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Abstract: Operational risk is hard to quantify, for the presence of heavy
tailed loss distributions. Extreme value distributions, used in this context, are
very sensitive to the data, and this is a problem in the presence of rare loss
data. Self risk assessment questionnaires, if properly modelled, may provide
the missing piece of information that is necessary to adequately estimate op-
erational risks. In this paper we propose to embody self risk assessment data
into suitable prior distributions, and to follow a Bayesian approach to merge
self assessment with loss data. We derive operational loss posterior distribu-
tions, from which appropriate measures of risk, such as the Value at Risk, or
the Expected Shortfall, can be derived. We test our proposed models on a real
database, made up of internal loss data and self risk assessment questionnaires of
an anonymous commercial bank. Our results show that the proposed Bayesian
models performs better with respect to classical extreme value models, leading
to a smaller quantification of the Value at Risk required to cover unexpected
losses.

Keywords: Extreme value distributions, Operational risk management,
Self-assessment questionnaires, Value at Risk

1 Introduction

In this paper we improve the state of the art on statistical models for opera-
tional risk measurement. Operational risk is the risk that a company occurs
into financial losses, resulting from inadequate or failed internal processes, peo-
ple and systems, or from external events (see e.g. Cruz, 2002 or Panjer, 2006).
Operational risks of financial institutions must be measured according to inter-
national standards, described in the so-called Basel accords (see www.bis.org).
In particular, here we focus our attention on the advanced measurement ap-
proach (AMA). This approach gives greater flexibility, in comparison with sim-
pler, more standardised approaches, as it takes into account the particular
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characteristics of financial institutions (see, for example, Cornalba and Giu-
dici, 2004).
Operational risks are hard to quantify, for the presence of heavy tailed loss
distributions. Extreme value distributions, used in this context, are very sen-
sitive to the data, and this may be a problem when losses are rare. Self risk
assessment questionnaires, if properly modelled, may provide the missing piece
of information that is necessary to estimate operational risks.
In this paper we propose to embody self risk assessment data into a suitable
parametric prior distribution, and follow a Bayesian approach to merge self as-
sessment with loss data. To achieve this aim, we extend the Bayesian approach
of Behrens et al. (2006) to operational risk modelling, and consider a convo-
lution between two distributions: one representing the loss frequency, and the
other the loss severity. Prior distributions will be elicited for the parameters of
both distributions, under two different settings: an uninformative prior setting,
where expert opinions are not available (as in Dalla Valle and Giudici, 2008),
and an informative prior setting, where expert opinions are extracted from a
risk self assessment process (described, for example, in Bilotta and Giudici, 2004
and Bonafede and Giudici, 2007).
By means of Bayes’ theorem we can update each prior distribution with the ob-
served loss data and determine the posterior distribution for the frequency and
the severity distributions and, by convolution, the predictive loss distribution.
As a closed form analytic solution is not possible, the predictive loss distribution
can be approximated by means of Markov Chain Monte Carlo methods (see e.g.
Gamerman, 1997). On the basis of the estimated predictive loss distribution we
can thus compute summary risk measures, such as the Value at Risk (VaR) and
the Expected Shortfall (ES) (see e.g. Artzner et al. 1999).
Our proposed model will be tested on a real database, made up of internal loss
data and self risk assessment questionnaires of an anonymous commercial bank.
We shall compare the results achieved with our Bayesian model with those ob-
tained under a classical extreme value model, based on a Poisson distribution
for the frequency and a generalized Pareto distribution for the severity (see e.g.
Chavez-Demoulin et al., 2006).
The main outcome of such comparison is that the application of our Bayesian
model reduces the Value at Risk and, therefore, the required capital coverage,
an important financial advantage for the adopters of our proposal. A further
advantage of what we propose is the possibility to combine observed loss data,
that are necessarily ”backward- looking”, with self assessment data that, being
human opinions, may include ”forward-looking” aspects.
The paper is organized as follows: Section 2 introduces our proposed Bayesian
model; Section 3 describes the real data at hand and underlines the empirical
evidences obtained using both classical and Bayesian approaches. Section 4 ends
with concluding remarks and further ideas of research.
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2 Proposal

There are various reasons for preferring a Bayesian analysis of extremes over
the more traditional likelihood approach. Since extreme data are (by their very
nature) quite scarce, the ability to incorporate other sources of information
through a prior distribution has an obvious appeal (see e.g. Figini and Giudici,
2011). Recently, some Bayesian extreme value models have been proposed in the
financial risk management literature (see e.g. Behrens et al. 2006, Diebolt et al.
2005, Panjer 2006). Such models consider the case of developing risk measures
for a loss distribution that is assumed to be a Generalized Pareto Distribution
(GPD).
In this paper we extend these models to operational risk management, whose
modelling is more complex than financial risk management (see e.g. Cruz 2002
or Alexander, 2003). To achieve this aim, we consider a convolution between a
GPD distribution for the mean loss (severity), with a Poisson distribution for the
number of loss events (frequency), the latter being unknown in the operational
risk setting.
More precisely, our Bayesian Loss Distribution Approach (BLDA) starts by
expressing each operational loss in terms of Frequency (the number of loss events
during a certain time period) and Severity (the mean impact of the event, in
terms of financial losses, in the same period). Such expression will hold for a
collection of different loss events, classified in a matrix M of Business Lines
(BL) and Event types (ET), as prescribed by the AMA approach in the Basel
accord (see e.g. Cornalba and Giudici, 2004, or Dalla Valle and Giudici, 2008).
Formally, for each business line/event type intersection i (where i = 1, ..., I) in
the matrix M and for a given time period t, the total operational losses could
be defined as the sum of a random number nit (frequency) of losses:

Lit = Xi1 + ...+Xint

where, for the business line/event type intersection i and for t = 1, ..., T , (T
representing the number of time periods available), Lit denotes the total oper-
ational loss, Xi1, ..., Xint

denote individual loss severities and nit denotes the
unknown frequency.
Note that, for each intersection and for each time period, the total loss can be
expressed as Lit = sit × nit, where nit is the frequency, defined as before, and
sit (commonly referred to as the severity) is the mean loss for that period.
Once operational loss variables are defined and classified as previously described,
our BLDA model proceeds with some independence assumptions.
We assume that:
(1) within each intersection i, and each time period t, the distribution of the
frequency nit is independent of the distribution of the severity sit;
(2) for any given time period t, the I losses Lit = sit × nit, for i = 1, . . . , I,
occurring in different intersections, are independent of each other;
(3) for any given intersection i the T losses losses Lit = sit×nit, for t = 1, . . . , T
occurring in different time periods, are independent of each other.
The above assumptions are common in the operational risk modelling literature
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(see e.g. Cruz, 2002). Some authors have considered a copula-based approach
to remove one or more of the previous assumptions (see e.g. Fantazzini et al.,
2008; Giudici and Politou, 2009), within a simplified modelling context. Our
aim here is to evaluate whether a Bayesian model can improve classical models,
within a complete extreme value modelling formulation and, therefore, will not
consider such extensions.
For the sake of simplicity, in the rest of the paper, and unless otherwise speci-
fied, we shall consider a generic intersection event and drop the corresponding
index i from the notation. This without loss of generality, following assumption
(2). We can thus arrive at the core formulation of our approach.
For a given intersection, we assume a discrete probability density for the fre-
quencies (nt, t = 1, . . . , T ) and a continuous probability density for the severities
(st, t = 1, . . . , T ). Following Dalla Valle and Giudici (2008), we can express the
likelihood function for each intersection in a form that depends on some un-
known parameters. Indicating the severity distributions with f(st|θ) and the
frequency distributions with f(nt|η) , where θ denotes the parameter vector of
the severity distribution and η denotes the parameter vector of the frequency
distribution, we have that, according to assumptions (1)-(3):

L(s, n|θ, η) =

T∏
t=1

f(nt|θ)f(st|η), (1)

where n and s indicate the data vectors n = (nt, t = 1, . . . , T ))and s = (st, t =
1, . . . , T ).
Within the AMA approach in the Basel framework, each financial institution
may choose to use different functional forms for the frequency and severity distri-
butions for each ET/BL intersection. In order evaluate the relative performance
of our BLDA model, here we consider a Poisson distribution for the frequency
and a Generalised Pareto distribution for the severity, as in Chavez-Dumoulin
et al. (2006). Our additional contribution is a Bayesian Poisson-GPD model
that allows the combination of quantitative data, coming from the time series
of operational losses collected by financial institutions, and categorical data, ex-
tracted from risk self-assessment questionnaires. representing expert opinions,
as in a proper Bayesian analysis (see e.g. Bernardo and Smith, 1994). Differ-
ently from Dalla Valle and Giudici (2008) who also consider a Bayesian model,
here our prior distributions are real expert opinions and not ”convenient” un-
informative priors, whose actual significance and interpretation is difficult.
We now describe how we specify such prior distribution, first of the frequency
and then of the severity. As the loss frequency distribution is a Poisson with
parameter η, we take a Gamma conjugate prior for the parameter η: η =
Gamma(α, β), where the hyperparameters α and β will be set using expert
opinions. Were such opinions not available, we could use an ”uninformative”
prior distribution, characterised by a very large variance (see e.g. Behrens et
al. 2006, or Dalla Valle and Giudici, 2008).
In addition, it is a good idea to consider alternative prior specifications, so to
evaluate how the results change and, possibly, select one of them, on the basis
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of predictive performance.
According to Bayes Theorem, the posterior distribution of the parameter η can
be obtained by multiplying the likelihood function with the prior distribution
and normalizing such product. As the likelihood is a prodcut of Poisson distribu-
tions, conjugate to the Gamma prior, it can be easily shown that the frequency
parameter posterior distribution is again a Gamma distribution:

π(η|n) ∼ Gamma(

T∑
t=1

nt + α, T + β). (2)

On the other hand, the distribution of the is a Generalised Pareto Distri-
bution, characterised by the parameter vector θ = (µ, σ, ξ), a vector with three
parameters, respresenting the location, the scale and the shape of the distribu-
tion. In a Bayesian framework, we thus need to consider three different prior
distributions, one for each parameter. Here we follow Coles and Tawn (1996),
who suggest to elicit such priors with respect to parameters that can easily
interpreted by the experts, such as the quantiles of the distribution. Let q in-
dicate the (1− p)% quantile of the severity distribution. It can be shown that,
by inverting the cumulative distribution function of the GPD, the expression of
such quantile is the following:

q = u+
σ

ξ

{[
T

Tu
(1− p)

]−ξ
− 1

}
, (3)

where Tu indicate the number of periods in which the severity exceeds the
threshold µ, among the available T .

According to Coles and Tawn (1996), prior specification for the GPD can be
done in terms of a triple of quantiles, ordered as (q1 < q2 < q3), that correspond
to three different (ordered) probability levels. Prior specification can be done
in terms of the three chosen quantiles and this implies a corresponding prior
specification for the three unknown parameters.

Having established a correspondence between a triple of quantiles (qc, c =
1, 2, 3) and the parameter vector θ, we can specify a prior distribution directly
over the former. We assume the three priors to be independent and let qc ∼
Ga(ac, bc), for c = 1, 2, 3.
The joint prior density of the severity parameters can thus be obtained by a
change of variables from:

π(θ) ∝ J
3∏
c=1

qac−1
c exp(−qc/bc)

where J is the Jacobian of the transformation from (q1, q2, q3) to θ = (µ, σ, ξ).
In order to derive the posterior distribution of the severity parameters, the
above prior, expressed in terms of θ, should be compound with the likelihood,
by means of Bayes’ theorem.
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The likelihood of the GPD model can be shown to be:

f(s|θ) = σ−T
T∏
t=1

(1 + ξ(st − µ)/σ)−(1+1/ξ), (4)

provided that 1 + ξ(st − µ)/σ is positive for each t = 1, ..., T . Given the prior
density π(θ) and the likelihood f(s|θ), we can obtain the posterior density π(θ|s)
by means of Bayes’ theorem. An exact, analytic, solution cannot be determined.
However, Markov Chain Monte Carlo (MCMC) methods (see e.g. Gamerman,
1997 or Robert and Casella, 1999) can approximate the calculation producing
stationary sequences of simulated values with marginal density π(θ|s) (see e.g.
Bernardo and Smith, 1994).

In operational risk measurement, the aim is to obtain, on the basis of the
available data, the distribution of the total loss, for the next period of time.
This can be estimated obtaining the predictive distributions for the frequency
and for the severity and taking their convolution.
Let y denote a frequency observation, in a future time period, with density
function f(y|η), with η ∈ H. The posterior predictive density of such fu-
ture frequency y, given the observed data, n = (nt, t = 1, ..., T ) is equal to
f(y|n) =

∫
H
f(y|η)π(η|n)dη. Let z denote a future observation of the severity

with density function f(z|θ) , where θ ∈ Θ. The posterior predictive density of
z , given the observed data s ,is f(z|s) =

∫
Θ
f(z|θ)π(θ|s)dθ.

The two predictive distributions just described can be used to estimate the
predictive loss distribution, embedding the well-known convolution process of
operational risk into a full Bayesian paradigm. The actual simulation-based
convolution mechanism can be summarised in four main steps, as follows.
Step1. For each time period to be predicted, generate n random observations
from the predictive frequency distribution;
Step 2. For the same time periods, generate a number of losses from the pre-
dictive severity distribution equal to the corresponding frequency observation
drawn in step 1 (that is, if the simulated frequency of events for period k is nk,
we simulate nk severity losses from the predictive severity marginal distribu-
tion);
Step 3. For each period, sum the losses obtained in step 2, obtaining a loss
observation for the period, drawn from the convoluted marginal distribution as
described, thereby obtaining one loss observations for each period;
Step 4. Using the loss observations obtained in step 3, estimate the predictive
loss distribution and obtain the V aR and ES, the summary risk measures that
establish how much capital is at risk.

3 Application

In this section we describe how our proposal works on a real operational loss
database. Coherently with the rest of the paper, the data we use in our analysis
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concerns one specific business line (retail banking) and one event type (external
fraud) of the internal database of operational losses of an anonymous commer-
cial bank, for a period of time that ranges from October 2006 to December
2010. The number of loss data collected is equal to 1855. As self-assessment
data is available only for the year 2009, in this analysis we concentrate the anal-
ysis on the monthly losses of the year 2009, composed of 396 loss events. In
the following all loss data and summary results, unless otherwise indicated, will
be expressed in thousands of Euro. Furthermore, all MCMC algorithm simu-
lations were run for a number of iterations equal to 45000, after 5000 of burn-in.

A summary data analysis reveals that the average monthly loss is equal to
38.77, while the minimum and the maximum monthly losses are equal to 17.29
and 115.66, respectively. We now apply a classical GPD model, as in Chavez-
Demoulin et al., 2006. On the basis of parameters estimated by means of the
Peak Over the Threshold method (see e.g. Pickands, 1975) , we can compute the
combined distribution of frequency and severity via a Monte Carlo simulation.
Table 1 reports the VaR and the ES estimated for data at hand.

Table 1 about here

From Table 1 note that the summary risk measures, and especially the Value
at Risk, do change sensibly along the extreme tail of the distribution, due to
the presence of extreme events, in a small dataset: the results are clearly data-
dependent.
In order to build our Bayesian model, we now construct a prior distribution for
the frequency using the risk self-assessment data provided by the bank. The
information contained in such data is based on opinions expressed by different
process owners of the bank. Each owner expresses its opinions on the perceived
frequency, severity and adequacy of controls for all event types and business
lines he is responsible or involved, through the managed banking process. This
opinion is mandatory, as the whole self-assessment result is used for periodic
internal audit control of the bank operations.
In order to evaluate the impact of actual prior opinions, we first specify an un-
informative prior without self-assessment characterised by a very high variance.
Using such prior, the posterior mean frequency is equal to 32.98 and the poste-
rior median frequency is equal to 33 thousand Euro. This result seems coherent
with the observed sample mean, which is equal to 38.77.
We now consider an informative prior that uses self assessment opinions. Self
assessment opinions on the frequency are given by each expert by choosing one
between three ordinal categories: low, medium, high frequency, which can be
grouped into relevant=(high) and not relevant= (low, medium). In order to
use expert opinions we can thus calculate the observed proportion of relevant
frequencies, and build an approximate 95% confidence interval around it. Un-
der this framework we get two reference prior distributions: one that will be
called lower informative, with hyperparameters set so that the prior expectation
matches the lower bound of the confidence interval, and one, conversely, that
will be called upper informative, with hyperparameters set so that the prior
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expectation matches the upper bound of the confidence interval. Specifically,
the lower informative prior turns out to be Gamma (7.37, 0.29) and the upper
informative prior Gamma (19.53, 0.48).

We now move to the task of specifying a prior distribution for the severity.
In analogy with what done for the frequency, we first consider uninformative
Gamma prior characterised by a large variance. We then build an informative
prior, based on self-assessment data. Opinions on severity are expressed on a
ordinal scale with three levels, similar to that of the frequency. We can thus
calculate three binomial proportions, one for each level, and follow the procedure
employed for the frequency to derive, for each of the corresponding three ordered
quantiles, two moment matching gamma priors, corresponding to the lower and
upper approximate binomial confidence interval. Specifically we obtain, as lower
informative priors: for the first quantile a Gamma (13.55, 91.76), for the second
quantile a Gamma (0.15, 14396.12) and for the third quartile a Gamma (0.19,
26486.18). As upper informative priors for the first quantile we obtain a Gamma
(35.89, 56.38), for the second quantile a Gamma (0.40, 8845.81) and for the third
quantile a Gamma (0.52, 16274.64).
Using the previous prior specifications, we can obtain the predictive distribution
for the severity and combine it with the predictive frequency distribution via
the MCMC convolution, explained in Section 2. The combined distribution
allows us to derive the Value at Risk and the Expected Shortfall, as summary
measures of risk. They are shown in Table 2, for each combination of the
three alternative frquency priors that we have chosen: Lower Informative (LIF),
Upper Informative (UIF) and Uninformative (UNF) and the three alternative
triples of severity priors: Lower Informative (LIS), Upper Informative (UIS) and
Uninformative (UNS).

Table 2 about here

Comparing Table 2 with Table 1 note that the VaR calculated with the
BLDA approach is always lower than the classical one, with the exception of
the 99.99% VaR, which is higher for most BLDA models. This percentile may
be, however, too extreme to be estimated accurately, with the data at hand. We
can thus conclude that, for the percentiles of usual interest in operational risk
management, using the BLDA model, we can obtain a remarkable reduction
in terms of VaR (always lower, especially with self-assessment priors, than the
classical VaR) and, therefore, a lower capital charge.
On the other hand, the comparison in terms of Expected Shortfall between the
classical and the Bayesian model are not so clearcut, and do depend on the
chosen model priors. This, again, may depend on the limited data available.
Indeed, the most important test of an operational risk model is a predictive
one. For this purpose, we can compare the VaRs estimated in Table1 and
Table 2, based on the 2009 monthly data, with the actual losses occurred in
the year 2010. Concerning the 99.9% VaR, which is the most used reference in
operational risk management, note that all VaRs, except that calculated with
the LIFUNS model, cover all actual 2010 losses. Of course so does the classical
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VaR, but with the disadvantage of a much higher allocation of capital. We
can thus conclude that our proposed BLDA model is a promising alternative to
classical extreme value models.

It remains the problem of choosing which prior setting is most suitable for
the problem at hand. The specification of a collection of alternative priors allows
the evaluation of the proposed model, in terms of stability of its results, under
different prior specifications, as well as the selection of the most appropriate
prior specification, in terms of predictive purposes. In order to choose among
the different combinations of prior distributions we have computed in Table 3
the sum of the differences between each VaR and all 2010 observed losses.

Table 3 about here

From Table 3 the best models, in terms of minimisation of the differences
between the VaR and the observed losses are : LIFUNS, UIFLIS, UNFUNS,
UIFUNS.
However, LIFUNS can be excluded as the corresponding VaR does not cover all
losses. Among the remaining three models, UIFLIS has a high Expected Short-
fall and, therefore, will also be excluded, being incoherent. In conclusion, we
support choosing the UNFUNS or the UIFUNS model, the former being totally
uninformative and the second partly informative.

4 Concluding remarks

The main purpose of this paper is to introduce a new Bayesian methodology
for estimating loss distributions in operational risk management, making use of
both loss data (”backward-looking”) and expert opinions (”forward-looking”).
We have presented a methodology able to extract expert opinion from self as-
sessment questionnaire, that are typically collected in financial institutions, for
audit and control purpose.
Our main outcome is that the application of our proposed Bayesian methodol-
ogy causes a reduction of the Value at Risk and, therefore, of the capital charge,
in comparison with the classical extreme value analysis method. This is a very
important result, in terms of capital saved by the financial institution adopting
this approach. In addition, the approach may prove to be extremely useful to
estimate the operational loss distribution of events with few observed data, as
prior opinions could supplement the scarsity of data.
We remark that the case study we have examined in this paper is based on
data which considers a short time horizon, as only one year of self-assessment
data is available. Bayesian models, typically more parameterised, are usually
characterised by a high model variability, when data is limited. Very likely, the
relative superiority of our proposed model, with respect to classical ones, will
emerge more clearly on a case study with repeated self-assessment exercises.
In any case, even for a limited period of time, our BLDA shows a loss reduction
compared with the classical extreme model and therefore a reduction in terms
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of regulatory capital.
Our results also show that, using a self-assessment data to specify an informa-
tive prior leads to results that are comparable with uninformative prior models,
but more stable, so it is helpful that banks analyse self-assessment expert opin-
ions, which are in any case available, as they ought to be collected for audit and
control purposes.
An interesting development of our research could be to remove one or more
of the independence assumptions (1)-(2)-(3). While removal of (1) could be
tackled with the addition of copula models, the removal of (2) would involve
a multivariate analysis of all event type/business lines combinations, although
this latter would involve multivariate self-assesment (as in Bonafede and Giudici
2007), a rather difficult task. Finally, removal of (3) would involve a time series
modelling of oeprational loss data, which may become possible as longer series
of data are being collected.
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5 Tables

Percentile VaR ES
99% 124374.4 162184.3

99.90% 210456.5 304489.8
99.97% 304337.2 420995.3
99.99% 392317.6 568834.4

Table 1: VaR and ES under the classical model

Model VaR 99% VaR 99.9% VaR 99.97% VaR 99.99%
LIFUNS 67519 111208 192350 413386
UIFUNS 68244 125752 203349 426953
LIFLIS 65986 139424 248751 643641
LIFUIS 81073 141538 219601 495748
UIFLIS 67830 119599 183164 257015
UIFUIS 82424 154822 264339 354807
UNFLIS 66048 139779 242925 490587
UNFUIS 79916 153766 266226 626557
UNFUNS 67568 122634 236121 359226

Model ES 99% ES 99.9% ES 99.97% ES 99.99%
LIFUNS 96630 257281 513272 961494
UIFUNS 99756 268337 524409 930257
LIFLIS 133452 606196 1545844 3547730
LIFUIS 113138 274391 511727 901157
UIFLIS 112641 408922 992471 2378685
UIFUIS 113669 244735 354755 460954
UNFLIS 101528 292657 564637 994957
UNFUIS 118552 318824 595871 946322
UNFUNS 110495 384555 875528 1859656

Table 2: VaR and ES under the BLDA models
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Model Sum of difference with estimated VaR (99.9%)
LIFUNS 72430
UIFUNS 86974
LIFLIS 100647
LIFUIS 102761
UIFLIS 80822
UIFUIS 116044
UNFLIS 101002
UNFUIS 114989
UNFUNS 83857

Table 3: Sum of the differences between the observed (future) data and the
estimated VaR (99.9%)
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