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Some Extensions of the class of K-matrices:
A Survey and Some Economic Applications

G. Giorgi1 and C. Zuccotti2

Abstract
In this paper we take in to considerations some classes of matrices which are generalizations

of the class of K-matrices, in the terminology of Fielder and Pt�ak (1962). We study the hierarchy and

inclusion relations between the classes considered and we point out some economic applications.
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1. Introduction

This paper takes into consideration some generalizations of the class ofK-matrices
(in the terminology of Fiedler and Pt�ak (1962)). A (real) square matrix A of order n is
called a Z-matrix or matrix of the Z-class if aij 5 0; 8i 6= j: A Z-matrix is called a
K-matrix if Z�1 is nonnegative (and obviously non zero, i. e. semipositive). There are
many characterizations of the class of K-matrices: see the basic paper of Fiedler and
Pt�ak (1962) and the surveys of Poole and Boullion (1974), where the authors adopt the
term \M -matrices" or better \nonsingularM -matrices", of Berman and Plemmons (1976),
Plemmons (1977), Magnani and Meriggi (1981), Varga (1976a), Windisch (1989).

This paper is organized as follows.

Section 2 recalls the de�nitions of the classes considered in the present paper.

In Section 3 some known and new properties of the said classes are stated and other
characterizations are established.

In Section 4 we provide the various inclusion and comparison results between the
classes previously introduced and some further remarks are added.

In Section 5 some economic applications are pointed out.
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2 Faculty of Economics, Via S. Felice, 5 - 27100 Pavia, (Italy). E-mail: czuccotti@eco.unipv.it



All matrices and vectors considered are real (the extension to the complex �eld is
possible, even if the economic applications of this extension are often problematic). The
notations I; AT ; [0] ; rk(A) stand for: the identity matrix, the transpose of the matrix
A 2 Rm�n; the zero matrix, the rank of A: The notations A > [0] and A = [0] are
used to denote a positive matrix (all positive entries) and, respectively, a nonnegative
matrix (all nonnegative entries). A � [0] is used to denote a semipositive matrix (i. e. a
nonzero, nonnegative matrix). Similar notations are used to denote positive, nonnegative
and semipositive vectors. The notations A 5 [0] ; A < [0] ; A � [0] are obvious. The same
convention is used also to compare two matrices (of the same order) or two vectors (of
the same dimension). Ai denotes the i�th row of A; A

j the j�th column.

2. Classes of Matrices Considered

We consider the following classes of matrices A 2 Rm�n:
(1) S-matrices The matrix A is an S-matrix if the system

�
Ax > [0]
x = [0]

admits a solution x:

(2) S0-matrices The matrix A is an S0-matrix if the system

�
Ax = [0]
x � [0]

admits a solution x:

(3) M -matrices The S0-matrix A is an M -matrix (or an irreducibly S0-matrix) if either
A is an S0-matrix and has only one column, or A is an S0-matrix with n > 1 columns,
but no matrix obtained from A by omitting at least one column, is an S0-matrix. The
terminology is due to Fiedler and Pt�ak (1966), but this class must not be confused with
the class of M -matrices of Poole and Boullion (1974), Berman and Plemmons (1976) and
the other authors previously quoted.

(4) M+-matrices The M -matrix A is an M+-matrix if it admits a positive left inverse
A(+) (in the usual sense of Moore-Penrose; see, e. g., Nashed (1976), Rao and Mitra
(1971)):

A(+)A = I; A(+) > [0] :

(5)M0-matrices TheM -matrix A is anM0-matrix if and only if it is not anM+-matrix.

We consider the following classes of matrices A 2 Rn�n (square matrices).
(6) P -matrices The square matrix A is a P -matrix if all its principal minors are positive.

(7) P0-matrices The square matrix A is a P0-matrix if all its principal minors are
nonnegative.
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(8) Q-matrices The square matrix A (not necessarily symmetric) is a Q-matrix if the
following implication holds

x 6= [0] =) xTAx > 0:

This class is also called the class of quasi-positive de�nite matrices (of positive de�nite
matrices, when A is symmetric). This de�nition, at least in the economic literature,
was considered by Samuelson (1947). Some authors (e. g. Nikaido (1968)) adopt the

denomination \positive quasi-de�nite matrices".

(9) Q0-matrices The square matrix A (not necessarily symmetric) is a Q0-matrix if it
is quasi-positive semide�nite, i. e.

x 6= [0] =) xTAx = 0

(obviously when A is symmetric, this class coincides withe the class of positive semide�nite
matrices).

(10) DD-matrices (Dominant diagonal matrices) The square matrix A has a row dom-
inant diagonal if there exist scalars di > 0; i = 1; :::; n; such that

di j aii j>
nX

j 6=i

dj j aij j; i = 1; :::; n:

If, in addition, aii > 0; i = 1; :::; n; then A is said to have a positive row dominant diagonal.
Similarly, if in addition, aii < 0; i = 1; :::; n; then A is said to have a negative row dominant
diagonal. A has a column dominant diagonal if there exist dj > 0; j = 1; :::; n; such that

dj j ajj j>
nX

i6=j

di j aij j; j = 1; :::; n:

Similar de�nitions hold for positive or negative column dominant diagonal matrices. A
fundamental property of DD-matrices is that if A has a row dominant diagonal, then A
has a column dominant diagonal and vice-versa (Mc Kenzie (1960)). So, it is convenient
to speak simply of DD-matrices.

(11) PS-matrices The square matrix A is positive stable if every its eigenvalue has a
positive real part: Re(�j) > 0;8j: Usually, a square matrix A is said to be stable if it
is negative stable, i. e. Re(�j) < 0;8j, as this condition is necessary and su�cient for
the \global asymptotic stability" of the solutions x(t) of a system of linear di�erential
equations with constant coe�cients

x0(t) = Ax(t);

with respect to the equilibrium solution x� = [0] :

(12) PDS-matrices The square matrix A is positive D-stable if DA is PS, for every
diagonal matrixD � D++; D++ being the class of diagonal matrices with positive diagonal
elements.
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(13) PTS-matrices The square matrix A is positive totally stable if every principal
submatrix AJJ of A is PDS.

We recall again the classes of the Z-matrices and of the K-matrices: a square matrix
A is a Z-matrix if aij 5 0;8i 6= j; a Z-matrix A is a K-matrix if A

�1 � [0] :
In what follows the letters S; S0; etc. will also be used to denote the classes of the

corresponding matrices: e. g. S is the class of all S-matrices of a �xed order (m;n). The
same convention will be used for the transposed matrices (ST ; ST0 ;etc.).

3. Other Characterizations of the Classes Considered

� Characterizations of the S-matrices

The name of this class derives from the mathematician E. Stiemke who �rst introduced
them (Stiemke (1915)). Most of the following characterizations are given by Fiedler and
Pt�ak (1966), some others are new.

(a) The system Ax > [0] admits a solution x = [0] :

(b) The system Ax > [0] admits a solution x � [0] :

(c) The system Ax > [0] admits a solution x > [0] :

(d) For any vector p � [0], at least one component of the vector pA is positive.

(e) It holds the implication

p � [0] =) pA � [0] :

(f) It holds the implication

pA 5 [0] =) p � [0] :

(g) For any vector p � [0] ; at least one component of pA is negative.

(h) It holds the implication

p � [0] =) pA � [0] :

(i) It holds the implication

pA = [0] =) p � [0] :

If A is square, then a characterization of S-matrices is related to the feasibility of the
linear complementarity problem (LCP). See Cottle and others (1992). The LCP (q; A) is
described as follows: given a vector q 2 Rn and a matrix A 2 Rn�n; �nd a nonnegative
vector z such that

w = q + Az; w = [0] ; wz = 0:

A vector z = [0] such that q+Az = [0] is said to be feasible. If also the complementarity
condition wz = 0 holds, the vector z is called a solution of the LCP. The LCP (q; A) is
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said to be solvable if it has a solution. It can be proved the following result (Cottle and
others (1992)).

Proposition 1 The matrix A 2 Rn�n is an S-matrix if and only if the LCP (q; A) is
feasible, for all q 2 Rn:
� Characterizations of the S0-matrices

Also this class is introduced by Fiedler and Pt�ak (1966). The characterization (d) is,
as far as we are aware, new.

(a) The system Ax = [0] admits a solution x � [0] :

(b) For any vector p = [0] ; at least one component of pA is nonnegative.

(c) It holds the implication

p = [0] =) pA � [0] :

(d) (A+B) 2 S, for any B > [0] :

The classes S and S0 are obviously related by the inclusion S � S0; but they are also
related by the Ville theorem of the alternative (see, e. g., Cottle and others (1992)).
Let A 2 Rm�n be given. The system

Ax > [0] ; x > [0]

has a solution if and only if the system

yA 5 [0] ; y � [0]

has no solution.
In terms of the classes S and S0, the Ville theorem of the alternative can therefore be

described by the following equivalence

(A 2 S) () ((�AT ) =2 S0):

Taking as a starting point two characterizations of P -matrices, given by Aganagi�c
(1984) (see the next point 6, at letter (m)), Magnani (1984) has given the following two
new characterizations of S-matrices and S0-matrices.

- Let A 2 Rm�n and let B 2 Rm�n; with Bi � [0] ; 8i = 1; :::;m: Then A 2 S0 if
and only if [(I � E)B + EA] 2 S0, when E 2 D+; E 5 I, D+ being the class of diagonal
matrices with nonnegative diagonal.

- Let A 2 Rm�n and let B 2 Rm�n; with Bi � [0] ; 8i = 1; :::;m: Then A 2 S if and
only if [(I � E)B + EA] 2 S, when E 2 D+; E 5 I.

� Characterizations of the M -matrices

The following characterizations (a), (b) and (c) are due to Fiedler and Pt�ak (1966);
the characterization (d) can be obtained by means of Theorems 3.9, 3.10 and 3.11 in the
same paper of Fiedler and Pt�ak.
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(a) Either A 2 S0 and A has only one column, or A 2 S0 but no matrix obtained
from A by omitting at least one column is an S0-matrix.

(b) A 2 S0 and the system �
Ax = [0]
x � [0]

admits only solutions x > [0] :

(c) A 2 S0 and for any x 6= [0] ; solution of Ax = [0] ; it holds either x > [0] or
x < Ax = [0] :

(d) A 2 S0 and, moreover, A veri�es one of the following equivalent conditions.

(d1) A admits generalized inverse A
(+) > [0] :

(d2) For any vector y � [0] ; there exists a solution p > [0] of pA = y:

(d3) rk(A) = n and for every vector x such that Ax � [0] it holds x > [0] :

(d4) rk(A) = n� 1 and there exist vectors p > [0] and x > [0] such that pA = [0] ;
Ax = [0] :

(d5) If Ax = [0] for x 6= [0] ; then it holds either Ax = [0] < x or Ax = [0] > x:

We state now some properties related to classes S; S0;M;M+ andM0: Here, as before,
A is a matrix with m = mA rows and n = nA columns.

(A) A 2M+ =) rk(A) = nA:
A 2M0 =) rk(A) = nA � 1:
A 2M =) mA = nA:

(B) A 2 M0 () rk(A) = nA � 1 and the systems Ax = [0] and yA = [0] admit
solutions x > [0] and y > [0] :

(C) A 2M0 =) A 2M; � A 2 S0:

(D) A 2M0 if and only if A 2 S0 and the following implication holds:

Ax = [0] ; x 6= [0] =) Ax = [0] and either x > [0] or x < [0] :

(E) M =M+ [M0; M
T =MT

+ [M
T
0 :

(F) A 2M+ =) A 2 ST :

(G) m = n =)M+ =M
T
+ :

(H) A 2M0 =) A =2 S; A =2 ST ; A 2 S0; A 2 S
T
0 :

(I) m = n =)M0 =M
T
0 :

The properties from (A) to (E) follow form the de�nitions of M;M+; and M0; taking
into account Theorems 3.8 to 3.11 of Fiedler anf Pt�ak (1966). Property F) stems directly
from the de�nition ofM+; as soon as we note that if A admits a positive left-inverse A

(+);
then the system

yA = p; p = [0] (1)
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does not admit the solution
y = pA(+) > [0] : (2)

- Property (G) By de�nition ofM+ and a well-known property of the usual inverse A
�1 of

a square regular matrix A; any squareM+�matrix A admits an inverse A
�1 = A(+) > [0] :

Therefore, yA = [0] implies y = [0] and each solution of (1) is positive, just as in (2).
This shows that AT is not only in S0; but in M also. As (AT )�1 = (A(+))T > [0] ; AT is
in M+; i. e. A 2M

T
+ : The same arguments applied to a square M

T
+ -matrix complete the

proof of (G).

- Property (H) Let A be anM0-matrix. Property (D) assures that A is out of S, whereas
(C) shows, thanks to the Ville theorem of the alternative, applied to (�A) instead of A;
that AT is out of S; i. e. A =2 ST : Property (B) shows that A is in ST0 also. Being M0 a
subclass of S0; this completes the proof of (H).

- Property (I) This property trivially follows from (B) as soon as we note that, being A
a square matrix, rk(A) = nA � 1 if and only if rk(A

T ) = nAT � 1 and the vectors �x = y
T

and �y = xT ; with x and y chosen as in property (B), play with AT the same role played
with A by x and y in the same property.

Finally, it may be useful to remark here also the properties:

(J) If m = n; then

�
M+ =M

T
+

A 2M+ or A 2M
T
+ =) A 2 S;A 2 ST :

(K) If m = n; then

�
M0 =M

T
0

A 2M0 or A 2M
T
0 =) A =2 S;A =2 ST ; A 2 S0; A 2 S

T
0

which follow from (F)-(G) and (H)-(I).

(L) If m = n; then the following two conditions are equivalent (Fiedler and Pt�ak
(1966)):

(i) A is nonsingular and A 2M ;

(ii) A�1>[0] :

This is a sort of \modi�ed" monotonicity property, as, a square matrix A is usually
called monotone or of monotone kind if

Ax = [0] =) x = [0] :

A basic result of Collatz (1966)states that the above implication is equivalent to: A�1

exists and it holds A�1 � [0] :

We now take into consideration the characterizations of the classes of square matrices
previously considered.

7



� Characterizations of the P -matrices

This class was perhaps �rst considered by Ostrowski (1937) and by the economist John
Hicks (1939); this last author, however, referred the characterization of a P -matrix, not
to A but to (�A): the square matrices whose principal minors of order k have the sign
of (�1)k; k = 1; :::; n; are called, in the economic literature, Hicksian matrices or also
NP -matrices. As far as we know the name \P -matrix" was �rst given by Fiedler and
Pt�ak (1962) and by Gale and Nikaido (1965). Here we list the main characterizations
of this class: see Fiedler and Pt�ak (1966), Berman (1981), Plemmons (1977), Cottle and
others (1992).

(a) Every principal minor of A is positive.

(b) For every vector x 6= [0] there exists an index i such that xi(Ax)i > 0:

(c) The matrix A \reverses the sign" of the zero vector only, i. e.

xi(Ax)i 5 0 =) x = [0] :

(This characterization, obviously equivalent to (b), was �rst given by Gale and Nikaido
(1965) in order to prove an important result on the global univalence of mappings).

(d) For every vector x 6= [0] there exists in D++ (class of diagonal matrices with a
positive diagonal) a matrix D = Dx; such that x

TADxx > 0:

(e) The same as (d), with a nonnegative diagonal replacing positive diagonal.

(f) The real eigenvalues of each principal submatrix of A (A included) is positive.

(g) The matrix A+D is nonsingular, for each nonnegative diagonal matrix D:

(h) For each signature matrix S (i. e. a diagonal matrix with diagonal entries
sii = +1 or �1), there exists an x > [0] such that SASx > [0] :

The following characterization is particularly important in the theory of LCP and was
given by Ingleton (1966), Cottle (1968), Tamir (1973). See also Cottle and others (1992).

(i) For every vector q, the LCP (q; A) has a unique solution.

The following characterization is due to Uekawa (1971) who applied the theory of P -
matrices and other classes of matrices to the study of the Stolper-Samuelson theorem on
factor price equalization. See also Uekawa and others (1973). Let us denote by J any
subset of N = f1; :::; ng (J = N and J = ? are not excluded) and by DJ a diagonal
matrix obtained from the identity matrix I by replacing each j-th row ej by �ej; j 2 J:
Uekawa (1971) gives the following characterization of P -matrices.

(l) An (n; n) real matrix A is a P -matrix if and only if, for any J , ? � J � N; the
inequality xT (DJADJ) > [0] has a solution x

T > [0] :
For other similar criteria working on A = [0], see Uekawa (1971) and Uekawa and

others (1973).

(m) The following two characterizations have been given by Aganagi�c (1984).

(m1) Let B arbitrarily chosen inD++; then A 2 P is and only if f(I � E)B + EAg 2
P , when E 2 D+; E 5 I:
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(m2) Let B arbitrarily chosen in D++; then A 2 P is and only if f(I � E)B + EAg
is nonsingular, when E 2 D+; E 5 I:

We recall that the class of K-matrices is given by the intersection of the class of
Z-matrices and the class of P -matrices:

K = Z \ P:

� Characterizations of the P0-matrices

The following characterizations are found in Fiedler and Pt�ak (1966), except (g), due
to Arrow (1974).

(a) The matrix A is a P0-matrix, that is, all principal minor of A are nonnegative.

(b) For each vector x 6= [0] there exists an index i such that xi 6= 0 and xi(Ax)i = 0:

(c) For any vector x 6= [0] there exists a diagonal matrix D = Dx = [0] such that it
holds xTDxx > 0; x

TATDxx = 0:

(d) All real eigenvalues of A; as well as of all its principal submatrices, are nonnega-
tive.

(e) (A+ "I) 2 P for any " > 0:

(f) (A+D) 2 P , for any diagonal matrix D 2 D++:

(g) For any diagonal matrix D 2 D++ every real eigenvalue of DA is nonnegative.

Also P0-matrices are important in the study of LCP. If in an LCP the vector w = q+Az
is constanmt for all solutions z; the solutions of such a problem are said w�unique. Cottle
and others (1992) identify P0-matrices as the class of matrices for which all solutions of
the LCP must be w-unique.

� Characterizations of the Q-matrices

The notation for this class is, as far as we are aware, new. The following propertis are
equivalent.

(a) A is quasi-positive de�nite, i. e.

x 6= [0] =) xTAx > 0:

(b) The symmetric matrix (A+ AT ) is positive de�nite.

(c) Every eigenvalue of (A+ AT ) is real and positive.

(d) Every principal minor of (A+ AT ) is positive, i. e. (A+ AT ) 2 P:

(e) Every leading principal minor (or North-West principal minor) of (A + AT ) is
positive.

The equivalence between (d) and (e) can be quickly proved as follows: A 2 Q() (A+AT )
is positive de�nite () �(A + AT )�T is positive de�nite for any permutation matrix
� () all leading principal minors of �(A + AT )�T are positive, for every permutation
matrix �() all principal minors of (A+ AT ) are positive, i. e. (A+ AT ) 2 P:
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� Characterizations of the Q0-matrices

From the characterizations of the class Q, the following characterizations of the class
Q0 are easily obtained.

(a) A is quasi-positive semide�nite, i. e.

x 6= [0] =) xTAx = 0:

(b) (A+ AT ) is positive semide�nite.

(c) Every eigenvalue of (A+ AT ) is real and nonnegative.

(d) Every principal minor of (A+ AT ) is nonnegative, i. e. (A+ AT ) 2 P0:

Note that there is no characterization of Q0 which is similar to (e) of the class Q:

� Characterizations of the DD-matrices (Dominant diagonal matrices)

DD-matrices and their generalizations have a long history, which goes back to Hadamard
and other French mathematicians (see Marcus and Minc (1964). The de�nition 10) of Sec-
tion 2 is due to the economist L. McKenzie (1960) and is largely ignored by mathemati-
cians, also in recent contributions. See Giorgi and Zuccotti (2009), De Giuli, Magnani
and Moglia (1994), for a survey on diagonal dominant matrices. Here we recall that a
(real) square matrix A is said to have a row dominant diagonal, in the sense of Hadamard
(RHDD) if

j aii j>
X

j 6=i

j aij j; i = 1; :::; n;

(i. e. if in the De�nition 10) of Section 2, it holds di = 1;8i = 1; :::; n):
A has a column dominant diagonal, in the sense of Hadamard (CHDD), if

j ajj j>
X

i6=j

j aij j; j = 1; :::; n;

(i. e. if in the De�nition 10) of Section 2 it holds dj = 1; 8j = 1; :::; n):
It must be noted that the two properties (RHDD) and (CHDD) are not equivalent.

Given the square matrix A; its comparison matrix C = C(A) is given by

C = [cij] ; cij =

�
j aij j if i = j;
� j aij j if i 6= j:

So, C(A) is a Z-matrix. We denote by D the class of diagonal matrices and, as before,
by D++ the class of diagonal matrices with a postitive diagonal.
The following propositions are equivalent.

(a) A is a row DD-matrix, i. e. there exist scalars di > 0; i = 1; :::; n, such that

di j aii j>
X

j 6=i

dj j aij j; i = 1; :::; n:
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(b) A is a column DD-matrix, i. e. there exist scalars dj > 0; j = 1; :::; n, such that

dj j ajj j>
X

i6=j

di j aij j; j = 1; :::; n:

(c) There exists a regular matrix D 2 D such that D�1AD has a row dominant
diagonal in the sense of Hadamard (RHDD).

(d) There exists a matrix D 2 D++ such that for D
�1AD the property sub (c) holds.

(e) There exists a regular matrix D 2 D such that D�1AD has a column dominant
diagonal in the sense of Hadamard (CHDD).

(f) There exists a matrix D 2 D++ such that for D
�1AD the property sub (e) holds.

(g) The comparison matrix C(A) is a K-matrix.

(h) A has a dominant diagonal in the sense of Beauwens (1976) and Varga (1976b),
i. e. with C = [cij] the comparison matrix of A; the following system

8
<

:

x > [0]
Cx � [0]P

j5i cijxj > 0; 8i;

admits asolution.

(i) AT has a dominant diagonal in the sense of Beauwens and Varga.

(l) There exist in D++ two matrices D and E such that, with C = C(A) the compar-
ison matrix of A; either the matrix T = DCE has a dominant diagonal in the sense of
Beauwens and Varga or T T has the same property.

(m) A is of generalized positive type, in the sense of Varga (1976a), i. e. the system
C(A)x � [0] ; x > [0] ; has solutions and, moreover, for each i such that (C(A))ix = 0
there exists a chain connecting the index i with some index j and for which (C(A))jx > 0:

(n) CT is of generalized positive type in the sense of Varga.

Other extensions of the concept of dominant diagonal matrices are due to Pearce
(1974) and Okuguchi (1978).

� Characterizations of the PS-matrices

The followintg properties are equivalent.

(a) The square matrix A is positive stable, i. e. Re(�j) > 0; 8j (i. e. the real part
of each eigenvalue of A is positive).

(b) There exists a symmetric positive de�nite matrix W such that

AW +WAT

is positive de�nite (this is the famous Lyapunov criterion for the positive stability of A).
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(c) (A+ I) is nonsingular and the matrix G = (A+ I)�1(A� I) is convergent, i. e.
G((n) �! [0] ; for n �! +1:

(d) (A + I) is nonsingular, and for G = (A + I)�1(A � I) there exists a positive
de�nite symmetric matrix W such that W �GTWG is positive de�nite.

For characterizations (c) and (d) see Plemmons (1977). Finally, we recall that a well-
known basic result is the algorithm of Routh and Hurwitz (see Gantmacher (1959)) which
yields necessary and su�cient conditions for the (negative) stability of A:

4. Other Inclusion and Comparison Results and
Further Remarks

We have already discussed some properties related to the classesM; M0 andM+:
We now point out other relations of inclusion, partial overlapping and disjunction between
the classes of matrices considered.

(I) The inclusions

S � S0; M � S0; ST � S0; MT � ST0 ;

Q � P � S

are all strict (for the case of S and ST ; S0 and S
T
0 ; they hold either with m = n or with

m 6= n):

(II) The inclusions

Q0 � P0 � S0; Q � Q0; P � P0

are all strict.

(III) The classes P0 and Q0 are not included in S: More precisely, P0 and S have a
partial overlapping (a nonempty intersection) and the same holds for Q0 and S: Take, e.
g., the following matrices

A =

�
10 7
10 7

�
; B =

�
0 0
5 1

�
:

The �rst matrix is in P0 and in S; the second matrix is in P0; but not in S:

(IV) The classes P and Q0 have a partial overlapping. Take, e. g., the following
matrices

A =

�
9 2
4 1

�
; B =

�
10 1
6 1

�
:

The �rst matrix is in P and in Q0; the second matrix is in P , but not in Q0:

(V) If m > n; the inclusion M+ � S0 is strict, whereas the classes M+ and S have
a partial overlapping. The classes M0 and S are disjoint, the classes M0 and M+ are
disjoint. If m = n; the inclusions M+ � S � S0 are strict, the classes M0 and S are
disjoint, M0 and M+ are disjoint. If m < n; the inclusions M+ � S � S0 are strict.
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(VI) We consider a DD-matrix with a positive diagonal: aii > 0; 8i = 1; :::; n: We
denote this class by PDD. The following inclusions are strict.

PDD � PS (class of positive stable matrices); PDD � P:

The �rst inclusion can be re�ned in the following way:

PDD � fclass of totally positive stable matricesg �

� fclass of positive D-stable matricesg � PS:

(VII) The classes P and PS have only a partial overlapping:the class P is not included
in PS and the class PS is not included in P: From a \historical" point of view, the fact
that if A is negative stable, this does not imply that A is Hicksian (�A 2 P ) and if A is
Hicksian, this does not imply that A is negative stable, was pointed out, at least in the
economic literature, in some fundamental results of Samuelson (1944, 1947). However, it
must also be recalled a remarkable theorem of Fisher and Fuller (1968). Let A 2 P ; then
there exists a positive diagonal matrix D such that DA 2 PS and all the characteristic
roots of DA are simple.

(VIII) The classes Q and PDD have only a partial overlapping.

(IX) The inclusions
Q � PS; Q � P

are strict. The �rst inclusion can be re�ned in the following way:

Q � fclass of totally positive stable matrices g �

� fclass of positive D-stable matricesg � PS:

The second inclusion can be re�ned in the following way:

Q � fclass of totally positive stable matricesg � P:

If A 2 Z (i. e. aij 5 0; 8i 6= j), the following equalities hold

PS = fclass of totally positive stable matricesg =

= fclass of postive D-stable matricesg = P = PDD = K:

Therefore, all the above conditions (before the last equality) are characterizations of
the K-class. We recall again thatK is the class of (square) Z-matrices with a semipositive
inverse, or, equivalently, of class S, or, equivalently, of class P : K = Z \ S; K = Z \ P:
More than 70 tests (!) are available to check whether a Z-matrix is inK: See, e. g., Berman
and Plemmons (1976), Fiedler and Pt�ak (1962), Poole and Boullion (1974), Plemmons
(1977), Magnani and Meriggi (1981), Schr�oder (1978), Varga (1976a, b), Windisch (1989).

If A is symmetric, the following equalities hold

PS = P = Q = fclass of matrices with every leading principal minors positiveg =

= fclass of positive de�nite matricesg :

13



Moreover, the following equalities hold

P0 = Q0 = fclass of positive semide�nite matricesg :

Note that, in the present case, the nonnegativity of the leading principal minors of A
is not su�cient for A to in in Q0: Take, e. g., the matrix

A =

�
0 0
0 �1

�

which has the two leading principal minors nonnegative (zero), but it is not positive
semide�nite.

We make here some further remarks on the classes S; S0;M; P; P0; Q;Q0: For the class
PDD we refer the reader to the survey paper of Giorgi and Zuccotti (2009) and for the
class PS we refer the reader to the paper of Giorgi (2003), where the usual negative stable
matrices are examined.

� S-class

(1) If A has every row Ai semipositive (Ai � [0] ; 8i = 1; :::;m) or at least one column
Aj positive (9j : Aj > [0]), then A 2 S. If A has more than one column which is positive,
then A =2M:

(2) If A 2 Z, then A 2 S if and only if A 2 K:

(3) A matrix A 2 S if and only if for any vector y � [0] at least one component of
yA is positive (see Proposition 1 in Section 5).

� S0-class

(1) If we denote by K0 the class of square matrices A such that (A + "I) 2 K, for
every " > 0; we have the strict inclusion K0 � S0:

(2) If A 2 Z; j A j6= 0 and A is indecomposable (see, e. g. Debreu and Herstein
(1953), Berman and Plemmons (1976)), then we have the implication

A 2 S0 =) A 2 S; A 2 K:

Indeed, if A 2 S0; then there exists x � [0] such that Ax = [0] ; and, thanks to
regularity, Ax � [0] : This is su�cient, being A indecomposable, to have A 2 K, and
therefore A 2 S:

� M -class

(1) If A 2M; then either rk(A) = n or rk(A) = n� 1 (see Fiedler and Pt�ak (1966),
Proposition 3.6).

(2) If A 2M; then m = n (see Fiedler and Pt�ak (1966), Proposition 3.8).

(3) If A 2M; A square, then also AT 2M:

(4) If A 2M and rk(A) = n, then A 2 S:
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(5) Let A 2 Z: Then the following relations hold:
M � K; if j A j6= 0;

M = K; if j A j6= 0 and A is indecomposable;

M � K0; if j A j= 0:

(6) If A 2 K0 and A is indecomposable, then there exists x > [0] such that Ax = [0]
(see Fiedler and Pt�ak (1966), Proposition 5.8)
� P -class

(1) For symmetric matrices we have the equality (already remarked) Q = P; however
it holds P 6= S : take, e. g. the matrix

A =

�
1 1
1 1

�

which is in S; but not in P:

(2) If A is decomposable, then A 2 P if and only if it is a P -matrix every square block
of its normal form, in the sense of Gantmacher (1959), containing the diagonal elements
of A:

� P0-class

(1) For symmetric matrices we have the equality Q0 = P0; however it holds P0 6= S0 :
take, e. g., the matrix

A =

�
�1 1
1 �1

�

which is in S0, but not in P0:

(2) If A 2 Z; then A 2 K0 if and only if A 2 P0:

� Q-class

We have already remarked that, if A is symmetric, then Q = P = PS: Moreover, in
this case, another characterization of the Q-class is:

(a) There exists a nonsingular matrix G such that A = GTG:

� Q0-class

We have already remarked that, if A is symmetric, then Q0 = P0: Moreover, in this
case, other characterizations of Q0-matrices are:

(a) All principal minors of A are nonnegative.

(b) All eigenvalues of A are nonnegative.

(c) There exists a matrix G such that A = GTG:

(d) For every � > 0 we have (A+ �I) 2 Q:

Obviously, even for the symmetric case, the inclusion Q � Q0 is strict.
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5. Some Economic Applications
The classes of matrices considered in the previous sections have found several

applications in a variety of �elds: numerical analysis, linear complementarity problems,
di�erential and di�erence equations, stochastic processes, economic models, problems of
linear algebra, geometry, mathematical physics, etc. Here we shall be concerned only with
some economic applications of the S-class and of the P -class. For economic applications of
the K-class, of the DD-class and of the NS-class (negative stable matrices), the reader is
referred to Nikaido (1968, 1972), Pasinetti (1977), Takayama (1985), Murata (1977), Woods
(1978) and to the literature quoted in these books.
We consider a general linear economic model described by two nonnegative matrices:

� An input matrix A = [0] ; of order (m;n):

� An ouput matrix B = [0] ; of order (m;n):

Usually, due to the economic meaning of A and B; every column of A and B is required
to be semipositive:

Aj � [0] ; Bj � [0] ; 8j = 1; :::; n: (3)

Also every row of B is required to be semipositive:

Bi � [0] ; 8i = 1; :::;m: (4)

This means that every good can be produced by some process; see, e. g., Kemeny,
Morgenstern and Thompson (1956). The nonnegative column vector x 2 Rn is the activity
vector, therefore the quantities Bx and Ax describe, respectively, the gross productions
and the inter-industry consumptions. The row vector p 2 Rm (usually p � [0]) is the price
vector. The vector y = (B � A)x describes the net productions, obtained at the activity
levels vector x, and the vector v = p(B � A) describes the unitary net values, i. e. the
values, at the price vector p; referred to the activity vector x = u; with uT = [1; 1; :::; 1]T :
The model is productive if there exists an activity vector x � [0] such that y is positive:

(B � A)x > [0] ; x � [0] :

We point out that, from a theoretical point of view, any arbitrary matrix can be
written as a di�erence of two nonnegative matrices (\positive splitting"), but here A and
B are given, they are the data of our economic model. The productivity of the model is
therefore equivalent to the property

(B � A) 2 S:

The model is pro�table if there exists a price vector p � [0] such that v > [0] :

p(B � A) > [0] ; p � [0] :

The pro�tability is therefore equivalent to the property

(B � A) 2 ST
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i. e. (B � A)T 2 S: We have to remark that the two properties of productivity and
pro�tability are compatible, but independent properties. In other words, the classes S
and ST are not disjoint, but have a partial overlapping. An exception is given by the case
of A and B square, of order n; and B = I: So, (B�A) becomes (I �A) 2 Z and, thanks
to the closure of the K-class with respect to transposition, the model (A; I) is productive
if and only if it is pro�table. In the general case we can formulate the following test of
productivity and pro�tability for a model (A;B):

Proposition 2 Let A and B be, respectively, the input and the output matrix of an
economic linear model involving m goods and n processes. Then:

(i) The model (A;B) is productive if and only if, for any price vector p � [0] ; there
exists an activity (in general varying with the choice of p) such that the corresponding
net value is positive:

p � [0] =) 9j : p(B � A)j > 0:

(ii) The model is pro�table if and only if, for any activity vector x � [0] ; there
exists a good (in general varying with the choice of x) such that the corresponding net
production is positive:

x � [0] =) 9i : (B � A)ix > 0:

We note that (i) is nothing but the characterization (d) of the S-matrices (see Section
3, point (1)). We give a complete proof of Proposition 2, for the reader's convenience.

Proof Thanks to the Ville theorem of the alternative (see Section 2), (B � A) 2 S if
and only if

�
�(B � A)T

�
=2 S0: This means that the system

( �
�(B � A)T

�
pT = [0]

pT � [0]

i. e. the system �
p(B � A) 5 [0]
p � [0]

has no solution. Therefore (i) is proved. In a symmetric way, (B � A) is pro�table
if and only if (B � A)T 2 S; i. e., thanks to the same theorem of the alternative,�
�(B � A)T

�T
=2 S0; i. e. [�(B � A)] =2 S0:This means that the system

�
� [(B � A)]x = [0]
x � [0] ;

i. e. the system �
(B � A)x 5 [0]
x � [0] ;

has no solution. Therefore (ii) is proved. �
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Obviously, the practical relevance of the above tests relies on the possibility to detect
non productive models and non pro�table models, rather than productive models or
pro�table models.
If (B � A) 2 M , (B � A) not square, the number of processes is always less than

the number of commodities (n < m); thanks to Property 3.8 of Fiedler and Pt�ak (1966).
Moreover, if the columns of (B � A) are linearly independent, then the pair (A;B) is
pro�table and quasi-productive, i. e. the system

�
(B � A)x � [0]
x = [0]

has a solution.
Mangasarian (1971) introduces the following assumption, in order to extend to the

\matrix pencil", formed by the non necessarily square matrices A and B (and not neces-
sarily nonnegative), the Perron-Frobenius theorem:

(a) A = BH; H = [0] :

This assumption does not assure, however, that the model (A;B) is productive, nor
pro�table. Mangasarian shows that a) is equivalent to the implication

pB = [0] =) pA = [0] ;

of evident and acceptable economic meaning for p = [0] ; but with doubtful economic
meaning if p has elements of opposite sign. We can introduce also the following variants
of Mangasarian's assumption (a):

(b) A = HB; H = [0] ;

(c) B = HA; H = [0] ;

(d) B = AH; H = [0] ;

for which the same above remarks hold. If we impose on the matrix H some further
properties, then the Mangasarian's assumptions can assure productivity or pro�tability.
Under the assumptions (3) and (4), if ��(H) < 1; ��(H) being the Frobenius root of
H = [0] ; then the model sub a) is productive, but not necessarily pro�table; the model
sub (b) is pro�table, but not necessarily productive. The model sub (c) is pro�table
(but not necessarily productive) if H is indecomposable and ��(H) > 1; under the same
assumptions on HT ; the model sub (d) is quasi-productive, but not necessarily pro�table.
If we assume that A and B are square (as in the original Sra�a's joint production

model; see, e. g., Schefold (1989)), then we can get more results and properties. Following
Schefold (1989), the model is called \all-productive" if (B � A)�1 � [0] ; the model is
called \all-engaging" if (B � A)�1 > [0] : Obviously, if the model is all-productive, then
it is also productive and pro�table. The converse does not hold, as it can be shown by
simple numerical examples, e. g. by choosing

A =

2

4
3 3 1
1 3 6
2 1 1

3

5 ; B =

2

4
1 0 2
3 8 5
4 3 5

3

5 :
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A classical result of Collatz (1966) shows that a square matrix A (not necessarily
nonnegative) has a semipositive inverse A�1 � [0] ; if and only if

Ax = [0] =) x = [0] ;

i. e. if A is of monotone kind. Therefore, we can say that the square model (A;B) is
all-productive if and only if (B � A) is of monotone kind. This property has an evident
economic interpretation. Moreover, under the usual assumptions (3) and (4) on A and
B; the pair (A;B) is all-productive if and only if there exists a semipositive and regular
matrix C (C � [0] ; j C j6= 0), such that

x = Cy; p = vC;

i. e. such that C transforms the vector of the net productions y in the activity vector x
and the vector of the net values v in the price vector p:

Always under the assumption that A and B are square, thanks to a result of Fiedler
and Pt�ak (1966), we can assert that the following two conditions are equivalent:

(1) (B � A) is regular and (B � A) 2M ;

(2) (B � A)�1 > [0] ; i. e. the model (A;B) is all-emgaging.

We remark that the model (A;B) is surely square if both (B�A) 2M and (B�A)T 2
M : recall the quoted Property 3.8 of Fiedler and Pt�ak (1966).
If (B � A) 2 Z (with A and B not necessarily both nonnegative), we can obtain, by

imposing suitable properties on the matrices A and B which form the \splitting" (B�A);
some mathematical results, useful for the analysis of the linear joint production models
we are discussing.

Proposition 3 Let C 2 Z; then C 2 K if and only if C admits the splitting

C = B � A

with A and/or B in the S-class, B regular, B�1A = [0] and ��(B�1A) < 1:

Proof First let us assume that C 2 K: One of the characterizations of the K-class is:
the system

Cx > [0] ; x = [0]

admits solution, i. e. C 2 S: But then, by choosing A = [0] we have that B = C
and therefore B 2 K, which entails j B j6= 0; B�1A = [0] ; ��(B�1A) = 0: Now we
prove the converse implication. Let C verify the assumptions of the Proposition; then
B�1A = [0] : We have B�1C = B�1(B � A) = (I � B�1A) 2 Z: Being ��(B�1A) < 1; it
holds B�1A 2 K: Therefore, (I �B�1A)�1 � [0] ; i. e. (B�1C)�1 � [0] ; i. e. C�1B � [0]
(therefore C is regular). If B 2 S; then 9q = [0] such that Bq > [0] ; i. e. CC�1Bq > [0] ;
i. e. C(C�1Bq) > [0] : But, being q = [0] and (C�1B) = [0] ; we have �q = C�1Bq = [0] :
Therefore 9�q = [0] such that C�q > [0] ; that is C 2 S: If A 2 S; then there exists
x = [0] such that Ax > [0] ; i. e. such that C [(C�1B)(B�1A)]x > [0] : Therefore, with
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�x = (C�1B)(B�1A)x; being x = [0] ; C�1B = [0] and B�1A = [0] ; we have that 9�x = [0]
such that C�x > [0] ; i. e. C 2 K: �

Obviously, if in the above proposition, A = [0], B = [0], the thesis assures that
the model (A;B) is all-productive. However, from a purely economic point of view, the
case (B � A) 2 Z is of scarse interest, as it implies that we have only a \formal" joint
production model. See Peris and Villar (1993). For other considerations on the splitting
of Z-matrices, see Price (1968) and Varga (1962).
The economic meaning of the implications (A and B square):

((B � A) quasi-positive de�nite [i. e. (B � A) 2 Q]) =)

=) (B � A) 2 P =) ((B � A) is productive and pro�table

is reduced, unless (B � A) 2 Z: Indeed, in this case we have

(B � A) 2 Q =) (B � A) 2 P () (B � A) 2 K ()

() ((B � A) is productive)() ((B � A) is pro�table):

We remark that the inclusion Q � P is strict, even in the case of Z-matrices; take, e.
g. the Z-matrix

A =

�
10 �1
�6 1

�

which is in P; but not in Q:

As for what concerns economic applications of the P -matrices, perhaps the most
quoted appications are given by the Hawkins-Simon conditions, for the matrix (I�A) 2 Z;
where A is a Leontief matrix or input-output matrix (see Hawkins and Simon (1949),
Nikaido (1968, 1972): the Hawkins-Simon conditions simply require that (I � A) 2 P ,
which is equivalent, being (I � A) 2 Z; that all the leading principal minors of (I � A)
are positive.

Moreover, the concept of a P -matrix, besides being useful in the analysis of input-
output Leontief models and also in proving the Perron-Frobenius theorem, �nds appli-
cations in the stability analysis of a Walrasian model of economic equilibrium. Indeed,
Hicks' \perfect stability conditions" (Hicks (1939)) were given in terms of the signs, alter-
natively negative and positive, of the principal minors of the Jacobian matrix of excess
demand functions: in other words, the negative of this Jacobian matrix belongs to P: It
is merit of P. A. Samuelson (1941, 1944, 1947) to have shown that the Hicksin conditions
are totally unrelated to a \true" dynamic stability, stemming from a system of di�erential
equations. Recall that P ; PS and PS ; P: Samuelson, in the quoted papers, stated,
however, some conditions on the Jacobian matrix A; in order that the Hicksian conditions
imply negative stability: (i) A is quasi-negative de�nite; (ii) A is symmetric.

L. Metzler (1945) recognized that if (�A) 2 Z, then A is negative stable if and only
if the Hicks' condition hold. In the economic literature, a square matrix A; such that
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(�A) 2 Z, is called \Metzlerian". This assumption has importance also in the analysis
of global stability of a Walrasian economic system (see, e. g., Arrow and Hahn (1971),
Karlin (1959), Nikaido (1968), Takayama (1985)).

Finally, we point out some important economic consequences of the famous Gale-
Nikaido theorem on global univalence of mappings. See Gale and Nikaido (1965), Nikaido
(1968) and the important overview on this subject made by Parthasarathy (1983). It is
well-known (see, e. g., Apostol (1957)) the following local univalence theorem.

Local Univalence Theorem Let f : Rn �! Rn be continuously di�erentiable on the
open set S � Rn: Let T = f(S): Denote the Jacobian of f at x by rf(x): Suppose that
j rf(x) j6= 0 for some x0 2 S: Then there exists a uniquely determined function g and
two open sets X � S; Y � T; such that

(i) x0 2 X; f(x0) 2 Y ;

(ii) Y = f(X);

(iii) f is one to one on X;

(iv) g is de�ned on Y ; g(Y ) = X; g(f(x)) = x, 8x 2 X:

(v) g is continuously di�erentaible on Y:

The �rst general extension of this theorem to the global case is due to Gale and
Nikaido (1965), even if some basic, but not wholly correct, intuitions were anticipated by
Samuelson.

Global Univalence Theorem of Gale and Nikaido Let f : X �! Rn be a di�er-
entiable function on a rectangular region X � Rn; i. e. X = fx 2 Rn : pi 5 xi 5 qig (here
pi; qi are real numbers where we may allow some or all of them to assume �1 or +1).
If the Jacobian matrix rf(x) is a P -matrix for all x 2 X; then f is global univalent on
X:

Another version of the Global Univalence Theorem is due to Inada (1971), under
continuous di�erentiability assumptions. If X � Rn is a convex set, it is possible to
obtain another version of the Global Univalence Theorem; also this version is due to Gale
and Nikaido.

Second Version of the Global Univalence Theorem of Gale and Nikaido Let
X � Rn be a convex set and f : X �! Rn be di�erentiable on X; if either the Jacobian
matrix rf(x) is a Q-matrix on X or �rf(x) is a Q-matrix on X; then f is global
univalent on X:

The Global Univalence Theorem of Gale and Nikaido has been generalized by various
authors. A signi�cant extension is due to Garcia and Zangwill (1979).

Theorems about global univalence are useful in several economic applications. For
example, in establishing the \factor price equalization" in the theory of international
trade (see, e. g., Chipman (1969), Inada (1971), Stolper and Samuelson (1941), Uekawa
(1971), Uekawa and others (1973)). We quote from Sydsaeter and others (2008): \Suppose
that a national economy has n di�erent industries each producing a positive amount of
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a single output under constant return to scale, using other goods and scarce primary
factors as inputs. Suppose the country is small and faces a �xed price vector p in Rn+
at which it can import or export the n goods it produces. Suppose there are n primary
factors whose prices are given by the vector w 2 Rn+: Equilibrium requires that pi = ci(w)
for each i = 1; :::; n; where ci(w) is the minimum cost at prices w producing one unit of
good i: Then the vector equation p = c(w), if it has a unique solution, will determine the
factor price vector w as a function of p: When di�erent countries have the same unit cost
functions, this implies factor price equalization - because p is the same for all countries
that trade freely, so is the factor price w:"

Another economic application of the Global Univalence Theorem, and hence of the
P -matrices, is in obtaining the uniqueness of the equilibrium price vector in a general
walrasian model of pure exchange (see Arrow and Hahn (1971), Nikaido (1968)). We are
given n single-valued functions Ei(p); i = 1; :::; n; de�ned in a common domain P: Ei(p)
stands for the amount of excess demand for the i�th good. The behaviour of these n
functions represents the state of an economy involving n goods. Usually, the following
basic assumptions are made on Ei(p) :

(i) P � Rn+; 0 =2 P; P 6= ?; P open, and �P 2 P whenever p 2 P and � > 0:
(ii) Homogeinity of degree zero in p; i. e. Ei(�p) = Ei(p) for any � > 0; p 2 P (i =

1; :::; n).

(iii) The Walras law in the narrow sense holds, that is

nX

i=1

piEi(p) = 0; for all p 2 P:

We de�ne a price vector p̂ = (p̂i) to be an equilibrium price vector of a system of
excess demand functions Ei(p) on P if p̂ 2 P and Ei(p̂) 5 0 for all i = 1; :::; n; Ei(p̂) = 0
whenever p̂i > 0: If the n�th good is taken as the \numeraire", the determination of p̂
can be reduced to the study of the following equations and inequalities in the unknowns
p1; :::; pn�1 :

pi = 0; i = 1; :::; n� 1;

Ei(p1; :::; pn�1; 1) 5 0; i = 1; :::; n� 1;
Pn�1

i=1 piEi(p1; :::; pn�1; 1) = 0:

It is possible to show that the above system has a unique solution under the assumption
that the Jacobian matrix J of order n� 1; formed by the gradients rEi(p1; p2; :::; pn�1);
i = 1; :::; n � 1; is Hicksian (i. e. �J is a P -matrix) on a rectangular region of prices in
P (see Nikaido (1968)).
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