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Abstract

The late-2000s �nancial crisis has stressed the need of understanding the world �-
nancial system as a network of countries, where cross-border �nancial linkages play
a fundamental role in the spread of systemic risks. Financial network models, that
take into account the complex interrelationships between countries, seem to be an
appropriate tool in this context. In this paper we propose to enrich the topological
perspective of network models with a more structured statistical framework, that
of graphical Gaussian models, which can be employed to accurately estimate the
adjacency matrix, the main input for the estimation of the interconnections between
di¤erent countries. We consider di¤erent types of graphical models: besides classi-
cal ones, we introduce Bayesian graphical models, that can take model uncertainty
into account, and dynamic Bayesian graphical models, that provide a convenient
framework to model temporal cross-border data, decomposing the model into au-
toregressive and contemporaneous networks. The paper shows how the application
of the proposed models to the Bank of International Settlements locational banking
statistics allows the identi�cation of four distinct groups of countries, that can be
considered central in systemic risk contagion.

Key words: Financial network models, Graphical models, Bayesian model selection

1 Introduction

Globalization of the economies leads to an ever-increasing interdependence
of countries. Despite the conventional wisdom that national economies are
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becoming more and more interdependent, there is less evidence on the actual
contribution of economic crises to the reinforcement of cross-border linkages
and, in particular, of �nancial ones. The late-2000s �nancial crisis - considered
by many economists to be the worst �nancial crisis since the Great Depression
- resulted in the collapse of large �nancial institutions, in the bailout of banks
by national governments and in downturns in stock markets around the world.
Such a large set of outcomes has stressed the need of understanding �nancial
systems as networks of countries, where cross-border �nancial linkages play a
fundamental role.

Deriving macro (global) situations from micro (local) scenarios has been a re-
current topic in economics. A way to link the macro and the micro levels hinges
on network theory, which has been introduced in economics to study formally
the generation and the stability of economic interactions among agents (Watts
and Strogatz, 1998, Jackson and Watts, 2002, Billio et al., 2012). Even though
basic network structures have been introduced long time ago by Helpman and
Krugman (1985), to explain international trade relations, the research knowl-
edge on �nancial networks is far from being su¢cient to exploit the potential
of this powerful topological approach.

The seminal contributions in this �eld have focused on the study of interdepen-
dencies between �nancial systems, as in Kubelec and Sa (2012), particularly
under shocks storming the �nancial systems of several countries altogether,
as in Helpman and Krugman (1985). In particular, the topological properties
of national interbank markets have been studied by Soramaky and co-authors
(2007), who analyzed the network topology of interbank payments transferred
between commercial banks by the Fedwire Funds Services. A related contribu-
tion is the work of Fuijwara et al. (2009), that explores the credit relationships
that exist between commercial banks and large companies in Japan. Empir-
ical network studies have also been carried out on some European national
interbank markets (De Masi et al., Boss et al., 2004).

While the previous contributions focus mainly on local interbank markets,
other papers have addressed the evolution of networks of bank transfers at
a more global level, using the Bank of International Settlements (BIS) data
set (Garratt et al., 2011, McGuire and Tarashev, 2006, Minoiu and Reyes,
2011). In particular, the work of McGuire and Tarashev (2006) shows that the
international banking system has become an important conduit for the transfer
of capitals across countries, whereas Minoiu and Reyes (2011) found evidence
of important structural changes in banking �nancial networks, following the
occurrence of stress events.

Our aim here is to further pursue the previous lines of research, using a sto-
chastically structured �nancial network modeling approach to understand the
impact of �nancial crises on the international banking system and, in par-

2



ticular, to understand which countries are most central and, therefore, most
contagious (or subject to contagion).

As recently argued in Spelta and Araujo (2012), Billio et al (2012) and Barigozzi
and Brownlees (2013), the adoption of a robust �nancial network approach in
the above context is recommended not only because of its proper emphasis
on �nancial interdependencies, but also for its possibility to describe how the
structure of these interdependencies evolves in time. Were this be achieved,
we would be able to address systemic �nancial risks in two directions: on one
hand, to understand the role that a cross-border network structure plays in
the spread of �nancial shocks; on the other hand, to understand the impact
of stress events on a network of cross-border interdependencies.

Related to our work are recently proposed network models, based on simulated
and real data (Nier et al., 2008, Gai and Kapadia, 2009, Georg and Poschmann,
2010, Castren and Kavonius, 2009, Markose et al., 2010, Cont et al., 2010,
Peltonen et al., 2013). Simulated networks can help studying the impact of
crisis scenarios on the system, in a stress-testing framework. However, they
typically assume a �xed network structure and, therefore, are not suited for
our purposes: learning �nancial interconnectedness from the data.

Our proposal will instead be based on real Bank of International Settlements
data, as in Garratt et al (2011), McGuire and Tarashev (2006), Minoiu and
Reyes (2011). Our additional contribution will be the proposal of a novel �-
nancial network model, based on stochastic graphical models, that enriches
the network perspective with a more structured statistical approach. A more
structured approach allows results that are more robust with respect to data
variations and, in addition, being a full inferential approach, properly adjusts
statistical estimates taking sample variability into account. These advantage
are particularly evident when statistical inferences concern predictions of fu-
ture events, such as contagion from actual stress.

Graphical models can be informally de�ned as a �marriage� between mul-
tivariate statistics and graph theory. They embed the idea that interactions
among random variables in a system can be represented in the form of graphs,
whose nodes represents the variables and whose edges shows their interac-
tions. For an introduction to graphical models see, for instance, Pearl (1988),
Lauritzen and Wermuth (1989), Whittaker (1990), Wermuth and Lauritzen
(1990), Edwards (1990), Lauritzen (1996).

In this contribution we suggest that graphical models can be employed to
accurately estimate the adjacency matrix, aimed at measuring interconnect-
edness between the di¤erent agents and, in particular, to assess central ones
(as in Billio et al., 2012).

Traditional network models use the correlation matrix estimated from the
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data to derive the adjacency matrix. Although useful, this approach takes into
account only the marginal (indirect) e¤ect of a variable on another, without
looking at the (direct) e¤ect of other variables. In our context, it does not
distinguish between the direct and the indirect e¤ect of a country on other
ones.

Graphical models, instead, focus on the partial correlation matrix, that is
obtained by measuring only the direct correlation between two variables. A
partial correlation coe¢cient can express the change in the expected value of a
dependent variable, caused by a unitary change of the independent variables,
when the remaining variables are held constant. In so doing, the e¤ect of
a country on another is split into a direct e¤ect (estimated by the partial
correlation) and an indirect e¤ect (what is left in the marginal correlation).
Here we follow this approach and derive the adjacency matrix, the main input
of a �nancial network model, not from the correlation matrix but, rather,
from the partial correlation matrix obtained from the application of graphical
models to the available data.

To achieve this aim we consider multivariate Gaussian graphical models, de-
�ned in terms of Markov properties, that is, conditional independencies asso-
ciated with the underlying graph (Lauritzen, 1996; Whittaker, 1990). While
traditional network models assume �xed graphical structures (such as fully
connected graphs), the structure of a graphical model is typically random,
and can be learned from the data, as a good �tting structure. Such a model
selection can be performed by testing, in a stepwise procedure, the statistical
signi�cance of conditional independencies, which are equivalent to speci�ed
zeroes among certain partial correlation coe¢cients which, in turn, are equiv-
alent to missing edges in the network representation.

The use of graphical models can thus help to have a deeper understanding
of the relationships between variables, by distinguishing direct from indirect
relationships. From their appearance in the 90�s, several methodological ad-
vances have been made for graphical models. Less so in terms of applications,
especially in economics. However, the application of graphical models to other
�elds (especially in the biomedical sciences) have highlighted two main prob-
lems, that require more advanced formulations.

First, the assumption of a random graph may be an important added value in
situations where little a priori knowledge is present, as in several biological,
machine learning and data mining applications. On the other hand, in eco-
nomics a graphical structure must provide not only a good �t but also a good
interpretation. This may result in choosing a model that has little support
from the data, leading to predictions worse than could be obtained with other
models. In other words inference restricted to be �model-dependent� may lead
to suboptimal results. A second problem is that graphical models are essen-
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tially static, photographing a situation in a given time span. This assumption
seems to be restrictive in economics, in the case of variables that change over
time, for example during periods of �nancial stress.

The above problems can be solved with the use of more advanced, Bayesian,
graphical models, as shown in Madigan and York (1995), Giudici and Green
(1999) and, more recently, Ahelegbey et al. (2012). In particular, Madigan and
York (1995) and Giudici and Green (1999) propose a Bayesian model able to
consider all possible graphical structures, choose the best �tting ones and, if
necessary, average inferential results over the set of all models, thus solving the
�rst problem. In Ahelegbey et al. (2012) the authors propose a Bayesian infer-
ential approach, to analyze the dynamic interactions among macroeconomics
variables in a graphical vector autoregressive model, that can be employed to
overcome also the second problem.

The methodological contribution of this paper is to consider both the above
extensions in a statistically correct estimation of the adjacency matrix of a
�nancial network of countries. At �rst we will introduce a Bayesian (static)
graphical model, able to overcome the �rst problem. Later we consider, as an
extension of the �rst model, a Bayesian (dynamic) model, able to overcome
both the �rst and the second problem. The results obtained from the appli-
cation of di¤erent graphical models: classical, static Bayesian and dynamic
Bayesian, will be compared in terms of adjacency and connectedness impli-
cations on a publicly available database, that contains cross-border �nancial
�ows. This will also allow us to compare conclusions in terms of central coun-
tries, most contagious in terms of systemic risk. We will also compare our
conclusions with those resulting from the application of the Granger causality
tests proposed in Billio et al. (2012), that can be seen as a special type of dy-
namic graphical model, therefore obtainable as a by-product of our approach.

The applied contribution of this paper is in the understanding of systemic
risk. Systemic risk can be de�ned as the risk that the failure of one signi�cant
�nancial institution can cause or signi�cantly contribute to the failure of other
signi�cant �nancial institutions as a result of their linkages to each other
(see e.g. Billio et al., 2012). Researchers have recently proposed that network
models can help model the systemic risk in �nancial systems which display
complex degrees of connectedness. In particular, Billio et al. (2012) propose
several econometric measures of connectedness based on principal component
analysis and Granger-causality networks. They �nd that hedge funds, banks
and insurance companies have become highly interrelated over the past decade,
likely increasing the level of systemic risk through a complex and time-varying
network of relationships. Chen et al. (2012) follows a similar line of research,
using high frequency market value data on credit default swap spreads in the
insurance sector. More recently, Barigozzi and Brownlees (2013) developed an
algorithm based on a two step lasso regression that allows to estimate long
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run sparse partial correlation networks. Their methodology is applied to a
panel of U.S. bluechips, whose monthly equity returns are decomposed into
a systematic and an idiosyncratic components. They found that the network
structure of the idiosyncratic part is found to be statistically signi�cant in
explaining the variation of returns. In the previous papers, the transmission
of contagion among �nancial agents depends on the degree of interconnectivity.
This will also be true in our paper. In the previous papers, �nancial agents are
private �nancial institutions: banks, hedge funds, insurance companies, listed
companies in general. Di¤erently, in our paper, we estimate the structure
of contagion between country speci�c �nancial systems. The lack of existing
information on the degree of connectedness among di¤erent countries remains
a concern for regulatory bodies such as the Financial Stability board, the
Financial Stability Oversight Council and the International Monetary Fund.
Our contribution aims to provide a contribution in this direction.

The paper is organized as follows. Section 2 introduces graphical network mod-
els based on partial correlation matrices, and compares them with network
models based on marginal correlations. In section 3, we introduce Bayesian
graphical models, and show their theoretical implications: in particular, we
describe a model averaging context and show how a dynamic approach can
be built by decomposing the model into multivariate autoregressive and con-
temporaneous networks. In the same section, for the sake of completeness, we
also introduce a network model based on Granger-causality tests, as the one
proposed in Billio et al. (2012). Section 4 describe the empirical results ob-
tained with the application of the previous network models to a set of Bank of
International Settlement data that emphasize the role that countries have in
terms of cross-border interlikages. Finally, section 5 contains some concluding
remarks and future research directions.

2 Graphical models networks

Correlation based networks are suitable tools to visualize the structure of pair-
wise cross correlations among a set of N time series. If we associate di¤erent
time series with di¤erent nodes of a network, each pair of nodes can be thought
to be connected by an edge, with a weight that can be related to the correlation
coe¢cient between the two corresponding time series. Thus, a network of N
nodes can be described by its associated matrix of weights, named adjacency
matrix, an N �N matrix, say A, with elements ai;j. Alternatively, if the aim
of the research is to focus on the structure of the interconnections, and less on
their magnitude, the adjacency matrix can be made binary, setting ai;j = 1
when two nodes are correlated and ai;j = 0 when they are not correlated.

In both cases, network statistics can be derived using A: in particular, central-
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ity measures can be obtained using an appropriate singular value decomposi-
tion of such matrix. The centrality measure that has been proposed in �nancial
network modeling, to explain the capacity of an agent to cause systemic risk,
that is, a large contagion loss on other agents, is the eigenvector centrality (see
e.g. Fur�ne, 2003 and Billio et al., 2012). The eigenvector centrality measure is
a measure of the importance of a node in a network. It assigns relative scores
to all nodes in the network, based on the principle that connections to few
high scoring nodes contribute more to the score of the node in question than
equal connections to low scoring nodes.

More formally, for the i-th node, the centrality score is proportional to the
sum of the scores of all nodes which are connected to it, as in the following
equation:

xi =
1

�

N
X

j=1

ai;jxj;

where xj is the score of a node j, ai;j is the (i; j) element of the adjacency
matrix of the network, � is a constant and N is the number of nodes of the
network.

The previous equation can be rewritten for all nodes, more compactly, as:

Ax = �x;

where A is the adjacency matrix, � is the eigenvalue of the matrix A, with
associated eigenvector x, an N -vector of scores (one for each node).

Note that, in general, there will be many di¤erent eigenvalues � for which a
solution to the previous equation exists. However, the additional requirement
that all the elements of the eigenvector be positive (a natural request in our
context) implies (by the Perron�Frobenius theorem) that only the eigenvector
corresponding to the largest eigenvalue provides the desired centrality mea-
sures. Therefore, once an estimate of A is provided, network centrality scores
can be obtained from the previous equation, as elements of the eigenvector
associated to the largest eigenvalue.

Centrality measures have been the object of growing attention, ever since
network regimes were identi�ed as the underlying structures of important
phenomena found in many di¤erent �elds. These measures have been typically
applied to fully connected networks, based on adjacency matrices that do not
contain zeros. In real situations, however, the adjacency matrix is typically
sparse (it contains zeros), rather than fully connected. This implies the need
to develop network models di¤erent from correlation based ones. This task
has been accomplished through the construction of a Minimal Spanning Tree,
as in Araújo and Mendes (2000) and Spelta and Araùjo (2012).

Here we propose a method that is more widely applicable, being still based

7



on easy to understand correlation measures, but of a di¤erent kind. Our pro-
posal is based on the following intuition. Correlations take into account the
total e¤ect of an explanatory variable on a dependent variable, without distin-
guishing between direct and indirect e¤ects. To capture direct e¤ects, partial
correlations should be employed. A partial correlation coe¢cient measures the
correlation between any two variables, when the remaining variables are held
constant. In so doing only the direct correlation between two agents is mea-
sured, rather than the indirect one, that may arise from a common dependence
on other variables.

From a statistical viewpoint, while correlations can be estimated, on the basis
of the N observed time series of data, assuming that, at each time point,
observations follow a multivariate Gaussian model, with unknown variance-
covariance matrix �, partial correlations can be estimated assuming that the
same observations follow a graphical Gaussian model, in which� is constrained
by the conditional independence described by a graph (see e.g. Lauritzen, 1996,
and Whittaker, 1990).

Let X = (X1; :::; XN) 2 RN be a random vector distributed according to a
multivariate normal distribution NN (�;�). In this paper, without loss of gen-
erality, we will assume that the data are generated by a stationary process,
and, therefore, � = 0: In addition, we will assume throughout that the covari-
ance matrix � is non singular.

Let G = (V;E) be an undirected graph, with vertex set V = f1; :::; Ng, and
edge set E = V �V , a binary matrix, with elements eij, that describes whether
pairs of vertices are (symmetrically) linked between each other (eij = 1), or
not (eij = 0). If the vertices V of this graph are put in correspondence with the
random variables X1; :::; XN ; the edge set E induces conditional independence
on X via the so-called Markov properties (see e.g. Lauritzen (1996)).

More precisely, the pairwise Markov property determined by G states that,
for all 1 � i < j � N ,

eij = 0() Xi ? XjjXV nfi;jg;

that is, the absence of an edge between vertices i and j is equivalent to inde-
pendence between the random variables Xi and Xj, conditionally on all other
variables XV nfi;jg.

In our context, all random variables are continuous and it is assumed that
X � NN (0;�). Let the elements of �

�1, the inverse of the variance-covariance
matrix, be indicated as f�ijg. It can be shown that the following equivalence
also holds:

Xi ? XjjXV nfi;jg () �ijV = 0
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where

�ijV =
��ijp
�ii�jj

denotes the ij-th partial correlation, that is, the correlation between Xi and
Xj conditionally on the remaining variables XV nfi;jg.

Therefore, by means of the pairwise Markov property, given an undirected
graph G = (V;E), a graphical Gaussian model can be de�ned as the family
of all N -variate normal distributions NN (0;�) that satisfy the constraints
induced by the graph on the partial correlations, as follows:

eij = 0() �ijV = 0

for all 1 � i < j � N .

In practice, the available data will be used to test which partial correlations
are signi�cantly di¤erent from zero, once a sgni�cance level threshold � is
chosen. For the non signi�cant partial correlations, the corresponding elements
of the edge set E will be set to zero, thereby obtaining an estimate of the
graphical structure G (being V �xed). Note that, in the context of network
modelling, if the adjacency matrix is assumed to be binary, A = E and,
therefore, the selection of G gives automatically the adjacency matrix and the
network centrality measures.

This way of proceeding is �ne when the selected model is strongly supported,
both in terms of data likelihood and in terms of coherence with economical
subject-matter assumptions. When this is not the case, a more general ap-
proach, that takes model uncertainty into account, is needed. This is the aim
of the next section.

3 Bayesian Graphical models networks

3.1 Static models

Graphical model uncertainty can be taken into account, along with parameter
uncertainty, within a Bayesian approach, whose main practical advantage is
that inferences on quantities of interest can be averaged over di¤erent models,
each of which has a weight that corresponds to its Bayesian posterior proba-
bility. See, for example, Madigan et al. (1994), Giudici and Green (1999) and
Castelo and Giudici (2001).

To achieve this aim, the �rst task is to recall the expression of the marginal
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likelihood of a graphical Gaussian model, and specify prior distributions over
the parameter � as well as on the graphical structures G.

For a given graph G, let �i(G) be the neighbors of a variable X i; i = 1; : : : ; N :
the set of all vertices that are connected to i or, equivalently, the set of all
random variables on which X i is conditionally dependent, with partial corre-
lations signi�cantly di¤erent from zero. Statistical inferences can be based on
the likelihood of the observed time series. Assuming that the observed data
can be arranged in a matrix X, with n rows that are independent and iden-
tically distributed multivariate time series of dimension N , each following a
multivariate normal distribution NN(0;W ), (where W = ��1 is the precision
matrix), the likelihood of the unknown parameters W; G is equal to:

P (X j W;G) =
n
Y

t=1

N
Y

i=1

P
�

X i
t j �i(G);W

�

As expected, the likelihood depends on the parameters W and G. According
to the conventional Bayesian model averaging paradigm (see e.g. Madigan
and York, 1995), we assume that both W and G are random, and that a
joint prior distribution over (W , G) can be expressed by a discrete probability
distribution over all graph structures G and, conditionally on each possible
graph, by a continuous distribution over the set of parameters W :

P (G;W ) = P (G)P (W j G)

For P (G) we assume a uniform prior over all possible graphical structures
while for the prior on the parameters we assume a conjugate Wishart prior,
as in Giudici and Green (1999).

More formally, based on the assumption that we have available a random
sample of size n from a multivariate normal distribution NN(0;W ), we assume
that P (W ) is a Wishart distribution with � > N degrees of freedom and a
scale matrix T0.

According to the Bayesian prior-to-posterior paradigm (see Bernardo et al.,
1996) it can be shown that, under the previous assumptions, the posterior
distribution of the precision matrix W , P (W jX) is a Wishart distribution
with � +N degrees of freedom and a scale matrix given as follows:

Tn = T0 + Sn

where Sn is the sample variance-covariance matrix.

Note that the proposed prior distributions can also be used to integrate the
likelihood with respect to the unknown random parameters, obtaining the so-
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called marginal likelihood of a graph, which will be the main metric for model
selection. This follows from

P (X j G) = P (X j W;G)P (W )

It can be shown that such marginal likelihood is equal to:

P (X j G) = ��N�n
2

c (N;� + n)

c (N;�)
j T0 j

�
2 j Tn j�

�+n
2

where j T0 j and j Tn j are the determinants of the matrices T0 and Tn,
respectively and c (�) is a normalization constant, given by:

c (x; y) =
x
Y

j=1

�
�

y + 1� j
2

�

The metric expressed by the above marginal likelihood is the basic ingredient
for graphical Gaussian model selection and averaging, as will now be shown.

According to the conventional Bayesian paradigm, being the model space dis-
crete, the best graphical model will be that with the highest a posteriori
probability.

By Bayes rule, the posterior probability of a graph is given by:

P (G j X) / P (X j G)P (G)

and, therefore, since we assumed a uniform prior over the graph structures,
maximizing the posterior probability is equivalent to maximizing the marginal
likelihood metric. For graphical model selection purposes we shall thus search
in the space of all possible graphs for the structure such that

G� = argmax
G
P (G j X) / P (X j G) :

The Bayesian paradigm does not force conditioning inferences on the (best)
model chosen. The assumption of G being random, with a prior distribution
on it, allows any inference on quantitative parameters to be model averaged
with respect to all possible graphical structures, with weights that correspond
to the posterior probabilities of each graph. This because, by Bayes� theorem:

P (W jX) = P (W jX;G)P (GjX)

The above allows to overcome the main drawback of non-Bayesian graphi-
cal models, namely, the fact that, once a model is chosen, all inferences will
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be conditional on that model, even if it has a little support from the data
(although maximal).

However, in real situations, the number of possible graphical structures may be
very large and we may need to restrict the number of models to be averaged.
This can be done e¢ciently, for example, following a simulation-based proce-
dure for model search, such as Markov Chain Monte Carlo (MCMC) sampling,
described in Madigan and York (1995). One of the standard MCMC methods
is the Metropolis-Hastings (MH) algorithm, which is based on an acceptance-
rejection scheme. In our context, given an initial graph, the algorithm samples
a new graph using a proposal distribution. The newly sampled graph is then
compared with the old graph, with a decision rule to either reject or accept
the proposed sample. More precisely, following Giudici and Green (1999), the
algorithm randomly selects a node from the current graph (Gold) and pro-
poses an action to either add or delete a single edge to produce a new graph
(Gnew). The proposed graph Gnew is either accepted, becoming (Gold) in the
next step, or rejected in which case the previous graph is maintained as Gold.
The decision to accept or reject a proposed graph depends on an acceptance
probability.

By assuming a uniform graph prior, it can be shown that the log acceptance
probability is given by:

log (Ac) = max flog (P (X j Gnew))� log (P (X j Gold)) ; 0g

Once the acceptance probability is calculated, we draw a random number
U from a uniform distribution on (0; 1). Then log (U) is compared with log
acceptance probability. If log (U) <log (Ac) the new proposal is accepted and
added to the chain, otherwise the current structure is retained. Thus the
mechanism automatically accepts samples showing improvements (i.e when
log (Ac) > 0) and accepts the rest with the acceptance probability (Ac).

3.2 Dynamic models

The Bayesian graphical model presented so far is a static model, that assumes
that each of the N time series is made up of n independent and identically
distributed observations. We now extend the approach in a more realistic
dynamic setting. Following the idea of Ahelegbey et al. (2012), we build a
graphical model that is made up of two parts: a simultaneous cross-sectional
component, similar to the model in the previous subsection, and a novel mul-
tivariate dynamic autoregressive component.

To achieve this aim we recall the de�nition of a vector autoregressive (VAR)
process. A VAR process of order s is of the form:
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Xt = B0Xt +B1Xt�1 + :::+BsXt�s + "t t = 1; :::; n

where Xt is an N dimensional vector of time series realizations at time t, "t is
an N dimensional vector of independent and serially uncorrelated structural
disturbances with mean zero and a diagonal matrix �, andB0; :::; Bs areN�N
regression matrices.

A dynamic graphical model (DGM) can be built exploiting the above vector
autoregressive (VAR) representation of multivariate time series observations.
In a VAR model, for any given time lag s, we can establish a one-to-one
correspondence with a graphical model, by setting a zero edge between two
vertices i and j whenever, for any given time lag s, a dependent variable Xj,
observed at time t, is independent from an explanatory variable X i, observed
at time t� s as follows:

ei�js = 0 =) X i
t ? Xj

t�sj
�

X
V nfig

t ; X
V nfjg

t�s

�

We can exploit equivalences as the above one to build a dynamic graphical
model, for a speci�ed time lag. More formally, a DGM is a pair (G;G #), where
G is a graphical model, that de�nes the contemporaneous conditional depen-
dences between the available random variables; and G # is another graphical
model, that de�nes the temporal conditional dependences between the same
variables, at di¤erent times. In G #, the neighbors of a node are in previous
time periods, and are conventionally named �the parents�, because of their
implied asymmetric relationship with the �child� node, that is supposed to be
caused by them.

A VAR process of order s and, correspondingly, a dynamic graphical model of
order s, assume that the within period (contemporaneous) conditional depen-
dence among variables are described by a Multivariate instantaneous network
(MIR) graphical component. In addition, the lag s conditional dependency
structure between the variables is constant in time, depends only on the lag
s and is described by a Multivariate AutoRegressive network (MAR) compo-
nent. Assume, from now on, for simplicity and without loss of generality, that
s = 1.

Assume that we have now available, for each time point t = 1; : : : ; n, a random
observation from a multivariate normal distribution NN(0;W ), (where W =
��1 is the precision matrix).

Let �it�1and �
i
t be the neighbors of X

i
t in the MAR and MIR networks. Fol-

lowing Ahelegbey et al. (2012), it can be shown that the marginal likelihood
function decomposes according to the structure of the model into a MIR and
a MAR component, as follows:
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This decomposition of the structure facilitates the inference procedure such
that we can learn the MIR network independently from the MAR network.
Model search simpli�es into searching for the network that maximizes each
marginal likelihood score independently, according to what shown in the pre-
vious subsection.

In this paper, given the high dimensionality of the model space we consider
MCMC sampling approximate computations. The design of our Monte Carlo
sampling for the MAR network takes inspiration from what proposed in Grze-
gorczyk (2010). Speci�cally, the observed multivariate time series are trans-
formed into 1� n data cells with each cell composed of (N + 1) (n� 1) time
series matrix. Each cell corresponds to a transformed data by extracting the
series of the i-th variable and shifting it one time ahead of the other variables.
That is the last observation of the original data is deleted to obtain a matrix
of N � (n� 1). The posterior scale matrix Tn for MAR is therefore computed
for each cell by replacing N with N + 1 and n with n� 1.

3.3 Granger causality models

We conclude this section with a remark on a special type of dynamic graph-
ical model, that coincides with the Granger-causality procedure proposed in
Billio et al. (2012). Granger-causality tests can be used to identify a network
of statistically signi�cant Granger-causal relations among economical agents.
They are aimed at establishing whether a relationship between past values of
one variable and future values of another one does or does not hold.

In addition, Granger-causality test help investigating the directionality of such
relationships: a time series j is said to �Granger-cause� time series i if past
values of j contain information that helps to predict i.

From a mathematical view point, the formulation of Granger-causality tests
is based on linear regressions of Rit+1 on R

i
t and R

j
t . The series are supposed

stationary with zero mean and the model of linear interrelatioship can be
formulated, following Billio et al. (2012) as:
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Rit+1= a
iRit + b

ijR
j
t + e

i
t+1

R
j
t+1= a

jR
j
t + b

jiRit + e
j
t+1

with eit+1 and e
j
t+1 uncorrelated zero mean gaussian random variables.

Then, j Granger-causes i when bij is di¤erent from zero. On the other hand
i Granger-causes j when bji is di¤erent from zero. When both of these state-
ments are true, there is a feedback relationship between the time series. All of
these alternative statements can be veri�ed within a dynamic graphical mod-
eling context, evaluating whether the three possible edges between i and j are
di¤erent from zero.

Thus, Granger causality networks are a special type of graphical dynamic mod-
els. However, Granger testing is usually performed in a non-Bayesian context
and, therefore, the corresponding results are less robust than those based on
the Bayesian graphical dynamic models presented in the last subsection.

4 Empirical analysis

4.1 Data

The Bank for International Settlements locational banking statistics (LBS),
that includes aggregate international claims and liabilities of reporting banks
by country of residence, provides a plentiful data set of aggregate cross-border
exposures for a set of reporting and non-reporting countries all over the world.

The main purpose of the LBS statistics is to provide information on the role of
banks and �nancial centers in the intermediation of international capital �ows.
They were originally intended to complement monetary and credit aggregates,
being consistent with both the national balances of payments and the systems
of national accounts. LBS statistics are based on quarterly data on the gross
international �nancial claims and liabilities of banks resident in a given coun-
try, excluding money market funds. LBS statistics were originally introduced
in 1964 to monitor the development of euro-currency markets, although in
practice comprehensive locational data are available since the 1980s. Here we
consider 24 countries, reported in Table 1, for which the data are complete
and reliable. Each country is represented by the value of its liabilities vis-a-vis
the other reporting countries, measured on a quarterly basis, from the last
quarter of 1983 (Q4-1983) to the third quarter of 2011 (Q3-2011).
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AT: Austria IT: Italy

BS: Bahamas JP: Japan

BH: Bahrain LU: Luxemburg

BE: Belgium NL: Netherlands

CA: Canada AN: Netherlands Antilles

KY: Cayman Islands NO: Norway

DK: Denmark SG: Singapore

FI: Finland ES: Spain

FR: France SE: Sweden

DE: Germany CH: Switzerland

HK: Hong Kong GB: United Kingdom

IE: Ireland US: United States

Table 1: Reporting Countries

4.2 Marginal correlation networks

We �rst consider the application of classical network models, based on mar-
ginal correlations, to LBS data. The 24 � 24 adjacency matrix (A), with el-
ements ai;j, can be obtained on the basis of a 24 � 24 correlation matrix,
for the set of 24 reporting countries (N = 24), calculated on n = 110 time
observations. Instead of using a fully connected network, as in the network
modeling literature (see e.g. Araújo and Mendes, 2000), we consider a �statis-
tical� network, in which the edge that connects two countries is present on the
basis of a pairwise F-test, that informs whether the corresponding correlation
is signi�cant or not, with a signi�cance level �.

Figure 1 shows the network obtained on the basis of such an adjaceny matrix,
taking a signi�cance level equal to � = :10.
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Figure 1: marginal correlations network

From Figure 1, note that the network is not fully connected, even if only few
links are removed. More precisely, most of the countries have all the 23 links
with the others while JP and HK 22 and AN only 21. These latter countries
seem, therefore, relatively less correlated with the rest of the �nancial system
being considered.

Economically, our results above may be interpreted attributing to JP, HK and
AN (but especially to the latter two) a role of �countercyclical bu¤ers�, less
subject to �nancial cycles. Indeed, according to Errico and Borrero (1999),
the role that the O¤shore Financial Centers (OFC), such as HK and AN, play
in the allocation of �nancial capital worldwide has grown, for example during
the Asian and Argentina crises in the earlier nineties. A clarifying contribu-
tion comes from the paper of Huizinga and Nicodeme (2004), who examine
the relation between tax policies and the amount of foreign liabilities in each
national banking sector. Foreign banks are expected to have relatively abun-
dant opportunities to shift pro�ts when the host countries are characterized
by low levels of taxation. In this context, they found enough evidence on the
inward pro�t shifting role played by Hong Kong and the Netherlands Antilles.

4.3 Partial correlations network

We now apply classical graphical Gaussian model to LBS data, and derive
an adjacency matrix based on graphical model selection. In such adjacency
matrix, two countries will be linked if the corresponding edge is present in
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the selected graphical model or, equivalently, when the corresponding partial
correlation is equal to zero.

Figure 2 shows the network obtained on the basis of the selected graphical
model, taking a signi�cance level equal to � = :10. The size and the color of
the nodes is a function of the number of edges that point on a node. Dark and
thick nodes are the ones with the highest degree, that is, most linked with
respect to the other variables.

Figure 2: partial correlation based network

From Figure 2 we can see that the selected graph and, therefore, the corre-
sponding adjacency matrix, is rather sparse, especially in comparison with the
network in Figure 1. Indeed, di¤erently from before, the average number of
edges pointing to a node is 2:083: each node is connected, on average, to only
two other nodes. This can be explained recalling the di¤erence between mar-
ginal and partial correlations: while marginal correlations are unconditional
and re�ect all comovements between two variables (direct and indirect), par-
tial correlations are conditional on the dependences described by the selected
graph and measure only direct correlations. So, while marginal correlations
provide an adjacency matrix that is too connected, partial correlations pro-
vide a too sparse one. A representation that is �intermediate� between these
two will be provided by Bayesian graphical models, in the next subsections.

Before moving to the application of Bayesian graphical models, we can nev-
ertheless draw some preliminary economical conclusions from Figure 2. For
example, note that country with the highest number of connecting edges is
NL, followed by SE, DK and DE. It is well known that the Dutch �nancial
system is largely exposed to the rest of the world, also in a direct way, having
large banks that operates at a high cross-border level. On the other hand, the
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role of DK, SE could be explained by the crisis that many northern countries
su¤ered together at the beginning of the nineties, and that of DE by the re-
cent European �nancial crisis. Indeed, the �rst banking system touched by the
subprime crisis was the German banking system, in which IKB was the �rst
European bank a¤ected.

A second remark is that the US, as stressed by Von Peter (2007), has few
connecting edges, as its correlation is with all the system, and few countries
in particular. Similarly, GB, that is another important �nancial hub, is also
little directly connected (only with NL).

4.4 Static Bayesian networks

We now present the results from the application of the Bayesian graphical
model. The main advantage of the Bayesian approach to graphical models
is the possibility of model averaging the results obtained with single models,
with weights provided by the corresponding graph posterior probabilities. This
idea can be applied to the adjacency matrix elements, which, therefore, become
relative frequencies of edge presence. Figure 3 presents the network obtained
with such an adjacency matrix. In order to obtain Figure 3 we have run our
MCMC algorithm for 8500 iterations, using the last 250 iterations to calculate
edge presence frequencies.

Figure 3: static Bayesian graphical network

From Figure 3, the Bayesian graphical model suggests that LU and US, fol-
lowed by GB, NL, FI and DE are central nodes. To better understand their
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relative importance, we can calculate the eigenvector centrality measure. It
turns out that LU and US display the highest centrality measure, followed by
FI, DE, NL, GB, followed by CH.

While the role of the United States and that of the United Kingdom can be
explained by the role these two countries have in the world �nancial network,
as international hubs (see Minoiu and Reyes, 2011), the position achieved by
the Netherlands, Switzerland, and also that of Germany can be attributed
to their large cross-border exposures which re�ects into their high prociclic-
ity with the rest of the international system. The two situations are indeed
distinct: while the position of the United States and that of the United King-
dom re�ects their position as a host to many foreign banks, countries like the
Netherlands, Germany and Switzerland are home to multinational banks gen-
erating considerable intero¢ce activity across borders (see Von Peter, 2007).

Finally, the position of Luxembourg and that of Finland may be attributed to a
global or local role as �o¤-shore� countries. Luxembourg brings in less than 44
billion euros from its goods and services, yet its banks boast 227 billion euros
in deposits. The international �nancial crisis nearly threw into bankruptcy
the two biggest private banks of the country, Dexia-Bil, the oldest bank of the
Grand Duchy, and Fortis, formerly Banque Générale du Luxembourg. Finland
is not a traditional international �nancial center, however, banks in Finland are
permitted to open account for non-resident foreigners. In the early 1980s the
�nancial market was mostly deregulated, leading to a massive credit expansion
largely based on foreign debt. This turmoil culminated with the collapsed on
September 1991 of the Skopbank, and the took over of the Bank of Finland.

To complete the report of the static Bayesian analysis, Figure 4 contains three
di¤erent diagnostics of convergence of MCMC simulations, based, respectively,
on the number of edges present in the estimated model (Figure 4a) on the
estimated log-likelihood (Figure 4b) and on the cumulative di¤erence between
the number of accepted and rejected models (Figure 4c).
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Figure 4: convergence diagnostics

In Figure 4, and in each of the three subplots, the x�axis represents the
running iteration. Note that, after about the �rst 4500 iterations, the Markov
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chain starts to converge, according to all three diagnostics.

4.5 Dynamic Bayesian networks

We now consider the application of the dynamic Bayesian model. Figure 5
shows the adjacency matrix based on the edge presence frequencies estimated
by model averaging the binary edge indicators over all selected models. Figure
6 shows the resulting centrality measures. For the sake of comparison, we have
used the same MCMC settings as before. Of course, the number of nodes is
now higher (24 + 24 = 48) and, therefore, so is the number of possible edges
that connect each node: 23 + 23 = 46 for the �contemporaneous� nodes, as
they can be a¤ected by any of the other countries at the same time as well as
in the previous time period. In contrast, the 24 lagged nodes have at most 23
connections as, by de�nition, a node in the MAR network can be linked to a
mode in a subsequent time but not to a node at the same time. In �gure 5,
therefore, the lagged nodes will appear �lighter� than the others.

Figure 5: dynamic Bayesian graphical network

On the basis of Figure 5, and the associated centrality measures displayed by
Figure 6, the countries that are most central in the MIR component of the
dynamic model are the US, followed by NL, LU and FI as in the Bayesian
Static model.

If we focus on lagged variables in the MAR component, the highest centrality is
shown by LU, HK and FI even if the score is lower, as we expect by de�nition,
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when compared with the contemporaneous variables. The role of o¤-shores
countries is therefore recovered through the lagged variables.

Comparing the overall dynamic model with respect to static one, note the
presence of BE in the countries that own the highest centrality. This evidence
can be explained following Garratt et al. (2011), who claims that Belgium
and the Netherlands have become heavily interdependent. Furthermore there
appear a lower centrality for DE, CH and the UK which are overtaken by two
southern European countries IT, ES.
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Figure 6: eigenvector centrality (blue-MIR)-(red-MAR)

As before we complete the analysis with the diagnostics of convergence. Figure
7 shows the results.
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Figure 7: convergence diagnostics

Figure 7 shows the convergence of the chosen diagnostics around 4550 itera-
tions, for all of the three plotted convergence measures.
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4.6 Granger causality networks

For the sake of comparison we now consider a Granger-causality network, built
as described in the theoretical section. Figure 8 shows the application of such
model to the LBS statistics.

Figure 8: Granger causality based network

The network in Figure 8, and the associated centrality measures, emphasize
the role of the European countries, that are, on average, more central than
non European ones. In particular, the Asian countries are, on average, the
most peripheral. The biggest hubs, according with the eigenvector centrality
measure, are CH, DE and NL: this can be explained, as in the static model, by
their multinational banks that generate considerable intero¢ce activity across
borders (see also Von Peter, 2007). They are followed by KY and than by NL,
GB, the US and IT similarly as in the Bayesian dynamic model. The novelty
is the role of the Cayman Islands (KY), clearly an o¤-shore country as are LU,
HK and FI in the dynamic model. Indeed as pointed out by Von Peter (2007),
the Cayman Island concentrate most of their positions on US banks, which
is therefore a related node. In addition, we �nd also that GB can explain the
movement in KY banks liabilities.

We remark that the Granger causality network is a special case of the dynamic
models that we have considered previously. The main di¤erence is that, while
results in our dynamic models are model averaged, the results from Granger
testing are conditional on a single model and, therefore, less robust and reliable
than those based on dynamic Bayesian networks. However, the comparison
of the results indicates similar main economical interpretations, in terms of
countries that are more central and, those, more problematic in a systemic
risk framework.
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5 Conclusions

Network models are a useful tool to model interconnectedness and systemic
risks in �nancial systems. Such models are essentially descriptive, and based
on highly correlated networks.

The motivation of this paper is to provide a stochastic framework for �nancial
network models, aimed at selecting only the statistically signi�cant relation-
ships, leading to a parsimonious and sparse representation of the network.

The paper contains two main research contributions in this direction. First we
introduce multivariate Gaussian graphical models, de�ned in terms of Markov
properties, on the basis of which estimation of the adjacency matrix can be
performed statistically testing conditional independences, equivalent to spec-
i�ed zeroes among certain (partial) correlation coe¢cients. Second, we have
proposed to robustify graphical model selection by means of a Bayesian ap-
proach, both in a static and in a time-varying framework, thus allowing model
uncertainty to be taken into account in the estimation of the adjacency ma-
trix. The dynamic version provides a convenient framework to model temporal
data.

We have applied our proposed methods to the Bank of International Settle-
ments locational banking statistics, with the aim of identifying central coun-
tries, whose �nancial systems could have a high degree of interconnectedness,
whose failures could result in further distress or breakdowns in the whole
system.

Our results show that the countries that are potentially most contagious can
be splitted in three main groups: international �nancial hubs such as US and
GB; o¤-shore countries such as LU. HK FI and KY and, �nally, countries
with large cross-border �nancial activities as NL, CH and DE. A fourth group
of countries, including weak �nancial systems, emerges only when dynamic
lagged e¤ects are properly considered, as with a dynamic Bayesian network
model.

Future research include the extension of what proposed to non Gaussian graph-
ical models and the application of what proposed here to the study of the in-
terconnectedness between institutions, rather than countries: banks, insurance
companies and hedge funds, as in Billio et al. (2012).

More generally, the �eld of �nancial systemic risk modelling is an area where
good statistical thinking and statistical analysis can contribute substantially
to reach conclusions that are more and more important and timely for policy
makers, both at the national and international levels.
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