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Abstract.

We show that cyclic and chaotic dynamics may emerge in a Kaldor-Pasinetti growth model with di¤erent
saving propensities, Leontief technology and logistic labor force growth rate.

1 Introduction

Neoclassical one-sector models of economic growth such as the one introduced by Ramsey (1928) or the
so-called Solow-Swan model (Solow, 1956, Swan, 1956) predict that capital and output per capita converge
to a steady state through a growth path. In order to obtain cycles or even chaotic dynamics we need to
relax some assumptions or to introduce some additional characteristics into the models. To our knowledge,
Richard Day has been the �rst researcher to look for such conditions. In a couple of papers dating back to the
80s (Day, 1982, 1983) a discrete-time version of the Solow model with a production lag has been considered.
Day obtains a �rst-order di¤erence equation, i.e. a one-dimensional map, describing the dynamics of the
capital-labor ratio. By introducing, for instance, a productivity inhibiting e¤ect or a variable savings ratio,
he gets a one-dimensional map de�ned by a function that is concave and single humped, leading to possible
irregular growth cycles.
In the so-called Kaldor-Pasinetti model (Kaldor, 1956, 1957, Pasinetti, 1962) two income groups are

introduced, endowed with di¤erent saving propensities. Now, the aggregate saving propensity may vary
according to the income distribution between the two groups, and this may have the same e¤ects caused
by the saving functions used by Day. Böhm and Kaas (2000) and Tramontana et al. (2011) move from a
one-sector growth model in the spirit of Kaldor and Pasinetti (i.e. with two di¤erent but constant saving
propensities) and show that by using some kind of production function such as the Leontief one, endogenous
cycles may arise. In these cases, the one-dimensional map governing the dynamics of the capital-labor ratio
is de�ned by a piecewise-linear function, so the source of endogenous �uctuations is not a nonlinearity in
the function as in the case of Day, but the introduction of a discontinuity due to the assumption of Leontief
technology.
In this branch of the economic growth literature, it is usually assumed that the labor force growth rate

is constant, following the Malthusian growth model.
This assumption implies an unbounded size of the labor force, without any saturation level. In order to

remove this too simplistic assumption it is possible to adopt a logistic growth of the labor force (Verhulst,
1938). Recently, some researchers (see Brida and Accinelli, 2007, Guerrini 2006, 2010a,b,c,d) have analyzed
the consequences of a logistic growth rate of labor force in a Ramsey model and a Solow-Swan model, focusing
on transitional dynamics.
In this paper we analyze the e¤ects of a logistic growth rate of labor force in a Kaldor-Pasinetti model in

the Böhm and Kaas (2000) version. In particular, we show the joint e¤ect of the discontinuity (consequence
of the Leontief technology) and the nonlinearity (due to the logistic equation) in the arising of complicated
capital dynamics.

1Corresponding Author: University of Pavia, Department of Economics and Management, Via S.Felice 5, 27100 Pavia (PV),
Italy. email: fabio.tramontana@unipv.it

1



2 Setup of the model

We consider a standard neoclassical one-sector growth model with workers and shareholders in the spirit of
Kaldor (1956, 1957) and Pasinetti (1962). These groups of agents are characterized by di¤erent but constant
saving propensities, sw and sr respectively, with 0 � sw < sr � 1.
As usual, the wage rate w is determined as follows:

w(k) = f(k)� kf 0(k)

where k denotes capital per worker and f : R+ ! R+ is a production function.
The marginal product of capital f 0(k) is received by shareholders, implying that total capital income per

worker is kf 0(k).
The dynamics equation describing the accumulation of capital is the following:

kt+1 = G(kt) :=
1

1 + nt
[(1� �) kt + sww(kt) + srktf

0(kt)] (1)

where 0 < � � 1 is the capital depreciation rate and nt is the labor force growth rate at time t. By considering
sr = sw and nt = n (i.e. constant) we obtain the standard Solow (1956) growth model.
Following Böhm and Kaas (2000) we use the so-called Leontief production function de�ned as follows:

f(k) = min(ak; b) + c; a; b; c > 0 (2)

originating the discontinuous map:

k0 = G(k) :=

8

<

:

GL(k) =
1

1+n
[(1� � + sra) k + swc] if k � b

a

GH(k) =
1

1+n
[(1� �) k + sw(b+ c)] if k > b

a

(3)

where "0" is the unit-time advancement operator.
The dynamics of map (3) with constant labor force growth rate has been studied by Böhm and Kaas

(2000) and Tramontana et al. (2011). They prove how easily growth cycles may endogenously arise in this
setting.
We think that the exponential growth of the labor force is a limit of this growth model and consider more

realistic the assumption of a logistic equation regulating the labor force growth rate. With this assumption
we obtain the following two-dimensional discontinuous map having a so-called triangular structure2 :

n0 = �n(1� n)

k0 =

8

<

:

GL(k) =
1

1+n
[(1� � + sra) k + swc] if k � b

a

GH(k) =
1

1+n
[(1� �) k + sw(b+ c)] if k > b

a

(4)

with 1 < � < 4.

3 Convergence to a steady state

Let us here consider the region of the parameters� space that leads to convergence to a steady state. It can
be easily found that the map (4) admits at most two steady states, that we denote L and H3 . The steady
states are de�ned as follows:

L : (n; k) = (n�; k�
L
)

H : (n; k) = (n�; k�
H
)

(5)

2A trangular map has the following structure: (x0; y0) = (f(x); g(x; y)).
3We exclude from the analysis the steady states associated with n = 0 because they are not interesting. Moreover they are

locally unstable under our parameter restrictions.
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where

k�
L
=

swc

n� + � � sra
; k�

H
=
sw(b+ c)

n� + �
; n� = 1�

1

�
(6)

Obviously the steady states really exist only if they belong to their de�nition regions. We can state the
following:

Proposition 1 The map (4) admits two steady states provided that C1 and C2 are both satis�ed, where:

C1 : sw �
b(n� + � � sra)

ac
; n� + � � sra > 0

C2 : sw >
b(n� + �)

a(b+ c)

If only C1 or C2 is ful�lled then only one steady state exists. If both conditions are violated then the map
has no steady.

Proof. The conditions follow directly by imposing that the steady states belong to their de�nition regions.
In fact, k�

L
� b

a
i¤ C1 is ful�lled, while k�

H
> b

a
i¤ C2 holds.

For the local stability of the steady states we have the following result:

Proposition 2 If L and H exist, they are also locally stable provided that condition C3 holds, where:

C3 : 1 < � < 3

Proof. The eigenvalues of map (4) evaluated at the steady states are (�n; �kL) for L and (�n; �kH) for H,
where:

�n = 2� �; �kL =
1��+sra
1+n�

; �kH =
1��
1+n�

If C1 holds then 0 < �kL < 1, while if C2 holds it is 0 < �kR < 1. In order to have j�nj < 1 we need
1 < � < 3, that is condition C3.

Summarizing, if at least one between C1 and C2 holds and the labor force growth rate converges to a
steady state (i.e. C3 is ful�lled) then the capital per worker will converge either to k�

L
or to k�

H
.

4 Growth cycles and chaotic growth

The main aim of this paper is to show what happens when the conditions for the convergence to a steady
stare are not ful�lled.
We distinguish among three di¤erent scenarios, according to the cause originating them:

1. Logistic cycles and chaos

2. Discontinuity induced growth cycles

3. Mixed cases

By explaining these scenarios we make use of a two-dimensional bifurcation diagram shown in Fig.1, and
it is also possible to interpret some of the bifurcations leading to the structure there observed.
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Figure 1: Two-dimensional bifurcation diagram with � on the horizontal axis and sw on the vertical one. The light

blue color denotes the regions where conditions C1, C2 and C3 hold simultaneously. Outside this region growth

cycles or chaotic growth occur. Parameters: sr = 0:6, a = 1:5, b = c = 2:9 and � = 0:45.

4.1 Logistic cycles and chaos

Let us consider a combination of parameters such that conditions C1 and C2 hold. In this case by increasing
the parameter � of the logistic equation regulating the growth rate of the labor force, we can see the typical
period-doubling route to chaos (Fig. 2a). We must take into account that our map (4) is triangular, and
period cycles or chaos in the labor force growth rate, are transmitted to the capital per worker. So, we have
growth cycles or a chaotic growth due to the instability in the labor force growth rate.

Figure 2: (a) period-doubling route to chaos caused by an increasing of the logistic parameter � along the arrow A

in Fig. 1. (b) period-adding structure characterizing growth cycles caused by the discontinuity of the map, obtained

by varying sw along the arrow B in Fig. 1. Parameters: sr = 0:6, a = 1:5, b = c = 2:9, � = 0:45 with sw = 0:5 in
(a) and � = 2:7 in (b).
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4.2 Discontinuity induced growth cycles

Growth cycles are possible also when the labor force growth rate is low enough to ensure a convergence to a
positive value of n. This is the case studied by Böhm and Kaas (2000) and Tramontana et al. (2011). They
show that when both conditions C1 and C2 are violated growth cycles of any period may arise, organized
according to the so-called period adding structure and caused by border collision bifurcations (see Gardini
et al. 2010, Avrutin et al. 2010). In Fig. 2b we have an example of how cycles with di¤erent periods are
organized by varying the value of the saving propensity of workers.
One of the main characteristics of this structure is that coexistence of stable attractors (multistability)

is not possible.

4.3 Mixed cases

The most interesting scenario is the one in which conditions C1, C2 and C3 are all violated. This case is
not only characterized by the complicated dynamics shown in the previous cases, but also may multistability
may occur. In Fig. 3 we show an example with parameters in this region, and in the phase space there is
coexistence of two attracting cycles of period 16. So the outcome if the dynamics becomes path dependent
and some exogenous shocks hitting the capital per worker can easily lead to a change in the attractor of the
dynamical system.

Figure 3: coexisting cycles in the phase plane. One cycle is denoted by red points, the other by red circles with

white interiors. Below the corresponding timeplots. Parameters: sr = 0:6, a = 1:5, b = c = 2:9, � = 0:45,
sw = 0:15 and � = 3:568.

Moreover, the routes to chaos are now modi�ed with respect to the previous cases as testi�ed by the
bifurcation diagrams in Fig. 4, where the typical period-doubling cascade governing the dynamics of the
labor force growth rate is compared to the route to chaos involving the capital per worker.
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Figure 4: The period-doubling route to chaos characterizing n is compared with the bifurcations occurring to the

capital per worker k. Parameters: sr = 0:6, a = 1:5, b = c = 2:9, � = 0:45 and sw = 0:37.

Finally, Fig. 5 shows a typical chaotic attractor occurring in this region, together with the corresponding
chaotic time evolution of k.

Figure 5: Chaotic attractor in the phase plane and corresponding dynamics of k. Parameters: sr = 0:6, a = 1:5,
b = c = 2:9, � = 0:45, sw = 0:15 and � = 3:88.

5 Conclusions

We have considered a Kaldor-Pasinetti one-sector growth model with Leontief technology and logistic labor
force growth rate. We have shown that these assumptions imply that the dynamics of the capital per worker
is governed by a triangular, nonlinear and discontinuous two-dimensional dynamical system. Besides the
typical convergence to a steady state, we have shown that complicated endogenous dynamics such as growth
cycles and even chaotic dynamics characterize a large portion of the parameters� space. We have found
new dynamic scenarios, not present in models where these assumptions are considered one at a time. The
detailed investigation of the bifurcation mechanisms occurring in this model deserve of further studies.
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