);9y0 2 N(y) such that x+ ty0 2Mg

is the cone of the attainable directions or Kuhn-Tucker tangent cone or Ursescu
tangent cone.

� The set

I(M;x) = fy 2 Rn : 9N(y);9� > 0; such that 8t 2 (0; �);8y0 2 N(y); x+ ty0 2Mg

is the cone of the interior directions.

� The set

Q(M;x) = fy 2 Rn : 9N(y);8� > 0;9t 2 (0; �) such that 8y0 2 N(y); x+ ty0 2Mg

is the cone of the quasiinterior directions.

� The set

Z(M;x) = fy 2 Rn : 9� > 0 such that 8t 2 (0; �); x+ ty 2Mg

is the cone of the feasible directions.

� The set

F (M;x) = fy 2 Rn : 8� > 0;9t 2 (0; �) such that x+ ty 2Mg

is the radial tangent cone or cone of the weakly feasible directions.

� The set

TC(M;x) = fy 2 Rn : 8N(y);9� > 0;9V (x) such that

8x0 2 V (x) \M [ fxg ; 8t 2 (0; �);9y0 2 N(y) with x0 + ty0 2Mg

is the Clarke tangent cone.

� The set

H(M;x) = fy 2 Rn : 9V (x);9� > 0; such that
8x0 2 V (x) \M [ fxg ; 8t 2 (0; �); x0 + ty 2Mg

is the hypertangent cone (of Rockafellar).
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� The set

E(M;x) = fy 2 Rn : 9U(y);9V (x);9� > 0; such that
8x0 2 V (x) \M [ fxg ; 8t 2 (0; �);8y0 2 U(y) we have x0 + ty0 2Mg

is the cone of epilipschitzian directions.

Remark 1

The de�nitions of the cones TC(M;x), H(M;x) and E(M;x) are slightly di�erent from
the original de�nitions of Clarke (1983) an Rockafellar (1980, 1981), where x0 2 V (x)\M:
The requirement x0 2 V (x) \ M [ fxg allows to verify the (c) axiom of De�nition 1.
Giorgi and Guerraggio (1992) have proved that if x 2 cl(M); the two types of de�nitions
coincide.

By means of the concept of local cone approximation, Elster and Thierfelder (1988a,
1988b) give the following de�nition of generalized (axiomatic) directional derivative.

De�nition 3

Let f : Rn ! [�1;+1] ; x 2 R
n; such that jf(x)j < +1 and a local cone

approximation K : 2R
n�R � Rn � R ! 2R

n�R: The function fK(x; y) : Rn ! [�1;+1]
de�ned as

fK(x; y) = inf
n
� 2 R : (y; �) 2 K

�
epif; (x; f(x))

�o
; y 2 Rn;

is the K-derivative of f at x: For convention inf ; = +1:

It is easy to see that fK is a positively homogeneous function of the direction y.
Moreover, Elster and Thierfelder (1988a) prove the following properties.

Theorem 1

(1.1) If K
�
epif; (x; f(x))

�
is convex, then fK(x; �) is sublinear.

(1.2) epifK ; (x; �) =
n
(y; �) 2 Rn � R : 8" > 0; (y; � + ") 2 K

�
epif; (x; f(x))

�o
:

(1.3) If K
�
epif; (x; f(x))

�
is closed, it holds epifK(x; �) = K

�
epif; (x; f(x))

�

and therefore fK(x; �) is lower semicontinuous.

(1.4) epi
�

fK(x; �) =
n
(y; �) 2 Rn � R : 8" > 0; (y; � � ") 2 K

�
epif; (x; f(x))

�o
;

where epi
�

fK =
�
(y; �) : � > fK(x; y)

	
:

(1.5) If K
�
epif; (x; f(x))

�
is open, it holds epi

�

fK(x; �) = K
�
epif; (x; f(x))

�
;

and fK(x; �) is upper semicontinuous.

De�nition 3 allows to generate many particular notions of generalized directional
derivatives; in particular, by using the previously de�ned local cone approximations, it is
possible to obtain the following types of K-derivatives.
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Theorem 2

Let f : Rn ! R; and x 2 Rn: Then

� fT (x; y) = lim inf
t!0+;y0!y

f(x+ ty0)� f(x)

t
= fDH� (x; y)

is the lower Dini-Hadamard directional derivative.

� f I(x; y) = lim sup
t!0+;y0!y

f(x+ ty0)� f(x)

t
= fDH+ (x; y)

is the upper Dini-Hadamard directional derivative.

� fZ(x; y) = lim sup
t!0+

f(x+ ty)� f(x)

t
= fD+ (x; y)

is the upper Dini directional derivative.

� fF (x; y) = lim inf
t!0+

f(x+ ty)� f(x)

t
= fD� (x; y)

is the lower Dini directional derivative.

So, when F = Z, we have the classical directional derivative f 0(x; y):

� fA(x; y) = sup
�>0

lim sup
t!0+

inf
y02N(y;�)

f(x+ ty0)� f(x)

t
is the lower Ursescu directional derivative (see Ursescu (1982)).

� fQ(x; y) = inf
�>0
lim inf
t!0+

sup
y02N(y;�)

f(x+ ty0)� f(x)

t

is the upper Ursescu directional derivative.

� fH(x; y) = lim sup
(x0;�)!fx; t!0+

f(x0 + ty)� �

t
;

where the expression (x0; �)!f x means that (x
0; �) 2 epif; x0 ! x and �! f(x);

is the generalized Clarke directional derivative.

� fTC(x; y) = sup
�>0

lim sup
(x0;�)!fx;t!0

+

inf
y02N(y;�)

f(x0 + ty0)� �

t

is the generalized Clarke-Rockafellar directional derivative, usually denoted by f "(x; y).

� fE(x; y) = lim sup
t!0+;y0!y;(x0;�)!fx

f(x0 + ty0)� �

t

is the epilipschitzian directional derivative.

It must be noted that when f is lower semicontinuous (x0; �) ! fx becomes x
0 ! fx;

and if f is continuous, it becomes simply x0 ! x: If f is locally Lipschitz, then

fH(x; y) = fTC(x; y) = lim sup
t!0+;x0!x

f(x0 + ty)� f(x0)

t
;

i.e. we obtain the classical Clarke directional derivative, usually denoted by f o(x; y).
Moreover, in this case

fA(x; y) = fT (x; y) = fF (x; y)
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and
fQ(x; y) = f I(x; y) = fZ(x; y):

Together with the axiomatic notion of K-directional derivative, it is possible to intro-
duce an axiomatic notion of K-subdi�erential (see Elster and Thierfelder (1985, 1988a)).

De�nition 4

Let f : Rn ! R; x 2 Rn and K a local cone approximation.
The set

@
K
f(x) =

�
x� 2 Rn : fK(x; y) � x�y; 8y 2 Rn

	

is said K-subdi�erential of f at x and the elements x� 2 @
K
f(x) are said K-subgradients.

We remark that @
K
f(x) can be the empty set; moreover, it is a closed and convex set.

Theorem 3 (Elster and Thierferlder (1985, 1988a))

Let f : Rn ! R; x 2 Rn and K a local cone approximation. Then it holds

@
K
f(x) = fx� 2 Rn : (x�;�1) 2 K�(epif; (x; f(x))g ;

were K� is the polar cone of K.
Moreover, it holds

@
K
f(x) = @cl(convK)f(x):

Theorem 4 (Elster and Thierferlder (1985, 1988a))

If K is closed and convex, then it holds

(4.1) fK(x; y) � 0 if and only if @
K
f(x) 6= ;:

(4.2) If fK(x; 0) = 0; then fK(x; y) = sup fx�y : x� 2 @
K
f(x)g ;8y 2 Rn:

(4.3) 9U(0) : fK(x; y) � 1;8y 2 U(0)) @
K
f(x) is compact.

(4.4) 9U(0) :
��fK(x; y)

�� � 1;8y 2 U(0)) fK(x; y) = max fx�y : x� 2 @
K
f(x)g ;8y 2 Rn:

For other properties of the K-subdi�erential and its relations with the K-derivatives,
see the quoted papers of Elster and Thierfelder. We now take into consideration the
problem (P), supposing that f and every gi; i 2 I = f1; 2; :::;mg are functions de�ned on
R
n and taking values in [�1;+1]. We shall be concerned in particular with necessary
optimality conditions and constraint quali�cations, in terms of K-derivatives and K-
subdi�erentials. We state �rst some results and de�nitions.
The sets

DK
f (x) =

�
y 2 Rn : fK(x; y) < 0

	
(cone of descending directions of f at x);

CKf (x) =
�
y 2 Rn : fK(x; y) � 0

	
(linearizing cone of f at x);

DK
I (x) = \

i2I
DK
gi
(x);

CKI (x) = \
i2I
CKgi (x)

are cones (as fK is positively homogeneous) and, in particular, they are convex if K is
convex.
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De�nition 5

The set

BKI (x) =

�
x� 2 Rn : x� =

P

i2I

�ix
i; �i � 0; x

i 2 @
K
gi(x); i 2 I

�
=

=

�
x� 2 Rn : x� =

P

i2I

�i@Kgi(x); �i � 0; i 2 I

�
=

=
P

i2I

cone@
K
gi(x)

is called the cone of K-subgradients of the functions gi; i 2 I; at x:
We agree that BK; = f0g :

With reference to (P), we denote by S = fx : gi(x) � 0g its feasible set and by I(x
0)

the set of the active constraints at the feasible point x0:

I(x0) =
�
i 2 I : gi(x

0) = 0
	
:

We suppose that S 6= ; and that jf(x0)j < +1; jgi(x
0)j < +1;8i 2 I:

Moreover, following Elster and Thierfelder (1988a) we always assume that every gi is
upper semicontinuous for every i 2 InI(x0):
Following Elster and Thierfelder (1985, 1988a) and Giorgi, Guerraggio and Thierfelder

(2004) we now give, for the problem (P), necessary optimality conditions of the Kuhn-
Tucker-type, in terms of K-derivatives and K-subdi�erentials.
We suppose that the cone approximations have the following additional properties:

(A1) K(�; �) is convex and closed;

(A2) x 2cl(M), 0 2 K(M;x);

(A3) K(�; �) � T (�; �);

(A4) int(K(M;x)) � I(M;x):

The following general necessary optimality conditions hold.

Theorem 5

If x0 2 S is a local solution of (P), then it holds

(5.1) D
int(K)
f (x0) \K(S; x0) = ;;

(5.2) DK
f (x

0)\int(K(S; x0)) = ;:

Theorem 6

If x0 2 S is a local solution of (P) and if one of the following two conditions

(B1) domf int(K)(x0; �) \K(S; x0) 6= ;;

(B2) domfK(x0; �)\int(K(S; x0)) 6= ;;

is satis�ed, then
0 2 @

K
f(x0) +K�(S; x0):

From this last theorem it is possible to derive easily the following Kuhn-Tucker-
type necessary optimality conditions for (P) in terms of axiomatic K-derivatives and
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K-subdi�erentials. Moreover, it is possible to introduce some constraint quali�cations, as
well expressed in terms of K-derivatives and K-subgradients.

Theorem 7

Let x0 2 S be a local solution of (P) and let the following constraint quali�cation
be satis�ed

(CQ)1 K�(S; x0) � BK
I(x0)(x

0) and either (B1) or (B2):

Then, there exist multipliers �i � 0; i 2 I(x
0); such that

(7.1) 0 2 @
K
f(x0) +

P

i2I(x0)

�i@Kgi(x
0);

(7.2) fK(x0; y) +
P

i2I(x0)

�ig
K
i (x

0; y) � 0;8y 2 Rn:

Now we shall give some other constraint quali�cations which are su�cient for (CQ)1.
We denote by (R) the following \regularity" condition

(R)

8
><

>:

Either (B1) or (B2) is satis�ed;

@
K
gi(x

0) 6= ;;8i 2 I(x0);

BK
I(x0)(x

0) is closed.

We formulate the following constraint quali�cations.

(CQ)2 (Guignard-Gould-Tolle-type c.q.)

K�(S; x0) �
�
CK
I(x0)(x

0)
��
; (R) is veri�ed.

(CQ)3 (Abadie-type c.q.)

CK
I(x0)(x

0) � K(S; x0); (R) is veri�ed.

(CQ)4 (Slater-type c.q.)

D
int(K)

I(x0) (x
0) 6= ;; (R) is veri�ed.

(CQ)5 (Slater-type c.q.)

domfK(x0; �) \D
int(K)

I(x0) (x
0) 6= ;; @

K
gi(x

0) 6= ;;8i 2 I(x0); BK
I(x0)(x

0) closed.

By supposing that, besides (A1)...(A4), also the following condition

(A5) DK
I(x0)(x

0) � K(S; x0)

is satis�ed, then it is possible to prove the following implications and coimplications
(Elster and Thierfelder (1988a), Giorgi, Guerraggio and Thierfelder (2004))

(CQ)5 )(CQ)4 )(CQ)3 ,(CQ)2 )(CQ)1.

Elster and Thierfelder (1985, 1988a) give also Fritz John-type conditions for (P). From
these conditions, under appropriate constraint quali�cations, it is then possible to obtain
the same Kuhn-Tucker-type conditions of Theorem 7.
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Theorem 8

Let x0 2 S be a local solution of (P) and let the assumptions (A1)...(A5) be
veri�ed. Then

(8.1) there exist multipliers �i � 0; i 2 f0g [ I(x
0); not all zero, such that

�0f
int(K)(x0; y) +

P

i2I(x0)

�ig
K
i (x

0; y) � 0;

8y 2domf int(K)(x0; �) \ ( \
i2I(x0)

domgKi (x
0; �));

(8.2) there exist multipliers �i � 0; i 2 f0g [ I(x
0); not all zero, such that

�0f
K(x0; y) +

P

i2I(x0)

�ig
int(K)
i (x0; y) � 0;

8y 2domfK(x0; �) \ ( \
i2I(x0)

domg
int(K)
i (x0; �)):

By means of the following conditions (in Elster and Thierfelder (1988a) there is a
misprint):

(B3) either 9i0 2 I(x
0) such that

domgKi0 (x
0; y) \

i2I(x0)nfi0g
domg

int(K)
i (x0; y)\domf int(K)(x0; y) = Rn;

(B 03) or domfK(x0; y) \
i2I(x0)

domg
int(K)
i (x0; y) = Rn

we can give a sharpened version of Theorem 8.

Theorem 9

Let x0 2 S be a local solution of (P) and let either (B3) or (B
0
3) be satis�ed,

besides (A1)...(A5). Then there exist multipliers �i � 0; i 2 f0g[ I(x
0); not all zero, such

that
(9.1) 0 2 �0@Kf(x

0) +
P

i2I(x0)

�i@Kgi(x
0):

(9.2) �0f
K(x0; y) +

P

i2I(x0)

�ig
K
i (x

0; y) � 0;8y 2 Rn:

If the following constraint quali�cation

(CQ)6 (DK
I(x0)(x

0) 6= ; and it holds either (B3) or (B
0
3))

is satis�ed, then we have, from Theorem 9, the following result, of the Kuhn-Tucker-type.

Theorem 10

Let x0 2 S be a local solution of (P), let the assumptions of Theorem 8 be veri�ed
and let (CQ)6 be satis�ed. Then �0 6= 0 (i.e. �0 > 0, i.e. �0 = 1) in (9.1) and (9.2) of
Theorem 9.
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A relationship between (CQ)6 and conditions (CQ)1. . . (CQ)5 cannot be established.
Indeed, the condition (CQ)6 is rather strong and it is not necessary for the validity of
(CQ)1. . . (CQ)5.
If we use the conditions

(B4) domf
int(K)
i (x0; �) \

i2I(x0)
domg

int(K)
i (x0; �) = Rn

and

(CQ)7 (B4)\(D
K
I(x0)(x

0) 6= ;

it is possible to show that

(CQ)7 )(CQ)6;

(CQ)7 )(CQ)5.

Remark 2

The constraint quali�cations examined and the related optimality conditions are
true generalizations of well-known results established by various authors for nonsmooth
optimization problems of the type of (P). See the conclusive sentences of the paper of
Elster and Thierfelder (1985).

3. G-semidi�erentiable functions

Another axiomatic approach to the construction of \a sort of container of several
existing concepts [of di�erentiability] and suitable for achieving necessary optimality con-
ditions" (Giannessi (2005)) is developed by Giannessi (1989). See also Giannessi (2005),
Pappalardo (1992, 1993a, 1993b),Yen (1995), Pappalardo and Uderzo (1999). In the present
Section we follow mainly Rocca (1994). As in the previous Section, also here we give the
notions in Rn, pointing out that the original treatment of Giannessi is performed in Hilbert
spaces.
Let X � Rn; x0 2 X; y = x� x0 (x 2 X); D = cone(X � x0) or at least D is given by

the intersection of the closed unit ball with cone(X�x0), in order that the next de�nitions
make sense.
We denote by G the class of functions p : X � D ! R linearly homogenous (i.e.

positively homogeneous of degree one) with respect to the second argument, and with G
a subset of G.

De�nition 6

A function f : X � Rn ! R is said upper G-semidi�erentiable at x0 if there exist
two functions p 2 G � G and " : X �D ! R such that

(i) lim sup
y!0

"(x0; y)= kyk � 0;

(ii) f(x) = f(x0) + p(x0; y) + "(x0; y); 8y 2 D;

(iii) for each (p; ") which satis�es conditions (i) and (ii), with p 2 G; we have
epi p � epi p:
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The function p(x0; y= kyk) is called the upper directional G-semiderivative of f at x0

in the direction y.

De�nition 7

A function f : X � Rn ! R is said lower G-semidi�erentiable at x0 when there
exist two functions p 2 G � G and " : X �D ! R such that

(iv) lim inf
y!0

"(x0; y)= kyk � 0;

(v) f(x) = f(x0) + p(x0; y) + "(x0; y); 8y 2 D;

(vi) for each (p; ") which satis�es conditions (iv) and (v), with p 2 G; we have
hypo p � hypo p:

The function p(x0; y= kyk) is called the lower directional G-semiderivative of f at x0

in the direction y.

De�nition 8

A function f : X ! R which is at the same time upper G-semidi�erentiable and
lower G-semidi�erentiable at x0, with the same function p, so that it holds

(vii) lim
y!0
"(x0; y)= kyk = 0;

is said to be G-di�erentiable at x0:

This class of functions was introduced independently by Giannessi (1989) and by
Robinson (1987) (this last author calls them \B-di�erentiable functions", where \B"
should stand for \Bouligand").

If G = L � G; where L is the subset of G given by linear functions, and the property
(vii) holds, then f turns out to be di�erentiable at x0 in the usual Fr�echet sense (in this
case D is required to be a linear subspace). A particular attention must be given to
the class of C�semidi�erentiable functions, where C is the subset of G given by convex
functions, with respect to the second variable (in this case D is required to be a convex
cone).

De�nition 9

Let f : X � Rn ! R; G � C; and let f be upper (resp. lower)G-semidi�erentiable
at x0; let p be its upper (resp. lower) directional G-semiderivative.
We call G-generalized subdi�erential of f at x0, denoted @

G
f(x0), the subdi�erential,

at y = 0, of the convex function p(x0; y) :

@
G
f(x0) = @p(x0; 0):

The previous de�nition makes sense even if G does not belong to C, but with a convex
G-semiderivative of f at x0. Also in this case we can speak ofG-generalized subdi�erential.
An element v 2 @

G
f(x0) is said G-generalized subgradient of f at x0.

Theorem 11 (Giannessi (1989))

Let X � Rn be open and convex.
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(11.1) If f : X ! R is an upper C-semidi�erentiable function, then

@
C
(�f)(x) = �@

C
f(x); 8� > 0; 8x 2 X;

(the same equality holds for � = 0, whenever @
C
f(x) 6= ;).

(11.2) If fi : X ! R; i = 1; 2; are upper C-semidi�erentiable functions, then

@
C
[f1(x) + f2(x)] � @Cf1(x) + @Cf2(x);

(11.3) @
C
f(x) is a convex set.

(11.4) If f is convex, then @
C
f(x) = @f(x);

moreover, f is C-di�erentiable at any x0 2 X and its unique directional
C-derivative coincides with the directional derivative of f .

The next result shows that the axiomatic approach of Giannessi includes also the
approach of Clarke for locally Lipschitz functions.

Theorem 12

Let us consider the following subset of G :

C0 =
�
p 2 G : epip � clH(epif; (x0; f(x0))

	
;

where H(M;x0) is the hypertangent cone at x0 2 cl (M) :
If f : Rn ! R is a locally Lipschitz at x0; then f is upper C0-semidi�erentiable at

x0, with unique upper directional C0-semiderivative given by the generalized directional
Clarke derivative f o(x0; y):
For other insights and connections between G-semidi�erentiable functions (in Eu-

clidean spaces) and Hadamard, Dini-Hadamard and Clarke directional derivatives, see
Yen (1995) and Pappalardo and Uderzo (1999).

In this section we consider necessary optimality conditions of the Kuhn-Tucker-type
for (P), where the functions involved are assumed to be G-semidi�erentiable. We �rst
consider a programming problem with a set constraint:

(P1) minf(x); x 2 C � X � Rn;

where f : X � Rn ! R and C is any subset of X (C not necessarily open).

Theorem 13

Let x0 2 C be a local solution of (P1) and let f be an upper G-semidi�erentiable
function at x0. If the upper directional G-semiderivative of f at x0; p(x0; �) is upper
semicontinuous , it holds

p(x0; y) � 0; 8y 2 T (C;x0) \D:

Proof

If y = 0, from the homogeneity of p(x0; y) it follows at once p(x0; 0) = 0:
Let us now suppose that there exists also y 6= 0, with y 2 T (C;x0)\D: By the de�nition
of upper directional G-semiderivative, we can write

f(x) = f(x0) + p(x0; x� x0) + "(x0; x� x0); 8x 2 X;

12



with lim sup
x!x0

"(x0; x� x0)

kx� x0k
� 0:

Let us now consider the sequences
�
xk
	
! x0; xk 2 C � X; and f�kg ; �k 2 R+; such

that
�
�k(x

k � x0)
	
! y:

Being y 6= 0, there exists an integer N such that xk 6= x0; 8k � N ; without loss of
generality, we can then suppose xk 6= x0 for any k: We have therefore, for any k:

f(xk)� f(x0) = p(x0; xk � x0) + "(x0; xk � x0);

from which, taking the linear homogeneity of p(x0; �) into account,

�k
�
f
�
xk
�
� f

�
x0
��
= p

�
x0; �k

�
xk � x0

��
+
�k(xk � x0)

 � (xk � x0); (1)

where

(xk � x0) =
"(x0; x� x0)

kx� x0k
:

As the �rst member of (1) is non negative, also the second member will be non negative.
Moreover, denoting

l = lim sup
k!+1

(xk � x0);

we can �nd a subsequence
�
xkn
	
of
�
xk
	
such that

lim sup
n!+1

"(x0; xkn � x0)

kxkn � x0k
= l � 0:

The sequence
�
�kn(x

kn � x0)
	
converges to y. Therefore, from the inequality

p(x0; �kn
�
xkn � x0

�
) +

�kn(x
kn � x0)

 � (xkn � x0) � 0;

taking the limit for n! +1 and taking the upper semicontinuity of p(x0; �) into account,
we get

p(x0; y) + kyk � l � 0;

from which we obtain the thesis. �

Remark 3

� Being T (C; x0) � cl(cone(C � x0) � cl(D); it follows that, if D is closed, the thesis
of the theorem can be replaced by the relation

p(x0; y) � 0; 8y 2 T (C; x0):

� Theorem 13 holds, more generally, for any upper semicontinuous function p 2 G;
which veri�es relations (i) and (ii) of De�nition 6.

13



� If f : X � R
n ! R; X open, is an L-di�erentiable function, the assumptions of

Theorem 13 are satis�ed. In this case we deduce the necessary optimality condition
of Guignard-Gould-Tolle (Guignard (1969), Gould and Tolle (1971)):

�rf(x0) 2 T �(C; x0);

where T �(C; x0) is the (negative) polar cone of T (C; x0).

� If C is an open set or also if x0 2 int(C); we have T (C; x0) = R
n = D. In this

case we obtain a generalized necessary optimality condition for an unconstrained
minimization problem:

p(x0; y) � 0; 8y 2 Rn:

Theorem 14

Let f : X � R
n ! R; an upper G-semidi�erentiable function at x0 2 C and

let � be a convex subcone of T (C; x0), such that relint(�)\ relint(D) 6= ;. If the upper
directional G-semiderivative of f at x0, p(x0; �); is convex and upper semicontinuous, then,
if x0 2 S is a local solution of (P1), it holds

0 2 @
G
f(x0) + �� +D�: (2)

Proof

We �rst note that, by well-known results of the Convex Analysis, from the as-
sumption relint(�)\ relint(D) 6= ;; we get

relint(D)\ relint(cl (�) \D) = relint(D) \ frelint(cl (�)) \ relint(D)g =

=relint(D)\ relint(cl (�) = relint(D)\ relint(�) 6= ;:

As, by Theorem 13, it results

p(x0; y) � 0; 8y 2 T (C; x0) \D;

being cl (�) � T (C; x0), it must also result

p(x0; y) � 0; 8y 2 cl (�) \D:

As 0 2 cl (�) \ D; we deduce that y� = 0 is a minimum point for p(x0; �) on cl (�) \
D: It is well-known that, if h is a convex function and B � R

n is a convex set, if
relint(dom(h))\ relint(B) 6= ; (dom(h) being the domain of h); then a necessary and
su�cient condition for x 2 B to be a minimum point for h on B is

0 2 @h(x) +N(B; x);

where N(B; x) is the usual normal cone at x with respect to B (see Rockafellar (1970)).
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If x = 0; N(B; 0) coincides with the (negative) polar cone of B. Then, a necessary
and su�cient condition for y� = 0 to be a minimum point for p(x0; �) on cl (�) \D is

0 2 @p(x0; 0) + (cl (�) \D)� ;

that is, taking the assumption relint(�)\ relint(D) 6= ; into account,

0 2 @p(x0; 0) + (cl (�))� +D� = @p(x0; 0) + �� +D�:

For the de�nition of @
G
f(x0), this is equivalent to require

0 2 @
G
f(x0) + �� +D�:

�

Remark 4

� If D is closed, from � � T (C; x0) � D, under the assumptions of Theorem 14 it
follows that relation (2) becomes

0 2 @
G
f(x0) + ��:

� The result of Theorem 14 becomes sharper if T (C; x0) is a convex cone, as in this
case � = T (C; x0): A su�cient condition to have T (C; x0) convex is that C is
convex or also that C is locally convex at x0 (i.e. there exists a neighborhood of
x0, B(x0), such that the set C \B(x0) is convex). If T (C; x0) is not a convex cone,
it is however always possible to �nd convex subcones of T (C; x0): e.g. the Clarke
tangent cone (Clarke (1983)) or the Michel-Penot prototangent cone, larger than the
Clarke tangent cone (Michel and Penot (1984)).

� If f : X � Rn ! R; X open and convex, is a convex function, Theorem 14 collapses
to the well-known condition

0 2 @f(x0) +N(C; x0):

Similarly, if f : X ! R; X open, is a locally Lipschitzian function at x0 2 X; then
Theorem 14 collapses to the Clarke necessary optimality condition

0 2 
f(x0) + (TC(C; x0))�;

where 
 = fv 2 Rn : f o(x0; y) � v � y; 8y 2 Rng is the Clarke generalized gradient
at x0:
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De�nition 10

Let g1; g2; ..., gm be upper G-semidi�erentiable at x
0, with upper directional G-

semiderivatives p1; p2; ..., pm convex. Let @Ggi(x
0) 6= ; for every i 2 I = f1; 2; : : : ;mg.

The cone of the G-generalized subdi�erential of g1; g2; ..., gm at x
0 is the set

M(x0; I) =

mX

i=1

cone
�
@
G
gi(x

0)
�
:

Theorem 15

Let x0 2 S be a local solution of (P) and let f be upper G-semidi�erentiable at x0

with a convex and continuous upper directional G-semiderivative. Let every gi, i 2 I(x
0);

be upper G-semidi�erentiable at x0 with a convex upper directional G-semiderivative
pi(x

0; �): If T (S; x0) is convex, relint(D)\ relint(T (S; x0)) 6= 0; @
G
gi(x

0) 6= ;; 8i 2 I(x0);
and the following constraint quali�cation holds

(CQ)I M(x0; I(x0)) � T �(S; x0) +D�;

then there exist multipliers �i � 0; i 2 I(x
0); such that

0 2 @
G
f(x0) +

X

i2I(x0)

�i@Ggi(x
0):

Proof

From the previous theorem it follows that

0 2 @
G
f(x0) + T �(S; x0) +D�;

that is, for the assumed constraint quali�cation,

0 2 @
G
f(x0) +M(x0; I(x0)):

Therefore the thesis follows at once. �

We now take into consideration other constraint quali�cations and continue to assume
that every gi, i 2 I(x

0); is an upper G-semidi�erentiable function at x0, with a convex
upper directional G-semiderivative, that T (S; x0) is convex and that @

G
gi(x

0) 6= ;; 8i 2
I(x0):
We consider the following constraint quali�cations (CQ)II:::(CQ)VIII.

(CQ)II (A0)� � T �(S; x0); M(x0; I(x0)) is closed,
where A0 = \A0i

i2I(x0)

; A0i = fy 2 D : pi(x
0; y) � 0g :

(CQ)II may be regarded as a generalized Guignard-Gould-Tolle constraint
quali�cation.

(CQ)III A0 � T (S; x0); M(x0; I(x0)) is closed.

(CQ)III may be regarded as a generalized Abadie constraint quali�cation.
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(CQ)IV A0 � cl(Z(S; x0)); M(x0; I(x0)) is closed.

We recall (see Section 1, De�nition 2) that the set
Z(S; x0) = fy 2 Rn : 9� > 0 such that 8t 2 (0; �); x0 + ty 2 Sg

is the cone of the feasible directions at x0 for S.

(CQ)IV may be regarded as a generalized Zangwill constraint quali�cation.

(CQ)V A0 � cl(A); M(x0; I(x0)) is closed,

where A = \Ai
i2I(x0)

; Ai = fy 2 D : pi(x
0; y) < 0g :

(CQ)V may be regarded as a generalized Cottle constraint quali�cation.

(CQ)VI 9y 2 D : pi(x
0; y) < 0;8i 2 I(x0); M(x0; I(x0)) is closed.

(CQ)VI may be regarded as a generalized Slater constraint quali�cation.

(CQ)VII 0 =2 @p(x0; 0); M(x0; I(x0)) is closed,
where p(x0; y) = max fpi(x

0; y); i 2 I(x0); y 2 Dg :

(CQ)VIII There do not exist multipliers �i � 0; i 2 I(x
0); not all zero, such that

0 2
X

i2I(x0)

�i@Ggi(x
0) and M(x0; I(x0)) is closed.

(CQ)VIII may be regarded as a condition of generalized positive linear
independence.

In order to prove the implications between the various constraint quali�cations intro-
duced, we shall make use of the following assumptions.

(a1) D = Rn:

(a2) 8y 2 D; 9� > 0 : 8t 2 (0; �); x0 + ty 2 X; where X is the common domain of f
and every gi; i = 1; 2; :::;m:

(a3) The upper directional G-semiderivatives of the functions gi; i 2 I(x
0); are

continuous.

(a4) relint(T (S; x0))\ relint(D) 6= ;:

The notation \
ai=) " means that the related implication holds under the assumption (a i).

Theorem 16

The following relations hold.

(CQ)VIII

a1=)
(=

(CQ)VII
=)
(=

(CQ)VI =) (CQ)V
a2=) (CQ)IV =)

=) (CQ)III
=)
a3(=

(CQ)II
a1;a2;a3
=) (CQ)I .
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Proof

� (CQ)VIII

a1=)
(=

(CQ)VII

It easily proved that conv f@
G
gi(x

0); i 2 I(x0)g � @p(x0; 0): From this inclusion we
have that, if 0 =2 @p(x0; 0); also 0 =2 conv f@gi(x

0); i 2 I(x0)g : If D = Rn; it follows that
@
G
gi(x

0) = @pi(x
0; 0) is a convex and compact set, for every i 2 I(x0). As it is well known

that

@p(x0; 0) = conv
�
@pi(x

0; 0); i 2 I(x0)
	

we have the implication (CQ)VIII =)(CQ)VII ; under assumption a1.

� (CQ)VII
=)
(=

(CQ)VI

Being the functions pi(x
0; �) convex, also pi(x

0; 0) is convex. Then, 0 =2 @p(x0; 0) if and
only if y = 0 is not a minimum point for pi(x

0; �), i.e. if and only if there exists y 2 D
such that p(x0; y) < 0; which implies pi(x

0; y) < 0;8i 2 I(x0).

� (CQ)VI =)(CQ)V

We have to prove that A0 � cl(A): The inclusion is obvious if y 2 A0 is such that
pi(x

0; y) < 0;8i 2 I(x0): If y 2 A0 is such that pi(x
0; y) = 0 for at least an index i 2 I(x0);

as there exists a vector y 2 D such that pi(x
0; y) < 0;8i 2 I(x0); from the convexity of

pi(x
0; y); it follows

pi(x
0; ty + (1� t)y) � tpi(x

0; y) + (1� t)pi(x
0; y) < 0;8t 2 (0; 1] ;8i 2 I(x0):

Therefore, in each neighborhood of y there exist points where pi(x
0; �) < 0;8i 2 I(x0):

This shows that y 2 cl(A):

� (CQ)V
a2
=)(CQ)IV

Being S =

m\

i=1

Si; where Si = fx 2 X : gi(x) � 0g ; and being g
+
i (x

0; y) � pi(x
0; y);

8y 2 D; where g+i (x
0; y) is the Dini upper directional derivative of gi; at x

0 in the direction
y, we get, for each i 2 I(x0) :

Ai �
�
y 2 D : g+i (x

0; y) < 0
	
� Z(Si; x

0) \D = Z(Si; x
0);

where the last equality follows from the fact that

Z(Si; x
0) � cone(Si � x

0) � D:

Let now be i =2 I(x0), i.e. gi(x
0) < 0: Again from g+i (x

0; y) � pi(x
0; y);8y 2 D; it

follows g+i (x
0; y) < +1;8y 2 D: If lim sup

t!0+

gi(x
0 + ty)� gi(x

0)

t
is �nite, then necessarily

it will be lim sup
t!0+

gi(x
0 + ty) = gi(x

0): Therefore, it will exist a scalar � > 0 such
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that gi(x
0 + ty) < 0;8t 2 (0; �): The same conclusion obviously holds if we have

lim sup
t!0+

gi(x
0 + ty)� gi(x

0)

t
= �1: Therefore, for gi(x

0) < 0; i.e. i =2 I(x0); it holds

D = Z(Si; x
0): We have then,

A =
\

i2I(x0)

Ai �
\

i2I(x0)

Z(Si; x
0) =

m\

i=1

Z(Si; x
0) = Z

 
m\

i=1

Si; x
0

!

= Z(S; x0);

from which we get A0 � cl(A) � cl(Z(S; x0)):

� (CQ)IV =)(CQ)III

From cl(Z(S; x0)) � T (S; x0); the thesis follows at once.

� (CQ)III
=)
a3(=

(CQ)II

From A0 � T (S; x0) it follows (A0)� � T �(S; x0): If (CQ)II holds, thanks to the as-
sumption (a3), A

0 is a closed (and convex) cone.
Therefore we have (A0)�� = T ��(S; x0) = T (S; x0):

� (CQ)II
a1;a2;a3
=) (CQ)I

As the sets A0i have a nonempty intersection (the zero element belongs to each of
them), we have, for properties of polar cones,

(A0)� = cl

0

@
X

i2I(x0)

(Ai)
�

1

A = cl

0

@
X

i2I(x0)

cl (cone(@
G
gi(x

0)))

1

A = cl

0

@
X

i2I(x0)

cone(@
G
gi(x

0))

1

A =

= cl (M(x0; I(x0))) =M(x0; I(x0)):
Therefore, it holds

(A0)� =M(x0; I(x0)) � T �(S; x0) = (T (S; x0) \ cl(D))
�
=

= T �(S; x0) + (cl(D))� = T �(S; x0) +D�:

�

4. Comparisons between the two axiomatic approaches
and some remarks

The two axiomatic approaches to generalized di�erentiability, considered in the
previous sections point out the problem of analyzing the relations between them. This
has been done by Pappalardo (1992).
We follow his approach and, in particular, the following questions will be studied.

(a) Given a local cone approximation K, is it possible to de�ne a subset G of G such
that a function f is K-di�erentiable if and only if f is G-di�erentiable with fK as
G-derivative of f?
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(b) Given a subset G of G, is it possible to de�ne a local cone approximation K such
that a function f is G-di�erentiable if and only if f is K-di�erentiable, with p(�; �)
as the K-derivative of f , i.e. fK = p?

The local cone approximation K we must �nd to answer question (b), will not be
de�ned on 2R

n

�Rn, as it makes no sense to consider a derivative at a point not belonging
to the graph of f . This cone approximation will be therefore de�ned on 2Y � Y 0, with

Y = fepif : f is G-di�erentiableg

Y 0 = fx 2 Rn+1 : x 2 graphf; f is G-di�erentiableg :

Moreover, since we are interested only the approximations of epigraphs of functions, it is
clear that the property (e) of De�nition 1 must be replaced by the following axiom

(e bis) K('	(epif); '	(x; f(x)) = '	 [K(epif; (x; f(x))] ;

for every linear 	 : R ! R and '	(x; f(x)) = (x;	(f(x)); as we consider only linear
homeomorphisms which transform epigraphs in to epigraphs.
Pappalardo (1992), by means of two examples proves that, in general, the two questions

(a) and (b) have a negative answer. However, under suitable, rather mild, conditions the
two approaches are equivalent.

Theorem 17 (Pappalardo (1992))

(17.1) Consider a local cone approximation K such that for every function f which is
K-di�erentiable at a point x 2 Rn; we have

lim
y!0

f(x0 + y)� f(x0)� fK(x0; y)

kyk
= 0:

Then there exists a subset G of G such that, for every function which is K-di�erentiable,
fK is the G-derivative of f .

(17.2) Consider a set G � G with the following properties

p 2 G! �p 2 G; 8� 2 R:

Then there exists a local cone approximation K such that for every function f which is
G-di�erentiable, p(�; �) is the K-derivative of f .

Pappalardo (1992) studies also the relations between K-derivatives and G-semiderivatives.

Another approach to generalized di�erentiability, quite similar to the approach of El-
ster and Thierfelder, is due to D. Ward (1988), by means of the notion of \quanti�cational
tangent cone\ (\q-cone"). This de�nition contains, as particular cases, all the axiom of
Elster and Thierfelder. Ward gives a de�nition of generalized directional derivative which
is the same of the one given by Elster and Thierfelder.
For a discussion of constraint quali�cations in the context of the q-cones, see Merkovsky

and Ward (1990).

Another general approach to di�erentiability, suitable for applications to optimization
theory, has been elaborated by S. Komlosi (1993) and subsequently generalized by Komlosi
and Pappalardo (1994).
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De�nition 11

The bifunction h : Rn � Rn ! R is a �rst order approximation of the function
f : Rn ! R at the point x, if:

(i) h(x; y) is linearly homogeneous in y;

(ii) Dh
f (x) � Df (x); where

Dh
f (x) = fy 2 R

n : h(x; y) < 0g ;

Df (x) = fy 2 R
n : 9T > 0;8t 2 (0; T ) ; f(x+ ty)� f(x) < 0g :

The sets Dh
f (x) and Df (x) are cones; Df (x) is the cone of descent directions of f at x.

It is easy to see that the usual directional derivative f 0(x; y), the Clarke generalized
directional derivative f o(x; y) and the Dini upper directional derivative fD+ (x; y) are all
examples of �rst order approximations of f at x.
Also Io�e (1979, 1984) has introduced a de�nition of �rst order approximation, which

is, however, more restrictive than the one of De�nition 11, since this author requires, as in
De�nition 11, the positive homogeneity of the approximation h, but instead of condition
(ii), he requires the condition

(ii)0 h(x; y) � fD+ (x; y);8y 2 R
n:

See also Jeyakumar (1987).
By means of De�nition 11, Komlosi obtains necessary optimality conditions for (P1)

and for (P); for this last case Komlosi introduces a regularity condition, which is in fact
a constraint quali�cation.
The concept of �rst order approximation of a function has been subsequently general-

ized by Komlosi and Pappalardo (1994), in view of obtaining general optimality conditions
for (P1) and (P).
Let us consider (P1) and consider the strict lower level set:

Lf (x
0) =

�
x 2 Rn : f(x) < f(x0)

	
; x0 2 C:

It is evident that x0 is a solution of (P1) if and only if

Lf (x
0) \ C = ;;

and that x0 is a local solution of (P1) when

Lf (x
0) \ C \N(x0) = ;;

where N(x0) is an appropriate neighborhood of x0.
The veri�cation of the previous conditions is, however, in general rather complicate.

In order to get more tractable optimality conditions, it is better to approximate the sets
Lf (x

0) and C by other sets having a simpler structure, e.g., the local cone approximations
of Elster and Thierfelder .
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De�nition 12

An ordered pair (K1; K2) of local cone approximations is admissible for (P1),
when the condition

K1

�
Lf (x

0); x0
�
\K2(C; x

0) = ;

is a necessary optimality condition for x0 2 C to be a local optimal solution of (P1).

The following result shows how to build pairs of local cone approximations admissible
for (P1). We recall that a local cone approximation K is isotone, when

S � T; x0 2 cl(S) \ cl(T )) K(S; x0) � K(T; x0):

Theorem 18 (Komlosi and Pappalardo (1994))

Let K1(M;x
0) be an isotone local cone approximation and set

K2(M;x
0) = RnnK1(R

nnM;x0):

Then the pair (K1; K2) is admissible for (P1).

De�nition 13

A bifunction h(x0; y), linearly homogeneous in y, is a generalized �rst order ap-
proximation of f(x) at x0, when there exists an admissible pair (K1; K2) of local cone
approximations for (P1) such that

Dh(x
0) � K1(Lf (x

0); x0);

where Dh(x
0) = fy 2 Rn : h(x0; y) < 0g :

It is easily seen that this concept of �rst order approximation is more general then
the one of De�nition 11. It is su�cient to choose K1(S; x

0) = Z(S; x0) and K2(S; x
0) =

F (S; x0) to see that the properties requested by De�nition 11 are satis�ed.
By means of this new de�nition, Komlosi and Pappalardo (1994) obtain necessary op-

timality conditions for (P1). Rocca (1995) extends this approach to problem (P). It is also
possible to obtain relationships between K-derivatives, G-semiderivatives and �rst order
approximations. This has been (partially) done by Komlosi and Pappalardo (1994). By
completing their analysis, it is seen that indeed the concept of generalized �rst order ap-
proximation is one of the most general \containers" of the various concepts of generalized
directional derivatives considered in the literature.
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