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Abstract

We study information sharing in a Cournot duopoly with isoelastic demand
function, when the elasticity is uncertain. This is one of the �rst attempts
to analyze the role of nonlinearity in such a framework. We found important
results about the pro�tability of sharing informations when marginal costs are
high and/or the variance between elasticity values is low. From the point of
view of welfare considerations, not sharing information seems to be the best
scenario.
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1. Introduction

There exists a burgeoning theoretical literature dealing with the problem of
oligopolies where �rms are characterizd by uncertainty about some relevant fea-
ture of the market: demand, costs, number of competitors, and so on. The main
question behind these studies is the following: what are the conditions under
which �rms endowed with private informations about the uncertain market fea-
ture prefer to collaborate and share their information? A seminal contribution is
due to Novshek and Sonnenschein (1982), who found that in a Cournot duopoly
with uncertain linear demand's intercept, for the �rms it is more pro�table to
keep private their informations. This result has been later con�rmed by Clarke
(1983), Vives (1984), Gal-Or (1985), Li (1985), Kirby (1988), among the others.
If we limit our analysis to demand uncertainty in Cournot oligopolies, the �rst
case in which for �rms it is preferable to share their private information is due
to Vives (1984). He found that �rms expect to gain an higher pro�t by sharing
their information if products are di�erentiated and relatively poor substitutes.
Kirby (1988) found conditions favourable to information exchange under the as-
sumption of steep marginal costs. Malueg and Tsutsui (1996) explore the case in
which the slope of the linear demand function is uncertain, and they found that
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�rms prefer to collaborate if the signal they receive is su�ciently accurate and
the ratio between the two possible demand slopes is high enough (i.e. volatility
is high). Recently, further conditions that permit the sharing of information in
Cournot competitions with linear demand can be found in Chokler et al. (2006)
and Lagerlöf (2007).

The assumption of linear demand function is in general justi�ed by practical
reasons. In fact, models with uncertainty in the demand's intercept are ana-
lytically tractable and permit to obtain unique Nash equilibria in closed form
and also permit to explicit the expected pro�t. As Malueg and Tsutsui (1996)
note, things are more complicated when the slope of the demand function is
uncertain. Nevertheless, limiting the analysis to a Cournot duopoly and assum-
ing that the uncertain demand parameter may only assume two possible values,
they are still able to obtain analytical results.

One limit of the assumption of linearity about the demand function is that
in some cases, prices and outputs may become negative. Malueg and Tsutsui
(1998) solve this problem by imposing a non-negativity constraint. In other
words they assume a piecewise-linear demand function. A similar assumption is
made by Lagerlöf (2007) who stresses the fact the multiple equilibria may arise
by relaxing the linearity assumption about the demand function.

To the best of our knowledge the case with a purely nonlinear demand func-
tion has not been still investigated. This paper is a �rst attempt of �lling
this gap. We deepen the case of iso-elastic demand that, among the possible
nonlinear shapes of the demand function, is one of the most common (see mi-
croeconomics textbooks such as Frank 2009 and McAfee and Lewis, 2009). The
properties of Cournot oligopolies with general isoelastic demand function have
been recently analyzed in Beard (2013) and Collie (2004). With this nonlin-
ear demand function we ride out the problem of negative price and quantities
and moreover, in its unit-elasticity version, it is micro-founded on the basis of
Cobb-Douglas utility functions of the consumers. This subcase is often used in
dynamic oligopolies with boundedly rational players (see Puu, 1991, Agliari et
al. 2000, Tramontana, 2010, and the book by Bischi et al. 2010).

On the other hand, reaction functions deriving from such a nonlinear de-
mand function are usually not monotonic and problems of existence and unicity
of Nash equilibria may arise. As we will see, this nonlinearity excludes the possi-
bility of obtaining an explicit analytic expression of reaction functions and Nash
equilibria, nevertheless we can obtain implicit equations relating the symmetric
equilibrium quantities and we can numerically approximate their solutions and
use them to compare expected pro�ts. Probably, the hard analytical tractability
of models involving nonlinearities is one of the main reasons behind the lack of
research work on this topic. Nevertheless, we think that nowadays the veloc-
ity and the accuracy of modern mathematical softwares permit to adequately
face these problems, obtaining numerical results that can be quite robusts if
con�rmed for large portions of the parameters' space. We �nd that sharing
information is pro�table if marginal costs are high enough and the variability
between the possible elasticity values is low. Di�erently from the already ex-
isting literature, information sharing drastically reduces consumer surplus and
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total welfare.
The paper is organized as follows: in Section 2 we introduce the general

duopoly model with isoelastic demand and without uncertainty. In Section 3
we study the e�ect of an uncertain demand elasticity and we show our numerical
results. Section 4 concludes the paper.

2. The model without uncertainty

We consider a duopolistic market where two �rms produce homogeneous
goods, and compete in a market characterized by a nonlinear demand function.
In particular, we consider an isoelastic (or hyperbolic) inverse demand, given
by:

P (Q) = Q−η (1)

where Q = q1 + q2 is the total output and η > 0 is the constant inverse of the
elesticity of substitution characterizing the demand function.

Firms adopt the same technology characterized by �xed marginal costs (c).
Thus, the pro�t of �rm 1 is given by

Π1 =
q1

(q1 + q2)
η − cq1 (2)

and the �rst order condition for pro�t maximization gives:

∂Π1

∂q1
= 0 =⇒ c (q1 + q2)

η+1
= q1 + q2 − q1η (3)

Similarly, we gat the f.o.c. related to the maximizing problem of �rm 2:

∂Π2

∂q2
= 0 =⇒ c (q1 + q2)

η+1
= q2 + q1 − q2η (4)

All the vectors of positive outputs (q∗1 ; q∗2) satisfying both (3) and (4) are
feasible Cournot-Nash equilibria of the game. The nonlinearity in the demand
function causes the nonlineariy of the f.o.c. and consequently existence and
uniqueness of the equilibrium are no more ensured. Anyway, given the symme-
try between the duopolists, we prefer to limit our analysis only to symmetric
equilibria (i.e. those with q∗1 = q∗2 = q∗)1.

After simple algebraic manipulations, we obtain that the system of equations
(3) and (4) is solved by a symmetric equilibrium only when its coordinates are
both equal to

q∗ =
1

2

(
2− η

2c

) 1
η

(5)

1An example of multiple equilibria in presence of nonlinear reaction functions can be found
in Bischi and Kopel (2001) and Bischi et al. (2009).
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In order to be sure that q∗ is a local maximum of the pro�t function, we
assume that 0 < η ≤ 12.

Simple comparative statics reveals that the output at equilibrium is nega-
tively correlated with the level of marginal cost:

∂q∗

∂c
= −q

∗

ηc
< 0 (6)

while the relation between optimal output and the demand's elasticity is more
complicated. The partial derivative of the optimal output is the following:

∂q∗

∂η
= −q

∗

η

[
ln (2q∗) +

1

2− η

]
< 0⇐⇒ q∗ >

1

2e
1

2−η
(7)

In other words, if equilibrium quantities are not too small, to a lower demand
elasticity it corresponds a lower symmetric Nash equilibrium3.

Let us now look at how the optimal pro�t changes by varying costs or de-
mand's elasticity. The optimal pro�t is given by:

Π∗ = q∗
(

ηc

2− η

)
(8)

whose partial derivative with respect to c is:

∂Π∗

∂c
= q∗

(
η − 1

2− η

)
(9)

which is negative if 0 < η < 3/2, that is also under our restriction. In other
words, pro�ts diminish if marginal costs increase (and the opposite). This result
does not sound strange. Instead the sign of the partial derivative with respect
to the elasticity of substitution is not univocal, so we skip it.

Finally, let us consider the Consumer Surplus (CS henceforth), that is given
by

CS =

ˆ Q∗

0

(Q∗)−ηdQ− P (Q∗)Q∗ (10)

where Q∗ ≡ 2q∗. CS is convergent if η < 1, and under such a restriction it
becomes:

CS =
η

1− η
(Q∗)1−η =

η

1− η

(
2− η

2c

) 1−η
η

(11)

2If 0 < η ≤ 1, then ∂2Π1

∂q2
1

=
η[q1(η−1)−2q2]

(q1+q2)η+2 < 0.

3From the expression inside the square brackets, it is clear that q∗ > 1/2 is a su�cient
(but not necessary) condition for a negative correlation between Nash equilibrium and demand
elasticity.
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3. The model with uncertainty

Let us assume now that the elasticity parameter η is not known by the
duopolists. In particular, it is a random parameter that may assume two values:
an high value (ηH) and a low one (ηL), with 1 > ηH > ηL > 04.

Before making their output decisions, each �rm observes a private signal six,
with i = 1, 2 and x = L,H. The two signals are assumed to be conditionally
independent and their accuracy is given by the parameter σ > 1/2, that is:

Pr(six = siL |η = ηL ) = Pr(six = siH |η = ηH ) = σ .

The duopolists play a game made up by three stages:

• Stage 1: �rms decide if sharing or not the signal they will receive. Agree-
ments are binding so we avoid focusing on the case in which �rms may
deviate from the agreement;

• Stage 2: �rms receive signals and share them with the competitor if at
stage 1 they decided to do so, otherwise they keep them private;

• Stage 3: �rms compete à la Cournot, using the informations they have
gathered at the previous stage.

At the beginning of the game, �rms do not have any reason to consider one case
more probable than the other, so each signal has the same probability of been
received Pr(six = siL) = Pr(six = siH) = 1/2.

All these features are common knowledge between duopolists.
Note that the order of the three stages is important because by inverting

stages 1 and 2 we would permit �rms to decide if sharing information or not
after they received the signal, so it would be possible that they share information
with a signal and not with the other one. With our order �rms decide if sharing
or not the information, a priori, independently of the signal they will receive.

3.1. First order conditions

According to our assumptions, when �rm i decides its output, it may have
two kinds of informative set (Ii). If it have decided to share its signal with the
rival, its informative set (Iis) is made up by the two signals. If it does not share
its information, the informative set (Iins) only contains the private signal:

Iis =
{
six, s

j
y

}
↗

Ii

↘
Iins =

{
six
}

i, j = 1, 2
x, y = L,H

i 6= j
(12)

4We limit our analysis to the case of elastic demand, i.e. elasticity higher than one. As we
have proved in the previous section, such restriction permits to obtain a �nite value for the
consumer surplus.
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Given that the �rms are in a situation of strategic interdependence, it is
important to note that when they share their information, they reduce the
degree of uncertainty, bacuse they don't need to make an expectaton about the
rival's production. We will come back to this point later, when we talk about
the Bayesian equilibrium without information sharing in sec. 3.2.

Duopolist i produces the amount of output that maximizes her expected
pro�t, given the informative set Ii:

E(Πi| Ii) = E

[
qi

(qi + q−i)
η − cqi

∣∣∣∣ Ii] (13)

The �rst order condition for pro�t maximization is the following::

qi(I
i)− qi(Ii)E

[
η| Ii

]
+ E

[
qj | Ii

]
= cE

[(
qi(I

i) + qj
)η+1

∣∣∣ Ii] (14)

that implicitely de�nes the equilibrium output qi(I
i).

In order to �nd the Cournot equilibrium, equation (14) must be solved with
both i = 1, 2, obtaining a pair of optimal outputs, given the informative set.

In the next subsections we analyze the case without information exchange
and the case in which duopolists let the rival know their private signals.

3.2. Bayesian equilibrium without information exchange

If �rms decide to keep private the information about their signals, then they
face one of the two following scenarios: a �rm either receives a signal suggesting
that the demand elasticity parameter is low or that it is high.

Let us consider the problem of �rm 1. Ceteris paribus a similar reasoning
also works for �rm 2. In the �rst scenario she maximizes her expected pro�t
given the signal s1L. From the �rst order condition (14) we know that she
does not only need to calcolate the expected value of the elasticity η and the
rival's output q2, but she must also calcolate the expected value of the term
(q1,L + q2)

η+1
, where q1,L denotes the output that maximize the expect pro�t

of �rm 1, given the signal s1L .

We only focus on symmetric equilibria (i.e. q1,L = q2,L = qL and q1,H =
q2,H = qH).

So the optimal quantity given the signal s1L solves the following equation:

qL − qL
[
ηLPr(ηL| s1L) + ηHPr(ηH | s1L)

]
+ qLPr(s

2
L

∣∣ s1L) + qHPr(s
2
H

∣∣ s1L) =

= c
[
(2qL)

ηL+1
Pr(ηL, s

2
L

∣∣ s1L) + (qL + qH)
ηL+1

Pr(ηL, s
2
H

∣∣ s1L)+

+ (2qL)
ηH+1

Pr(ηH , s
2
L

∣∣ s1L) + (qL + qH)
ηH+1

Pr(ηH , s
2
H

∣∣ s1L)
]

(15)
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We need the following conditional probabilities:

Pr(ηL| s1L) = σ ; Pr(ηH | s1L) = 1− σ

Pr(s2L
∣∣ s1L) = σ2 + (1− σ)2 ; Pr(s2H

∣∣ s1L) = 2σ(1− σ)

Pr(ηL, s
2
L

∣∣ s1L) = σ2 ; Pr(ηH , s
2
L

∣∣ s1L) = (1− σ)2

Pr(ηL, s
2
H

∣∣ s1L) = σ(1− σ) ; Pr(ηH , s
2
H

∣∣ s1L) = σ(1− σ)

(16)

and by using them into (15) we get the following implicit equation:

qL
[
1− ηH + σ (ηH − ηL) + σ2 + (1− σ)2

]
+ 2qHσ(1− σ) =

= c
[
(2qL)

ηL+1
σ2 + (qL + qH)

ηL+1
σ(1− σ)+

+ (2qL)
ηH+1

(1− σ)2 + (qL + qH)
ηH+1

σ(1− σ)
] (17)

With a similar procedure applied to the case in which the private signal
received is sH , we get a second implict equation:

qH
[
1− ηL + σ (ηL − ηH) + σ2 + (1− σ)2

]
+ 2qLσ(1− σ) =

= c
[
(2qH)

ηH+1
σ2 + (qL + qH)

ηH+1
σ(1− σ)+

+ (2qH)
ηL+1

(1− σ)2 + (qL + qH)
ηL+1

σ(1− σ)
] (18)

Symmetric equilibria are pairs of strictly positive values of the components
of the vector (qL, qH) that solve both eq. (17) and (18). Unfortunately, they
cannot be solved analytically and we are not even certain that they have a
unique solution. However, we can numerically solve the system of equations and
considering a large set of parameters' combinations, we �nd that in the most
of the cases there exists only one symmetric equilibrium, so multiple equilibria
arise only in a small region of the parameters' space5.

3.3. Bayesian equilibrium with information exchange

If �rms opt for sharing their private informations, three cases may happen:
they can both receive the sL signal; they both receive the sH signal or eventually
they may receive opposing signals.

We want to identify a vector of symmetric equilibria for each possible case,
(qLL, qHH , qLH).

By rearranging the �rst order condition (14) we turn it into:

2qxy − qxyE
[
η
∣∣s1x, s2y ] = cE

[
(2qxy)

η+1 ∣∣s1x, s2y ] (19)

5See Lagerlöf (2007) for examples of more relevant multiple equilibria caused by a convex
expected demand
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Now, the two outputs coincide and in this sense, the degree of uncertainty
is lower with respect to the case in which duopolists do not collaborate.

The expected values that appear in (19) must be explicited in one of the
following ways depending on the signals' combination:

E
[
η
∣∣s1L, s2L ] = ηLPr(ηL| s1L, s2L) + ηHPr(ηH | s1L, s2L)

E
[
η
∣∣s1H , s2H ] = ηHPr(ηH | s1H , s2H) + ηLPr(ηL| s1H , s2H)

E
[
η
∣∣s1L, s2H ] = ηLPr(ηL| s1L, s2H) + ηHPr(ηH | s1L, s2H)

(20)

and:

E
[
(2qLL)

η+1 ∣∣s1L, s2L ] = (2qLL)
ηL+1

Pr(ηL| s1L, s2L) + (2qLL)
ηH+1

Pr(ηH | s1L, s2L)

E
[
(2qHH)

η+1 ∣∣s1H , s2H ] = (2qHH)
ηH+1

Pr(ηH | s1H , s2H) + (2qHH)
ηL+1

Pr(ηL| s1H , s2H)

E
[
(2qLH)

η+1 ∣∣s1L, s2H ] = (2qLH)
ηL+1

Pr(ηL| s1L, s2H) + (2qLH)
ηH+1

Pr(ηH | s1L, s2H)

,

(21)
while the conditional probabilities we need are given by:

Pr(ηx| s1x, s2x) = σ2

σ2+(1−σ)2 ; Pr(ηy| s1x, s2x) = (1−σ)2
σ2+(1−σ)2

Pr(ηx| s1x, s2y) = Pr(ηy| s1x, s2y) = 1
2

(22)

The following equations are obtained by combining (19-22) and implicity
de�ne the symmetric equilibrium output strategies:

2qLL − qLL
[
ηLσ

2+ηH(1−σ)2
σ2+(1−σ)2

]
= c

[
(2qLL)

ηL+1σ2+(2qLL)
ηH+1(1−σ)2

σ2+(1−σ)2

]
2qHH − qHH

[
ηHσ

2+ηL(1−σ)2
σ2+(1−σ)2

]
= c

[
(2qHH)ηH+1σ2+(2qHH)ηL+1(1−σ)2

σ2+(1−σ)2

]
4qLH − qLH(ηL + ηH) = c

[
(2qLH)

ηL+1
+ (2qLH)

ηH+1
]

(23)

3.4. Comparisons between expected pro�ts

In order to decide which strategy to adopt, �rms compare expected pro�ts.

Before receiving the signal �rms consider each signal's realization equiprob-
able, so in the case in which duopolists do not share their information, the
expected pro�t is the average between the expected pro�ts given each possible
signal, that is:

Πi
ns = Ens

[
Πi| Ii

]
=

1

2
E
[
Πi| siL

]
+

1

2
E
[
Πi| siH

]
(24)
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The two expected pro�ts are given by:

E
[
Πi| siL

]
=
[

qL
(2qL)ηL

− cqL
]
Pr(ηL, s

j
L

∣∣∣ siL) +
[

qL
(qL+qH)ηL − cqL

]
Pr(ηL, s

j
H

∣∣∣ siL)+

+
[

qL
(qL+qH)ηH − cqL

]
Pr(ηH , s

j
H

∣∣∣ siL) +
[

qL
(2qL)ηH

− cqL
]
Pr(ηH , s

j
L

∣∣∣ siL)

E
[
Πi| siH

]
=
[

qH
(2qH)ηH − cqH

]
Pr(ηH , s

j
H

∣∣∣ siH) +
[

qH
(qL+qH)ηH − cqH

]
Pr(ηH , s

j
L

∣∣∣ siH)+

+
[

qH
(qL+qH)ηL − cqH

]
Pr(ηL, s

j
L

∣∣∣ siH) +
[

qH
(2qH)ηL − cqH

]
Pr(ηL, s

j
H

∣∣∣ siH)

(25)
where we have inserted the symmetric equilibria qL and qH implicitely de�ned
in (17) and (18), into the pro�t equation (13). By substituting the two expected
pro�ts given the signals in (24) and using the conditional probabilities in (16)
we obtain:

Πi
ns = Ens

[
Πi| Ii

]
= 1

2

[
qL

(2qL)ηL
+ (qL + qH)1−ηL + qL

(2qL)ηH
+

+ qH
(2qH)ηH + (qL + qH)1−ηH + qH

(2qH)ηL − 4c(qL + qH)
] (26)

Di�erently, if �rms share their information the expect pro�t is obtained as
follows:

Πi
s = Es

[
Πi| Ii

]
= Pr(ηL, s

1
L, s

2
L)
[

qLL
(2qLL)ηL

− cqLL
]

+ Pr(ηH , s
1
H , s

2
H)
[

qHH
(2qHH)ηH − cqHH

]
+

Pr(ηL, s
1
H , s

2
H)
[

qHH
(2qHH)ηL − cqHH

]
+ Pr(ηH , s

1
L, s

2
L)
[

qLL
(2qLL)ηH

− cqLL
]

+

+
[
Pr(ηL, s

1
H , s

2
L) + Pr(ηL, s

1
L, s

2
H)
] [

qLH
(2qLH)ηL − cqLH

]
+
[
Pr(ηH , s

1
H , s

2
L) + Pr(ηH , s

1
L, s

2
H)
] [

qLH
(2qLH)ηH − cqLH

]
(27)

With the symmetric equilibria implicitely de�ned in (23) and the total prob-
abilities given by:

Pr(ηx, s
1
x, s

2
x) = σ2

2 ; Pr(ηy, s
1
x, s

2
x) = (1−σ)2

2

Pr(ηx, s
1
x, s

2
y) = Pr(ηy, s

1
x, s

2
y) = σ(1−σ)

2

(28)

we can �nally obtain the expected pro�t of collaboration:

Πi
s = Es

[
Πi| Ii

]
= σ2

2

[
qLL

(2qLL)ηL
+ qHH

(2qHH)ηH − c(qLL + qHH)
]

+

(1−σ)2
2

[
qHH

(2qHH)ηL + qLL
(2qLL)ηH

− c(qLL + qHH)
]

+

+σ(1− σ)
[

qLH
(2qLH)ηL + qLH

(2qLH)ηH − 2cqLH

] (29)

For simmetry reasons, the expected pro�ts of sharing and not sharing infor-
mation is the same for both i = 1 and i = 2, so from now on we simply denote
them by Πs and Πns, respectively.

Given the impossibility of analytically determine whenever the expected
pro�t without information sharing (26) is higher/lower than the expected pro�t
with information sharing (29), we have numerically obtained the symmetric out-
put equilibria in both cases and we used them to compare the expected pro�ts.
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The results are in �gures 1-3. In each row of panels, we keep �xed the two pos-
sible values of constant elasticities (ηL and ηH) and the signals' accuracy (σ)
and let the marginal cost vary. In each row, in the left panel expected pro�ts
(Πns and Πs) are compared, while in the right panel, consumer surplus in both
cases are drawn.

Under our parameters' settings condition (7) is always ful�lled, so we have
that qH < qL and qHH < qLH < qLL. Looking at the pictures we can see that
expected expected pro�ts diminish by increasing the marginal cost (this is a
just a con�rm of eq. (6) and (9)).

Apart from that con�rmations of already known features of the model, the
�rst and most important numerical evidence lies in the left panels of the each
row, and it can be formalized as follows:

Numerical Evidence 1: if the marginal cost is low enough then the �rms'
expected pro�t at the equilibrium are higher if they don't share their private
informations. At the opposite, if marginal costs are high enough, �rms found
convenience in sharing information.

The threshold value of the marginal cost is denoted by c̃.
Di�erently from an analytical result, our numerical evidence does not exclude

that we could �nd parameters' combinations that contradict such a result. We
stress that we performed a lot of numerical investigations with a lot of parame-
ters' combinations, so if such contradiction exists, it should be present in a quite
minimal region of the parameters' space.

This result can only be compared with the result of Kirby (1988), who an-
alyze a Cournot oligopoly with linear demand and quadratic costs. He �nd
that information sharing can be the most pro�table choice wieh the quadratic
parameter of the cost function is large enough. Our result goes in the same
direction but we don't need to assume a quadratic cost function. Like Kirby,
we can interpret such a result by stating that when marginal costs are high,
also the costs of an erroneous production are high, making more valuable shar-
ing information. Figs. 2 and 3 are obtained with higher values of the signal's
accuracy (σ = 0.7 and 0.9, respectively) and their panels (c) con�rm this result.

By comparing the three sets of panels within each �gure (obtained with
di�erent values of the lower possible elasticity parameter ηL), we reach a second
numerical result:

Numerical Evidence 2: the value of c̃ decreases by reducing the di�erence
between the two possible values of the demand elasticity.

In fact, in all the �gures, the lower value of c̃ is obtained with ηL = 0.7
(remember that ηH is manteined �xed at 0.9). So the smaller is the di�erence
between the two possible elasticity values, the more is convenient for the �rms
to collaborate and share their private informations. We can look at the same
result from a di�erent perspective and we can interpret it as a relation between
the average expected elasticity and the pro�tability of the information sharing.
From such a point of view we can state that with lower expected elasticity the
range of marginal costs favouring collaboration is larger.
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Figure 1:

Expected pro�ts and Consumer Surplus obtained by keeping �xed σ = 0.55 and
ηH = 0.9. The panels of the �rst row are obtained with ηL = 0.2, those of the
second row with ηL = 0.5, while in the third row ηL = 0.7.
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Figure 2:

Expected pro�ts and Consumer Surplus obtained by keeping �xed σ = 0.7 and
ηH = 0.9. The panels of the �rst row are obtained with ηL = 0.2, those of the
second row with ηL = 0.5, while in the third row ηL = 0.7.
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Figure 3:

Expected pro�ts and Consumer Surplus obtained by keeping �xed σ = 0.9 and
ηH = 0.9. The panels of the �rst row are obtained with ηL = 0.25, those of the
second row with ηL = 0.5, while in the third row ηL = 0.7.
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Let us now try to say something about the role of the signal's accuracy.
In order to do that we have numerically identi�ed the threshold values of the
marginal cost (c̃) in several cases. Keeping �xed again the higher possible value
of the demand elasticity parameter at 0.9, we let the values of σ and ηL vary
and the results are summarized in the following table:

ηL

σ

c̃ 0.2 0.26 0.35 0.5 0.7

0.55 0.728 0.712 0.689 0.65 0.6

0.63 0.744 0.723 0.696 0.652 0.605

0.7 0.7635 0.738 0.698 0.6515 0.6

0.8 0.787 0.740 0.691 0.63 0.583

0.85 0.784 0.734 0.662 0.583 0.534

0.9 0.72 0.707 0.617 0.5065 0.455

Table 1

One further result is thus the following:

Numerical Evidence 3: by taking a value of the signal's accuracy (σ) close
to 0.5 and starting increasing it without moving the other parameters, initially
the threshold value c̃ increases, it reaches a maximum and then it decreases
faster and faster.

A good way to graphically represents this result is by using a concave func-
tion in the (σ,c̃) parameter plane. We have isolated three cases, showed in Fig.
4.

Figure 4:

Possible relations between c̃ and σ.

If we label σ+ (resp. σ−) the interval of accuracy's values denoting a posi-
tive (resp. negative) correlation between c̃ and σ, then the three cases can be
distinguished by the lenght of the two intervals. In Case I, σ+ is larger then
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σ− and this means that only for values of the accuracy close to 1 (i.e. perfect
signal) a better signal implies a lower value c̃ . This case is numerically veri�ed
with low values of ηL. For intermediate values of ηL, Case II holds. That is the
sets σ+ are σ−have almost the same lenght. Finally, when ηL is quite close to
ηH , then the role of σ is better explained by Case III, where the lenght of σ− is
quite larger than the lenght of σ+.

Unfortunately, an economic explanation of these result seems to be not trivial
at all.

Finally, the panels displying Consumers Surplus permit us to obtain a further
result concerning welfare:

Numerical Evidence 4: information sharing drastically reduces Consumer
Surplus with respect to the case of no collaboration between �rms and this holds
for total welfare, too.

In fact, the level of pro�ts are negligible with respect to the level of Consumer
Surplus (see the vertical axis of c and d panels) and the di�erences in Consumer
Surplus related to the decision of sharing information or not are much relevant
for the total welfare with respect to the di�erences in pro�ts.

This result is opposite with respect to the corresponding results already
existing in the literature. We think that this result is related to the particular
shape of our demand function, characterized by an extremely large consumer
surplus compared to the size of pro�ts.

4. Concluding remarks

We consider a Cournot duopoly and study the consequences for information
sharing of uncertainty related to a particular case of nonlinear demand function:
the isoelastic case. Despite the limits in the analytical tractability of the model,
we numerically explore the most of the parameters' plane and we are able to
obtainsome general result. It is our �rm belief that if we want to study the
consequences of nonlinearities in this and other research frameworks, we must
look at numeric results as an important source of information. Speci�cally,
we show that high marginal costs and low variance in the uncertain elasticity
parameter, favour a sharing of private information. From the point of view of
welfare, information sharing reduces the consumer surplus in a way that it is
always a better scenario the one in which �rms do not collaborate.
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