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Abstract

We study the bifurcation structure of the parameter space of a 1D
continuous piecewise linear bimodal map which describes dynamics of a
business cycle model introduced by Day-Shafer. In particular, we obtain
the analytical expression of the boundaries of several periodicity regions
associated with attracting cycles of the map (principal cycles and related
�n structure) crossing which the map has robust chaotic behavior.

1 Introduction

Applied models de�ned by piecewise smooth functions appear quite often when
one studies a real process characterized by some �nonsmooth� phenomena such as
sharp switchings between several states, impacts, friction, sliding, and the like.
In economic modeling piecewise smooth systems arise, for example, taking into
account that the most used economic variables have non-negativity constraints,
or when a process is studied in which the economic agents change their behavior
when a relevant indicator reaches certain thresholds, etc. The main reason
why economists still prefer to build their theoretical models avoiding piecewise
smooth functions is related to the lack of knowledge and experience in the
investigation of such a kind of models. In fact, a general theory for piecewise
smooth dynamical systems, di¤erently from the one for smooth systems, is not
yet well established. The studies and results on these systems are growing
and rapidly developing nowadays (see, e.g., the books [29], [4] and references
therein). During the last decade important results have been obtained in this
�eld, and one of the aims of the present paper is to show that such results can
be successfully applied to investigate a relevant economic model, proposed by
Day and Shafer in [9].

�Corresponding Author: University of Pavia, Department of Economics and Management,
Via S.Felice 5, 27100 Pavia (PV), Italy. email: fabio.tramontana@unipv.it
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We recall that among nonsmooth dynamical systems, those described by
piecewise linear maps are the simplest to study due to the linearity of their
components, but nevertheless they are quite rich in the outcome of the possible
dynamics. In particular, a one-dimensional (1D for short) continuous piecewise
linear map with one border point, known as skew tent map, depending on the
parameters values can have attracting cycles of any period as a well as cyclic
chaotic intervals of any period, also called n�bands chaotic attractors, which
have the relevant property of being robust (as introduced in [3]) with respect to
parameter perturbations. The bifurcation structure of the skew tent map has
been completely described (see, e.g., [15], [28], [19], [25]). Moreover, the skew
tent map can be used as a normal form for a so-called border collision bifurcation
(BCB for short) which is characteristic in piecewise smooth maps ([22], [2]).
Recall that a BCB occurs when an invariant set, such as, for example, a �xed
point or cycle, collides with a border separating regions of di¤erent de�nition
of the map. This bifurcation may lead, for example, from an attracting cycle
directly to chaos. The dynamic behaviors of the skew tent map are used to
classify the possible dynamics which may occur after a generic BCB in a 1D
continuous piecewise smooth map (see, e.g., [26], [12], [27], where the skew tent
map is applied to classify BCBs in economic models).
The map considered in the present paper, which represents an economic

model, is described by a one-dimensional (1D for short) bimodal piecewise linear
map with increasing outermost branches. Clearly, a map with two border point
possesses more complicated dynamics, and all the possible outcomes are not yet
fully investigated, some results can be found in [20] and [23]. In particular, the
bifurcation structure of its parameter space includes both regions which belong
to the known period adding structure (called also Arnold tongues ormode-locking
tongues), which is characteristic for piecewise increasing discontinuous maps and
also for certain circle maps (see, e.g. [17], [16], [5], [1], [10]). The period adding
structure is formed by periodicity regions related to cycles organized according
to the Farey summation rule applied to the rotation numbers of the related
cycles. Besides this, in bimodal piecewise linear maps the so-called �n structure
is also observed (see [23]). We shall describe these regions in the parameter
space of the considered map, recalling how these two structures are organized,
and giving formulas of the boundaries of related regions.
The plan of the work is as follows. In Section 2 we recall the Day-Shafer

model. Its dynamics are bounded in an absorbing interval, and depending on
the parameters values the system may have attracting cycles of any period as
well as n-band chaotic attractors. In Section 3 we shall consider the parameter
space of interest, showing how the periodicity regions representing the regions in
the parameter space associated with stable attracting cycles may be organized.
Moreover, the boundaries of such regions (BCB curves) are obtained analytically
(and reported in Appendices). Crossing these boundaries the system may either
enter a di¤erent periodicity region (via the �n structure mentioned above) or it
may become chaotic (and in a regime of robust chaos). Some conclusions are
given in Section 4.
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2 The Day-Shafer model

The Day-Shafer model we are interested in dates back to 1987. Richard Day
has been a pioneer in the application of nonlinear models in economics and
�nance (see e.g. [6], [7], [8], [14]). In particular, in [9] Day and Shafer argued
that the trapping set of their nonlinear business cycle model in one of the most
interesting cases is well approximated by a piecewise smooth map with two
turning points with dynamics bounded in an absorbing interval. Moreover, they
explicitly consider a piecewise linear bimodal map as a further approximation.
In the particular case in which the dynamics reduces to those on a unimodal
piecewise linear map (i.e. a skew tent map), they succeeded in writing the BCB
curves associated with the principal (or maximal) cycles. While in the generic
case of a piecewise linear bimodal map, only a few numerical results were given.
As we shall show in the next sections, the results of the generic case with two
turning points can be much improved and many BCB curves can be detected
analytically.
Let us brie�y recall that in [9] Day and Shafer build a generic map de�ning

a business cycle model of an economy with monetary and real sectors. In the
monetary market, demand and supply for money are implicitly given by the
interest rate r as a function of the income Y and a money supply parameter
M . In the real market the interest rate determines the level of investments
I = H(r(Y ); Y ) = I(Y ), that is a component of the income together with
consumption C = C(Y ). By using the assumption that the level of income at a
certain time period depends upon the one-time lagged amounts of consumption
and investment, it is obtained a discrete time equation of the following form:

Yt+1 = F (Yt) = �I(Yt) + C(Yt) +A; (1)

where the parameter � � 0 measures how strongly investment translates into
new income, and the parameter A > 0 includes all the autonomous components
(of investment, consumption and public expenditure). The function C(Y ) is
typically monotonically increasing with C(0) = 0, the investment function I(Y )
usually is increasing for low level of income while it is decreasing when income
is high1 . Putting together these assumptions a function F (Y ) is obtained that
is nonlinear and has a bimodal shape. By using explicit functions, Day and
Shafer found that for some parameters� con�gurations the income dynamics are
bounded in a trapping set like the one shown in Fig.1. The piecewise linear
map shown in Fig.1 represents the function F (Y ), it is continuous but not
di¤erentiable at the points Y = Y � and Y = Y ��. The dynamics are bounded
in the interval [F (Y ��); F (Y �)] =

�
Y m; YM

�
. For convenience, we can normalize

the interval
�
Y m; YM

�
to [0; 1] and denoting by x the state variable income Y

1This is due to the fact that with high income the money market becomes too crowded,
inducing the increase of the interest rate that causes a contraction in the investments.
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Figure 1: The function F (Y ) in the trapping interval
�
Y m; YM

�
.

we obtain the map f : I ! I; I = [0; 1] de�ned as follows:

f : x 7! f(x) =

8
><
>:

fL(x) = aLx+ 1� aLdL if 0 � x < dL;

fM (x) = �
x

dR � dL
+ 1 +

dL
dR � dL

if dL � x < dR;

fR(x) = aRx� aRdR if dR � x � 1:
(2)

where fL(dL) = fM (dL) = 1; fR(dR) = fM (dR) = 0 and the parameters satisfy

aL > 0; aR > 0; 0 < dL < dR < 1; f(0) > 0; f(1) < 1 (3)

so that f(I) = I: More correctly, this is a version of the map in which we
can investigate the dynamic behavior changing independently the slopes of the
external branches and border points. In [9] the authors give the relations be-
tween the parameters here considered and those related to the economic model.
Moreover, the parameters used above (slopes and border points) may all or in
part depend on some economic parameters, so that as an economic parameter
is varied, it is also possible that it in�uences several of the above parameters,
leading to particular paths in the parameter space.
Clearly, this map (2) has a unique �xed point in the middle branch given by

x�M =
1 + dR

1 + dR � dL
(4)

which is always unstable given that the slope of the middle branch (�
1

dR � dL
)

is always smaller than �1. The interval I is trapping so in I we do not have
any divergent trajectory, and the attracting set may be periodic (an n�cycle
with n > 1) or chaotic (a chaotic interval or an n�band chaotic attractor with
n > 1). Some dynamic behaviors and bifurcation structures of map (2) will be
described in the next Section.
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3 Bifurcation structure of the parameter space

3.1 Preliminaries

The Day-Shafer model presented in the previous section is described by a family
of 1D continuous piecewise linear maps f : I ! I; I = [0; 1]; as given in (2),
where the parameter region of interest, which allows to obtain the required shape
of the map, is the region P de�ned as follows (as f(0) > 0 leads to aLdR < 1
while f(1) < 1 leads to aR(1� dR) < 1)):

P = fp : aL > 0; aR > 0; 0 < dL < dR < 1; aLdR < 1; aR(1� dR) < 1g ; (5)

where p = (aL; aR; dL; dR) denotes a point in the parameter space. For p 2 P
the left and the right branches of map f are both increasing, while the middle
one is decreasing, so that f is a bimodal map. An example is shown in Fig.2. As
already mentioned in the Introduction, the dynamics of 1D bimodal maps have
been considered by many researchers (see, e.g., [18], [21], [20], [24], etc.). Our
aim is to study the bifurcation structure of the region P , that is, to describe the
possible attractors of map f and the parameter regions corresponding to their
existence.

Figure 2: The map f given in (2) for aL = 0:4; aR = 0:8; dL = 0:3; dR = 0:8:

Let us denote as IL = [0; dL); IM = [dL; dR) and IR = [dR; 1] the de�ni-
tion intervals (or, in other words, partitions) of the functions fL; fM and fR;
respectively. They are separated by the border points dL and dR: As already
remarked, for p 2 P the �xed point is x�M 2 IM as given in (4) always exists
and is repelling, while the �xed points

x�L =
aLdL � 1

aL � 1
, x�R =

aRdR
aR � 1

; (6)

associated with the branches fL and fR; exist (repelling) for aL > 1 and aR > 1.
However, for the considered parameter values these �xed points do not belong
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to the interval I given that x�L < 0 and x
�

R > 1. For our map f the absorbing
interval is always associated with all three branches. In fact, given that f(dL) =
1 > dR and f(dR) = 0 < dL it follows that I is an absorbing interval and
invariant, f(I) = I (see Fig.2), so that any orbit with an initial value x0 2 I is
bounded, being trapped in I: We denote by 'L and 'R the boundaries related
to the contact of the interval I with the �xed points x�L and x

�

R; given by x
�

L = 1
and x�R = 1; respectively (although not occurring for parameters in P ):

'L : aLdR = 1; (7)

'R : aR(1� dR) = 1: (8)

Suppose that fxig
n

i=1 are the points of an n-cycle of map f . The symbolic
representation of such a cycle is � = s1s2:::sn, obtained associating to each
point xi the symbol si 2 fL;M;Rg depending on the partition IL; IM or IR
which the point xi belongs to. In the following, to denote an n-cycle we use
its symbolic representation. The region in the parameter space related to the
existence and stability of a cycle with symbolic sequence � is denoted P�, and
called periodicity region. Clearly, the boundaries of a periodicity region can be
related either to the stability loss of the cycle due to its eigenvalue crossing
�1 (recall that for a piecewise linear map such bifurcations are degenerate, see
[25]), or to the appearance/disappearance of the cycle due to a border collision
bifurcation (see [22]). We recall that if some point of a cycle collides with a
border point and neither the period nor the stability of the cycle changes after
the collision, we say that this cycle undergoes a persistence border collision,
while a border collision bifurcation (BCB) occurs when a qualitative change in
the dynamics is observed after the collision.
As noticed in [23], the overall bifurcation structure of the parameter space for

a generic 1D bimodal piecewise linear map is characterized by several substruc-
tures among which we recall the skew tent map structure, the period adding
structure and a particular one called �n structure (due to the shape of the pe-
riodicity regions, as it will be clear below). The simplest one is the skew tent
map structure associated with absorbing intervals involving only two adjacent
partitions, so that on these absorbing intervals the map is reduced to a skew
tent map. However, as already mentioned, by de�nition for our map f such
a possibility is excluded. That is, the parameter space of f does not include
the skew tent map structure. The period adding structure is associated with
periodicity regions related to attracting cycles whose points belong to the out-
ermost partitions only. Such periodicity regions are ordered according to the
Farey summation rule applied to the rotation numbers of the related cycles.
This bifurcation structure is observed for our map f and we describe it in detail
in Sec.3.3. The �n structure which also reveals itself in the parameter space
of map f (see Sec.3.4) is closely related to the period adding structure being
formed by the periodicity regions contiguous to the regions of the period adding
structure and related to attracting cycles with just one point belonging to the
middle partition and all the other points belonging to the outermost partitions.
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3.2 Two-dimensional bifurcation diagrams

We �rst present a few 2D bifurcation diagrams in various parameter planes to
illustrate the overall bifurcation structure of the parameter space of map f .
In particular, Fig.3 shows such a diagram and its enlargement in the (aL; aR)-
parameter plane for dL = 0:4; dR = 0:8; 0 < aL < 1=dL = 2:5; 0 < aR <
1=(1� dR) = 5: Here di¤erent colors are related to attracting cycles of di¤erent
periods n � 30; where the correspondence of a color and the period is indicated
in the color bar, white region corresponds either to chaotic attractors or to cycles
of higher periodicity. The gray region corresponds to aL > 1; aR > 1; so that
all the slopes of f are larger than 1 in modulus, thus, attracting cycles can not
exist, and it is associated with chaotic attractors only (cyclic chaotic intervals).

Figure 3: 2D bifurcation diagram of the map f in the (aL; aR)-parameter plane
in (a), at dL = 0:4; dR = 0:8; and an enlargement of the indicated window in
(b). The color bar indicates the correspondence of a color and the period of the
related cycle.

The choice of the parameters aL and aR to be varied for �xed values of
dL and dR; as in Fig.3, is not optimal to illustrate the bifurcation structures
typical for piecewise linear bimodal maps. To this purpose it is better to �x
values for aL and aR; and vary dL and dR, as it is shown in Figs.4 and 5. In
these �gures, the characteristic shapes of the periodicity regions belonging to the
period adding structure are visible. Such regions have one side on the straight
line dL = dR, and also are observable regions which are contiguous (or attached)
to the regions of the period adding structure, and are those constituting the ��n
structure�. A third example in the (dL; dR)-parameter plane is shown in Fig.5
at aL = 0:7 and aR = 0:8 �xed. We shall see how to get the analytic equations
of the BCB curves bounding the periodicity regions evidenced in the �gures.

7



Figure 4: 2D bifurcation diagram of f in the (dL; dR)-parameter plane for aL =
0:5; aR = 1:01 in a), and aL = 0:6; aR = 1:1 in b). Here the red region de�ned
by dL < dR < 1 � 1=aR; is related to divergent orbits, and not involved in the
economic model.

Figure 5: 2D bifurcation diagram of f in the (dL; dR)-parameter plane for aL =
0:7; aR = 0:8:
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3.3 Period adding structure

Let us brie�y recall the main elements of the period adding structure. As
already mentioned, the periodicity regions constituting this structure are related
to attracting n-cycles, n � 2, whose points only belong to the partitions IL and
IR, that is, their symbolic sequences does not include the symbol M:
Following [17] all the cycles associated with the period adding structure are

grouped into families according to complexity levels. The complexity level one
includes two families, denoted �1;1 and �2;1; to which the so-called basic cycles
belong:

�1;1 = fLR
n1g

1

n1=1
; �2;1 = fRL

n1g
1

n1=1
: (9)

Note that the �central� cycle LR � RL belongs to both families. To get the
symbolic sequences of the cycles of families of complexity level two we apply to
the families �1;1 and �2;1 the following symbolic replacements:

�Lm :=

�
L! LRm

R! RLRm
; �Rm :=

�
L! LRLm

R! RLm
: (10)

This method is based on the map replacement technique (see [1], [10]). Namely,
at �rst we substitute in �1;1 each symbol L by LRm and each symbol R by
RLRm (replacement �Lm), and then we substitute in �1;1 each symbol L by
LRLm and each symbol R by RLm (replacement �Rm). Then the index m is set
m = n2 in order to write the two families of complexity level two, respectively,
as follows:

�1;2 = fLR
n2 (RLRn2)

n1g
1

n1;n2=1
; �2;2 = fLRL

n2 (RLn2)
n1g

1

n1;n2=1
: (11)

We notice that the replacement technique is here used to detect the symbolic
representation of the existing cycles. However, the same technique is used also
to get the equations of the BCB curves of cycles of complexity level higher than
one, starting from the equations of those of complexity level one.
Similarly, applying the replacements �Lm and �

R
m to �2;1 we get the symbolic

sequences of two more families:

�3;2 = fRLR
n2 (LRn2)

n1g
1

n1;n2=1
; �4;2 = fRL

n2 (LRLn2)
n1g

1

n1;n2=1
: (12)

Note that the central cycle LRRLR � RLRLR belongs to both families �1;2
and �3;2; with n1 = n2 = 1, while the central cycle LRLRL � RLLRL belongs
to both families �2;2 and �4;2; with n1 = n2 = 1: All the other cycles in these
families are distinct. In short this procedure can be written as �1;2 = �Ln2(�1;1);
�2;2 = �Rn2(�1;1); �3;2 = �Ln2(�2;1) and �4;2 = �Rn2(�2;1). So, we get 4 families
of complexity level two2 . Further, applying the replacements (10) with m = n3
to the families of complexity level two we obtain 23 families �j;3, j = 1; : : : ; 2

3,

2One more way to construct the families of the complexity level two consists in consequtive
application of the concatenation rule to the �neighbour� symbolic sequences of the �rst com-
plexity level. Symbolic sequences obtained in such a way are shift invariant to those obtained
by symbolic replacements (10) (see [1], [10]).
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of complexity level three, and so on. In this way all the symbolic sequences of
cycles associated with the period adding structure are obtained.
Now let us turn to the boundaries of the periodicity regions (i.e. the BCB

curves) related to the cycles of map f associated with the period adding struc-
ture. They can be con�ned by the boundaries related to their existence, crossing
which a cycle disappears, which are related to the BCBs occurring when a point
of the cycle close to a border point, x = dL or x = dR; collides with it in a
saddle-node border collision bifurcation (merging with a companion unstable
cycle). For the boundaries of a periodicity region associated with the stabil-
ity of the cycle, �rst note that an n-cycle whose symbolic sequence � does not
include the symbol M; has multiplier �� = akLa

n�k
R > 0, where k and n � k

are the numbers of symbols L and R, respectively, in �. Thus, a degenerate
�ip bifurcation (DFB for short), related to �� = �1; can not occur for such a
cycle, so that the periodicity regions of the period adding structure cannot have
DFB boundaries. A degenerate +1 bifurcation (DB1 for short) associated with
�� = 1 occurs if akLa

n�k
R = 1: Obviously, this condition de�nes a boundary of

the periodicity region only if the related cycle exists.
To illustrate how the periodicity regions of the period adding structure are

ordered let us consider �rst the limit case dL = dR � d at which the considered
map becomes discontinuous, say ef :

x 7! ef(x) =
(
efL(x) = aLx+ 1� aLd if 0 � x < d;
efR(x) = aRx� aRd if d < x � 1;

(13)

In Figs.4 and 5, when the parameters belong to the straight line dL = dR then
the smooth map f reduces to the discontinuous one, ef .
The dynamics of 1D discontinuous piecewise monotone maps have been stud-

ied by many researchers (see, e.g., [16], [13], [5], [11]). In particular, the piece-
wise linear case has been recently reconsidered (after [17]) in [1] and [10]. In
the cited references, it is described the period adding structure which is char-
acteristic for piecewise increasing maps, when invertible on the absorbing inter-
val. It is easy to check that map ef is invertible on the absorbing interval I if
fL(f(d)) > fR(f(d)); that is, if fL(0) > fR(1); in which case ef is called gap
map. It is noninvertible if fL(0) < fR(1) being also called overlapping map,

while for fL(0) = fR(1) map ef is called circle map. The boundary de�ned by
fL(0) = fR(1); that holds for

� = f(aL; aR; d) : aL > 0; aR > 0; 0 < d < 1; 1� daL = aR(1� d)g ; (14)

is related to the changes of invertibility of ef . In Fig.6 we show the 2D bifurcation
diagram of ef in the (d; aR)-parameter plane for aL = 0:5; and the curve � is there
plotted. Note that the dynamics along the straight line de�ned by aR = 1:1 is
related to the dynamics along the straight line dL = dR in Fig.4a. Below the
curve � one can observe the period adding structure. Above the curve 'R given

in (8) a generic trajectory of ef diverges, while in between 'R and � the existing
attractors of map are chaotic intervals.
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Figure 6: 2D bifurcation diagram of map ef in the (d; aR)-parameter plane for
aL = 0:5:

Figure 7: 1D bifurcation diagram of map ef for aL = 0:5; aR = 1:2; d 2 ('R; 1);
where 'R � 0:167: The related parameter path is indicated in Fig.6 by the
horizontal line with an arrow.
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The period adding structure in map ef is illustrated by the 1D bifurcation
diagram in Fig.7 corresponding to the cross-section along the horizontal line
with an arrow indicated in Fig.6. Note that for 'R < d < �; where 'R � 0:167;
� � 0:286; the attractor is chaotic. It can be also clearly seen that the boundaries
of the periodicity regions, for example of the 2-cycle, are related to the collision
of the points of the cycle with the border point x = d:
In Appendix A we give the analytic equations of the boundaries of the pe-

riodicity regions of the period adding structure for map f , which holds also for
map ef substituting dL = dR = d: The periodicity regions of complexity level
one and two of map f; corresponding to the bifurcation diagram presented in
Fig.5 are shown in Fig.8 by light gray and dark gray regions, respectively. In
that �gure, the boundaries of the gray regions are plotted using the formulas
given in Appendix A. For example, after simpli�cations we get that periodicity
region PRL related to the attracting 2-cycle RL of map f is de�ned as follows:

PRL =

�
p 2 P : 1�

dL
aR

< dR < 1� aLdL

�
; (15)

and the equations dR = 1 �
dL
aR

; dR = 1 � aLdL de�ne the two BCB curves

giving the boundaries of PRL. For �xed dL = 0:4; dR = 0:8; as in Fig.3, the
boundaries of PRL are just segments of the vertical and horizontal straight lines

de�ned by aL =
1� dR
dL

= 0:5 and aR =
dL

1� dR
= 2; respectively.

Figure 8: Periodicity regions of the cycles LRn and RLn; n = 1; :::; 11; of com-
plexity level one are shown in light gray. A few periodicity regions of complexity
level two are shown in dark gray. Here aL = 0:7; aR = 0:8 as in Fig.5.
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3.4 Fin structure

As already mentioned, the �n structure in the parameter space of a 1D bimodal
piecewise linear map consists of periodicity regions which are attached to the
regions of the period adding structure described in the previous section. For
example, one can clearly see in Fig.5 two 2 � 2-periodicity regions and two 2 � 3-
periodicity regions attached on both sides to the period-2 region PRL, as well
as 3 �2-, 3 �3- and 3 �4-periodicity regions attached on both sides to the period-3
regions PRL2 and PLR2 ; and so on. These regions belong to the �n structure
which is formed by the periodicity regions called n � k-�ns, k � 1; related to
attracting cycles having only one point in the interval IM and all the other
points are in IL and IR. The n-periodicity region of the period adding structure
to which a �n is attached is called trunk region, and its �ns have the same
complexity level as the complexity level of the trunk. In fact, in Fig.5 it can be
seen also two 2 � 1-�ns of complexity level one of the trunk regions PRL.
A �n cycle can appear if the parameter point crosses one of two BCB bound-

aries of a trunk, due to which one periodic point enters the partition IM . As
explained in [23], for an n � k-cycle whose periodicity region has the common
boundary with the region PLRn�1 , the symbolic sequences of the cycles in the
�ns are (LRn�1)k�1MRn�1; k = 1; 2; :::; on one side of the region PLRn�1 ; and
(LRn�1)k�1LRn�2M on the other side. Interchanging L and R in these se-
quences we get the symbolic sequences of the cycles related to n � k-�ns whose
trunks are PRLn�1 regions. The number of existing �ns depends on the para-
meters and, in fact, some trunk regions may have �ns on one side only, or have
no �ns at all, as can be seen, for example, in Fig.4b.
As for the boundaries of a �n, it can be shown that each n � k-�n region for

k � 2; n � 2; related to a cycle with symbolic sequence �; has at most four
boundaries, among which one is the common BCB boundary with the related
trunk region, one boundary is related to DFB of the cycle (whose eigenvalue is
�� = amL a

nk�m�1
R =(dL�dR) < 0; where m is the number of symbols L in �) and

two other boundaries are related to two more BCBs of the cycle. Each n � 1-�n
region has only three boundaries, namely, one DFB boundary and two BCB
boundaries. The DFB boundary is de�ned by the condition �� = �1; while
the BCB boundaries are obtained using the skew tent map as border collision
normal form.
In Appendix B, some basic formulas related to the boundaries of a �n region

are given, while below, as an example, we describe the 2 � 1- and 2 � 2-�ns of the
region PRL shown in Fig.9. There are two 2 � 1-�ns, PMR and PLM , contiguous
to the trunk regions PRL. As we mentioned above, the 2 � 1-�ns are exceptional
being con�ned by three boundaries instead of four. In particular, the �n PMR

is con�ned by the BCB and DFB boundaries

BCLR =

�
p 2 P : dR = 1�

dL
aR

�
; (16)

DFMR = fp 2 P : dR = dL + aRg ; (17)
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respectively, and the boundary de�ned by dL = 0: The �n PLM is con�ned by
the BCB and DFB boundaries

BCRL = fp 2 P : dR = 1� aLdLg (18)

DFLM = fp 2 P : dR = dL + aLg ; (19)

respectively, and the boundary dR = 1:

Figure 9: The 2 � 1-�ns PMR and PLM , and 2 � 2-�ns PLRMR and PLRLM ;
contiguous to the trunk regions PLR. Here aL = 0:7; aR = 0:8 as in Fig.5.

Next, let us consider the 2 � 2-�ns, PLRMR and PLRLM ; which are also con-
tiguous to the trunk regions PRL. Applying the formulas given in Appendix
B we get that the boundaries of the �n PLRMR are given by the BCB curves
satisfying the equations given below:

BCLR =

�
p 2 P : dR = 1�

dL
aR

�
; (20)

DFLRMR =
�
p 2 P : dR = dL + a

2
RaL

	
; (21)

BC1LRMR = fp 2 P : dR = dL + aRg ; (22)

BC2LRMR =

�
p 2 P : dL =

d2R � (aR + 1)dR + aR
aRaL + dR

�
: (23)

Note that BC1LRMR = DFMR; that is, the DFB of the cycle LM occurs simul-
taneously with the BCB of the cycle LRMR (see Fig.9). The �n PLRLM is
con�ned by the following boundaries:

BCRL = fp 2 P : dR = 1� aLdLg ; (24)

14



DFLRLM = fp 2 P : dR = dL + aRa
2
Lg; (25)

BC1LRLM = fp 2 P : dR = dL + aLg ; (26)

BC2LRLM =

�
p 2 P : dR =

d2L + aL(dL � aR)� 1

dL � 1� aLaR

�
; (27)

and, as already remarked in the previous case, here also we have BC1LRLM =
DFLM (see Fig.9).

4 Conclusions

In this work we have considered a pioneering model by Day and Shafer [9]
which describes a business cycle by using a bimodal piecewise linear map. Our
investigation shows how rich is the dynamic behaviors of the system, going from
attracting cycles of any period, to robust chaotic intervals, depending on the
parameters values. By using recently developed techniques, we have studied a
typical bifurcation diagram and obtained analytically the border collision bi-
furcation curves that separate di¤erent periodicity regions, and degenerate �ip
bifurcation curves. The transition to chaos was also studied.
Complex dynamics are usually the consequence of the introduction of some

nonlinearity in a system. Moreover, specially in economics, it is quite natural
to have a nonlinearity coming simply by some constraint. That is, an economic
model is often characterized by di¤erent functional de�nitions depending of
some threshold reached by the dynamic variables (income, prices, etc.). In
this way, the models are described by piecewise smooth systems (in place of
smooth ones), whose theoretical results are still under study among scholars in
Dynamical Systems. Thus, results similar to those of our model can be obtained
in the study of other continuous piecewise linear systems.
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Appendix A

Consider a generic family of 1D continuous piecewise linear bimodal maps
g : R! R de�ned as

g : x 7! g(x) =

8
<
:

gL(x) = aLx+ �L if x < dL;
gM (x) = aMx+ �M if dL � x � dR;
gR(x) = aRx+ �R if x > dR;

(28)

where aL > 0; aR > 0; aM < 0; dL < dR:
To describe the period adding structure observed in the parameter space of

map g consider �rst the basic cycles LRn1 and RLn1 belonging to the families
�1;1 and �2;1 of complexity level one de�ned in (9). As stated in [23], the
periodicity regions PLRn1 and PRLn1 of map g are de�ned as

PLRn1 = fp : 	1;1(aL; aR; �R; dR; n1) < �L < �1;1(aL; aR; �R; dL; n1)g ; (29)

PRLn1 = fp : 	1;1(aL; aR; �L; dL; n1) > �R > �1;1(aL; aR; �L; dR; n1)g ; (30)

where

�1;1(aL; aR; �; d; n1) = � (aR; n1)�+ '(aR; aL; n1)d;

	1;1(aL; aR; �; d; n1) = � (aL +  (aR; n1 � 1))�+ aR'(aR; aL; n1)d;

with

'(a; b; n) =
1� anb

an
;  (a; n) =

1� an

(1� a)an
:

These formulas are valid for the map f given in (2) substituting

�L = 1� aLdL; �R = �aRdR:

The periodicity regions related to cycles belonging to the families �1;2 and
�2;2 of complexity level two given in (11) have the form

P�L
n2
(LRn1 ) = fp : 	1;2(aL; aR; �R; dR; n1; n2) < �L < �1;2(aL; aR; �R; dL; n1; n2)g ;

(31)
P�R

n2
(LRn1 ) = fp : 	2;2(aL; aR; �R; dR; n1; n2) < �L < �2;2(aL; aR; �R; dL; n1; n2)g ;

(32)
respectively, where �Ln2 and �

R
n2
are de�ned in (10), and �1;2; 	1;2; �2;2 and

	2;2 are de�ned as

�1;2(aL; aR; �; d; n1; n2) = � (aR; n2)��

�
aLa

n2
R  (aLa

n2+1
R ; n1)�� '(aLa

n2+1
R ; aLa

n2
R ; n1)d

an2R (1 +  (aLa
n2+1
R ; n1))

;

	1;2(aL; aR; �; d; n1; n2) = �
aLa

n2
R

�
aLa

n2
R +  (aLa

n2+1
R ; n1 � 1)

�
�

an2R (1 + aLa
n2
R +  (aLa

n2+1
R ; n1)� 1)

�
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� (aR; n2)�+
aLa

n2+1
R '(aLa

n2+1
R ; aLa

n2
R ; n1)d

an2R (1 + aLa
n2
R +  (aLa

n2+1
R ; n1)� 1)

;

�2;2(aL; aR; �; d; n1; n2) =
'(an2L aR; a

n2+1
L aR; n1)d� a

n2
L (1 +  (an2L aR; n1))�

an2L (aR +  (aL; n2)(1 +  (a
n2
L aR; n1)))

;

	2;2(aL; aR; �; d; n1; n2) =

=
aR'(a

n2
L aR; a

n2+1
L aR; n1)d�

�
1 + an2+1L aR +  (a

n2
L aR; n1 � 1)

�
�

aR +  (aL; n2)(1 + a
n2+1
L aR +  (a

n2
L aR; n1 � 1))

:

To get the periodicity regions of the cycles belonging to the families �3;2
and �4;2 (12) one has to interchange the indices L and R, as well as to change
the inequality signs to the opposite ones in (32) and (31), respectively.
The periodicity regions of a complexity level k are obtained from the peri-

odicity regions of the level k � 1 by a recursive algorithm described in detail in
[23].

Appendix B

Let us recall the analytic representation of the boundaries of n � k-�ns of
map g given in (28), which have the common boundary with the trunk region
PLRn�1 : Consider �rst the �ns P� contiguous to PLRn�1 ; corresponding to the
attracting cycles � = (LRn�1)k�1MRn�1; n � 2; k � 2. It is proved in [23]
that any �n P�; if it exists

3 , is con�ned by the boundaries de�ned as follows:

BCLRn�1 =

�
p 2 P : �L = �

1� an�1R

(1� aR)a
n�1
R

�R +
1� an�1R aL

an�1R

dL

�
;

DF� = fp 2 P : aMa
k(n�1)
R ak�1L = �1g;

BC1� =

�
p 2 P : aMa

n�1
R =

aLa
n�1
R ((aLa

n�1
R )�k+1 � 1)

aLa
n�1
R � 1

�

BC2� =

�
p 2 P : an�1R aM

(an�1R aL)
k�1 � 1

an�1R aL � 1

��
an�2R aL +

an�2R � 1

aR � 1

�
�R + a

n�2
R �L

�
+

a
(n�1)k
R aMa

(k�1)
L dR +

�
an�2R aM +

an�2R � 1

aR � 1

�
�R + a

n�2
R �M = dR

�
;

where the BCB boundaryBCLRn�1 which corresponds to �L = �1;1(aL; aR; �R; dL; n�
1) given in (29), is common with the trunk region PLRn�1 : The boundary DF�
corresponds to the degenerate �ip bifurcation, and BC1� and BC

2
� are related

to two more BCBs of �.
The n � k-�n P� attached to the trunk region PLRn�1 on the other side

and related to the cycle � = (LRn�1)k�1LRn�2M; k � 2; is con�ned by the
boundaries de�ned as follows:

3As a �n region may be an empty set.
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BCRLRn�2 =

�
p 2 P : �L = �

�
aL +

1� an�2R

(1� aR)a
n�2
R

�
�R + aR

1� an�1R aL

an�1R

dR

�

DF� = fp 2 P : aMa
k(n�1)�1
R akL = �1g;

BC1� =

�
p 2 P : aLaMa

n�2
R =

aLa
n�1
R ((aLa

n�1
R )�k+1 � 1)

aLa
n�1
R � 1

�

BC2� =

�
p 2 P : an�2R aMaL

(an�1R aL)
k�1 � 1

an�1R aL � 1

�
an�1R � 1

aR � 1
�R + a

n�1
R �L

�
+

a
(n�1)k�1
R aMa

k
LdL +

an�2R � 1

aR � 1
�R + aMa

n�2
R �L + �M = dL

�
:

Here the boundary BCRLRn�2 corresponds to �L = 	1;1(aL; aR; �R; dR; n� 1)
given in (29).
The boundaries of the �ns contiguous to the trunk regions PRLn�1 are ob-

tained interchanging the indexes L and R in the above expressions. The �n
regions of the higher complexity levels are obtained using the map replacement
technique (see [23] for details).
Applying these results to map f given in (2), we get that the �n region P�,

associated with the cycles � = (LRn�1)k�1MRn�1; n � 2; k > 1; is con�ned
by the following boundaries:

BCLRn�1 =

�
p 2 P : dL = an�1R �

(1� an�1R )dRaR
(1� aR)

�

DF� =
n
p 2 P : dL = dR � a

k(n�1)
R ak�1L

o
;

BC1� =

�
p 2 P : dL = dR +

aLa
n�1
R � 1

aL((aLa
n�1
R )1�k � 1)

�
;

BC2� =

�
p 2 P : dR = �a

n�1
R

(an�1R aL)
k�1 � 1

(an�1R aL � 1)(dR � dL)
�

�

�
�

�
an�2R aL +

an�2R � 1

aR � 1

�
aRdR + a

n�2
R (1� aLdL)

�
�

�
a
(n�1)k
R a

(k�1)
L dR

dR � dL
�

�
�

an�2R

dR � dL
+
an�2R � 1

aR � 1

�
aRdR +

an�2R dR
dR � dL

)
:

Accordingly, the n � k-�n P� related to the cycle � = (LRn�1)k�1LRn�2M;
k � 2; is con�ned by the boundaries de�ned as
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BCRLRn�2 =

�
p 2 P : 1� aLdL =

�
aL +

1� an�2R

(1� aR)a
n�2
R

�
aRdR+

+aR
1� an�1R aL

an�1R

dR

�
;

DF� = fp 2 P : dL = dR � a
k(n�1)�1
R akLg;

BC1� =

�
p 2 P : dL = dR +

aLa
n�1
R � 1

aR((aLa
n�1
R )�k+1 � 1)

�

BC2� =

�
p 2 P : dL = �a

n�2
R aL

(an�1R aL)
k�1 � 1

(an�1R aL � 1)(dR � dL)
�

�

�
�
an�1R � 1

aR � 1
aRdR + a

n�1
R (1� aLdL)

�
�
a
k(n�1)�1
R akLdL
dR � dL

�
an�2R � 1

aR � 1
aRdR �

an�2R (1� aLdL)

dR � dL
+

dR
dR � dL

�
:
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