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Abstract

The increase of oil and natural gas prices since the year 2000 stimulated the plan-
ning and construction of new coal-fired electricity generating plants and coal-to-liquids
plants in the US. However, a large number of these projects have been canceled or
abandoned since 2007. Using a set of 145 proposed coal power plants and 25 coal-
to-liquids plants, we examine the main determinants that influence the decision to
abandon a project or to proceed with it. In case of coal power plants, the number of
searches performed on Google relating to coal power plants and the prices of alterna-
tive fuels for electricity generation are the main factors. As for coal-to-liquids plants,
the political affiliation of the state governor is the most important factor across several
model specifications. An out-of-sample exercise confirms these findings. These results
hold also with robustness checks considering alternative Google search keywords and
the potential effects of the recession in the years 2008-2009.

JEL CLassification: C25, C52, C53, L94, Q40, Q41

Keywords: Coal, Coal plants, Coal-to-Liquids, Logit, Probit, Training, Validation,
Forecasting, Model Confidence Set, Google, Google Trends, Second Great Contraction,
Global Financial Crisis

1 Introduction

The first decade of the 21st century witnessed a strong increase in oil prices due mainly to
the growing demand by China and India, as well as to a growing difficulty to increase oil
production worldwide, with the notable exception of North America (see Fantazzini et al.
(2011), for a recent review). Similarly, US natural gas prices showed a growing trend,
reaching the level of 13 $/MMBtu in June 2008. As a consequence, the increasing power
demand in the US at that time sparked a renewed interest in using coal for power gen-
eration, stimulating the planning and/or construction of almost 150 coal-fired electricity
generating plants by 2007 (of Energy (2007)). Moreover, coal-to-liquids plants became an
interesting alternative for producing oil liquids (see Höök et al. (2014) for a recent review
of hydrocarbon liquefaction as a peak oil mitigation strategy). However, since 2007-2008
the energy landscape has changed substantially: the advent of shale gas has reduced con-
siderably the price of natural gas in the US, reaching a minimum of 1.9 $/MMBtu in April
2012. Besides, the costs of renewables have fallen, while the growth in electricity demand
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has slowed due to the economic crisis; the construction costs for coal plants have increased
considerably, as well as coal prices (see Freese et al. (2011) and Fleischman et al. (2013)
for recent reviews). Moreover, the US Environmental Protection Agency (EPA) has began
regulating greenhouse gases (GHGs) from mobile and stationary sources of air pollution
under the Clean Air Act since 2011. Furthermore, there has been an increasing awareness
about the health risks posed by pollutants from power plants as synthesized by recently
available Google data (more below). As a result, more than 100 coal plants projects
were either cancelled or abandoned (see e.g. the Sierra Club database Club (2014) and
the Coal-Swarm database for Media and Democracy (2014)), and the Energy Information
Administration (EIA) expects that very few new coal plants will be built through 2040
(EIA – Annual Energy Outlook 2014 EIA (2014b)).
Even though coal is still the main source for US electricity power production, the average
age of the plants is rather high. In 2011, the capacity weighted average age of coal-fired
plants was 36 years, whereas it was only 18 for natural gas-fired plants (and 35 for oil-
fired plants1), see Table 1. Refitting these coal plants to comply with the recent stricter
emission standards is very expensive, so that many of them will face retirement in the
upcoming years (Fleischman et al. (2013)).

Fuel type Coal Natural Gas Petroleum

average size (MW) 245.54 85.65 15.39
average age (years) 36.34 17.88 35.16
25% built before 1967 1981 1970
50% built before 1974 2001 1972
75% built before 1981 2003 1978

CO2/capacity (Million Metric Tons/MWh) 0.9931 0.3972 0.8689

Table 1: Capacity weighted distribution of electricity power production plant by different
fuel. 2011 data from http://www.eia.gov.

Given this background, we analyze the main determinants that influenced the decision to
abandon or to proceed with a coal project using a unique dataset of 145 coal-power plants
projects and 25 coal-to-liquids plants projects, observed between 2004 and 2013.
There are several reasons why investors, industry professionals and scholars may find this
issue relevant. First, the amount of money and time required for planning a plant (not
to mention building one) is substantial. Prior knowledge of the main factors influencing
the viability of a plant project is fundamental for successful strategy and policy making.
To our knowledge, this is the first study that analyzes these factors after the advent of
US shale gas and the global economic crisis in 2008-2009. Moreover, this is the first study
that deals with coal-to-liquids plants. We remark that even though we focus on coal
plants, our findings are not limited to them: Ansolabehere and Konisky (2009) examined
the 2008 MIT Energy Survey to measure public support for and opposition to the local
siting of power plants and they found that “attitudes about plant siting depend heavily
on perceptions of the environmental harm and costs of specific facilities; the effects of
these attributes are similar across different types of fuel sources, suggesting that there is a
common underlying structure to an individual’s attitude.”
Second, a vast body of the literature has found that the public attitude toward the location
of environmentally hazardous facilities is a major determinant of siting costs, which can in-
crease quickly when the local community agreement is missing (see Ansolabehere and Konisky
(2009) and Garrone and A. (2012) for extensive reviews). Measuring these attitude is not
easy, can be costly and standard energy surveys may be already “old” when they are fi-

1The old age of oil-fired plants is also due to the fact that in US oil has a small and decreasing weight
in electricity production.
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nally compiled and delivered. To solve this problem, we propose the use of Google search
data to measure public attitudes towards coal plants and environmental issues in general.
In this regard, Google has offered since 2004 a tool called Google Trends that provides
information of users’ relative interest for a particular search query at a given geographic
region and at given time (the data are available on a weekly or even a daily basis). In
recent years, researchers worldwide have started to use online search data to forecast data
in real time when data from official releases are published with a time lag (i.e. nowcasting),
or simply as an additional variable for forecasting purposes (see Choi and Varian (2009),
Askitas and Zimmermann (2009), Suhoy (2009), Ginsberg et al. (2009), Da et al. (2011),
D’Amuri and Marcucci (2013) and Fantazzini and Fomichev (2014) for some recent appli-
cations).
Third, even though cheap shale gas and falling prices for renewables have started to reduce
the coal share of US electricity generation, the most recent data seem to show that there is a
future for coal: since the minimum in 2012, the price of natural gas has more than doubled
due to a production slowdown that has entered a plateau (EIA Natural Gas Monthly -
May 2014 EIA (2014d)). As a consequence, coal-fired electric generation increased from
3405 GWhD in March 2012 to 4227 GWhD in March 2013 and to 4419 GWhD in March
2014, while gas-fired electric generation decreased from 2984 GWhD in March 2012 to 2733
GWhD in March 2013, and to 2500 GWhD in March 2014 (EIA Electric Power Monthly
- May 2014 EIA (2014c)), notwithstanding the 18 GW of coal units that were retired
between 2011 and 2013 (Fleischman et al. (2013)). This recent loss in natural gas market
share in favor of coal was due to the natural gas prices spiking during the winter time and
the general upward trend in prices since 2012. If natural gas price continues to increase,
it is likely that there will be a renewed interest in coal, given the US abundant resources.
Moreover, carbon capture and storage technologies and plants using integrated gasification
combined cycle (IGCC) are being developed in response to the stricter regulations by the
EPA (see the Clean Coal Research – US Department of Energy (2014) EIA (2014a) for
more details). Therefore, getting rid of coal-fired power plants altogether may be definitely
premature.
Finally, we perform an out-of-sample forecasting comparison with a set of competing mod-
els, together with several robustness checks to verify that our results hold also with different
settings. While this approach is rather standard in the medical, economic and financial
literature (see e.g. Diebold (2006), Carney et al. (2010), Danielsson (2011), Hansen et al.
(2011)), this is not common with studies dealing with power plants, with the notable excep-
tion of Young et al. (2011) who examined the factors influencing the location of bioenergy
and biofuel plants and performed an out-of-sample analysis with alternative competing
models.
The paper is organized as follows. Section 2 describes the data and methods used in
our work while the empirical analysis is performed in Section 3. Robustness checks are
discussed in Section 4, while Section 5 includes a brief conclusion.

2 Data and Methods

2.1 Data

The National Energy Technology Laboratory (NETL), a division of the Department of
Energy, maintained a database of all new projects of coal-fired electricity generating plants,
but ceased providing project-specific information as of May 2007. Since then, the Coal
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Issues Portal on SourceWatch (a project of CoalSwarm and the Center for Media and
Democracy) has maintained a dataset of the proposed coal plants in the United States
and their latest status. We separated the variable “status” into two groups: one collecting
all plants that are active/upcoming/operating and another group with all plants that were
cancelled/abandoned or have an uncertain status2.
Even though the Coal Issues portal contained some information about the coal projects,
like the US state location and in some cases also the total capacity (in MW for power plants
and bbl/day for coal-to-liquids), this information was not sufficient and was augmented
by an extensive online search for each coal project. Unfortunately, this search was not
successful for several plants, for which budget costs, capacity, carbon dioxide (CO2) emis-
sions, project beginning year and project duration were not available. Therefore, the initial
dataset was filtered and the final dataset consisted of 145 coal-power plant projects and 25
coal-to-liquids plant projects, observed between 2004 and 2013, whose names are reported
in Tables 18-19 in Appendix. The dataset of coal-power plants projects consists of 97
plants that were cancelled/abandoned and 48 plants that are active/operating/upcoming,
for a total of 574 yearly data samples. The dataset of coal-to-liquids projects consists of 17
plants that were cancelled/abandoned and 8 plants that are active/upcoming, for a total
of 94 yearly data samples. We discarded the (few) projects that were either operative or
cancelled before 2004, since those early projects in the NETL database had very differ-
ent economics from subsequent projects (see Höök and Aleklett (2014), Fantazzini et al.
(2011) and Höök et al. (2014)).
The past literature has identified four main groups of variables that can influence the plant
location choice. First, R. (1960) suggested that site-specific environmental externalities
should be the main determinants of location choices. In this regard, a profit-maximizing
firm will try to find an agreement with the community that suffers the least damage,
other things being equal. However, Hamilton (1993), Hamilton (1995) and Jenkins et al.
(2004) questioned this hypothesis and advanced the idea that physical and demographic
characteristics of local community can influence externalities costs: communities that
show a stronger opposition are less likely to host a plant, or any environmentally haz-
ardous facility. Therefore, any model trying to explain the location of a (coal) plant
should consider a group of “voice” indicators. A third group of variables should include
traditional industrial location factors like infrastructure, construction and labor costs,
see Anderton et al. (1994), Been and Gupta (1997), Arora and Cason (1998), Wolverton
(2009), Garrone and A. (2012). More recently, given the falling prices of renewables
and natural gas, several authors have started comparing the economics of these alter-
native sources of electricity generation with the economics of coal plants to determine the
best choice and location, see Freese et al. (2011), Cleetus et al. (2012), Tierney (2012),
Fleischman et al. (2013) and Pratson et al. (2013). Given this background, Table 2 illus-
trates the regressors that we used to explain the status of a coal plant project.
We used the state population in millions and the CO2 output in tons to measure the exter-
nalities costs a state can suffer given that the larger the population and the CO2 amount
the larger the perception of the expected environmental damage and the smaller the proba-
bility a site will be located there (see Hamilton (1993), Boer et al. (1997), Garrone and A.
(2012))3.

2An online search allowed us to find that all plants with an uncertain status were either cancelled or
abandoned. They had no related news for years.

3We tried the population density in place of the population data, as done by Garrone and A. (2012),
but this resulted in worse in-sample results, models’ residuals and out-of-sample results. Therefore, we
used the population data instead.
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Variables Description Sources

Externalities costs
CO2(TONS) Carbon Dioxide output in tons Carbon Monitoring for Action (CARMA) database
POPULATION Population by US state in millions U.S. Department of Commerce: Census Bureau

Awareness and ability to pay for environmental quality
INCOME Median Household Income by US state U.S. Department of Commerce: Census Bureau
LFP Labor Force Participation by US state U.S. Department of Labor: Bureau of Labor Statistics
UR Unemployment Rate by US state U.S. Department of Labor: Bureau of Labor Statistics
GI(JOBS) Google index for the keyword “jobs” Google Trends

Awareness and voice factors
GI (COAL) Google index for the keyword “coal” Google Trends
GI(COAL POWER
+COAL PLANT)

Google index for the keywords “coal power+coal plant” Google Trends

GI(COAL-TO-
LIQUIDS + CTL
COAL)

Google index for the keywords “coal-to-liquids+ctl coal” Google Trends

GI(POLLUTION) Google index for the keyword “pollution” Google Trends
GOVERNOR Binary variable that is 1 if Republican and 0 otherwise www.rulers.org

Traditional industrial location factors
COST Plant cost estimate (billion $) CMD / Google search
COAL PRICE US Central Appalachian coal spot price ($/ton) BP Statistical Review of World Energy 2013 / US EIA
RAIL Rail miles by US state Association of American Railroads
CAPACITY(MW) Plant capacity expressed in MW for coal power NETL-US DOE / CMD / Google search
CAPACITY(BBL/DAY) Plant capacity expressed in bbl/day for CTL plants
ELECTRICITY Average electricity price by US state($/Kwh) US Energy Information Administration (EIA)

Economics of alternative energy sources
WIND PRICE Average levelized long-term wind US Department of Energy / Energy Analysis and

power purchase agreement prices ($/Mwh) Environmental Impacts Department -
Lawrence Berkeley National Laboratory

SOLAR PRICE Installed price of residential and commercial US Department of Energy (DOE) /
solar photo-voltaics ($/W) Lawrence Berkeley National Laboratory

NG PRICE US Henry Hub natural gas price ($/MmBtu) BP Statistical Review of World Energy 2013 / US EIA
Additional indicators

DURATION The number of years that has passed at time t The National Energy Technology Laboratory (NETL)
since the project started The Center for Media and Democracy (CMD)

Google search

Table 2: Regressors: description and source

Four indicators were used to represent the awareness of local residents and their ability to
pay for environmental quality: the median household income, the labor force participation,
the unemployment rate and the Google Index (GI) for the keyword “jobs.” The GI is
computed as the ratio of the search queries for a specific keyword (or group of keywords)
relative to the total number of searches performed in the selected region at a given point
of time and then standardized between 0 and 100 (where the standardization is done over
the whole time period and all the considered searches). The data were collected for each
US state for the period January 2004 through December 2013. The Google data have a
weekly frequency and they were converted to a yearly frequency by taking average values
to match coal plant data. D’Amuri and Marcucci (2013) found this GI to be the best
predictor for the US unemployment rate.
To measure awareness and the ability to organize protests against coal plant projects as
well as to ask for compensation (the so-called “voice” factors), we used the GI for the
keyword “coal,” the GI for the keywords “coal plant+coal power,” the GI for the key-
words “coal-to-liquids+ctl coal” and the GI for the keyword “pollution.” In this regard,
the analysis of Google data showed that several searches for the previous keywords in-
cluded and/or were related also to “legal action,” “protest,” “stop,” etc., which clearly
highlights that separating awareness from voice factors may not be immediate4. Follow-
ing Ansolabehere and Konisky (2009), we also used the political affiliation of the state
governor as an important voice factor.
Five indicators were used to consider traditional industrial location factors: the plant cost
estimate, the plant capacity, the coal price, the available rail miles (which is important
for coal transportation) and the average electricity price. We remark that the latter can
also be interpreted as a measure of (past) profitability. Moreover, the plant cost estimates

4Alternative keywords for Google search with smaller search volumes will be analyzed in Section 4
dealing with robustness checks.
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were updated each year using the Chemical Engineering Plant Cost Index (CEPCI), which
is a dimensionless number used to update the capital cost required to build a chemical
plant from a past date to a later time. This index is widely accepted and consists of sub-
components dealing with equipment, labour costs, buildings, engineering, supervision and
other parameters affecting costs. Kreutz et al. (2008) provide a comparison of the CEPCI
with the Marshall and Swift index, the US GDP deflator and the Handy-Whitman Total
Plant-All Steam Generation Index, while Höök et al. (2014) used this index to compute
the economics of coal-to-liquids and gas-to-liquids plants.
The competition with alternative energy sources was measured by using the average lev-
elized long-term wind price, the average price of residential and commercial solar photo-
voltaics, and the Henry Hub natural gas price.
Finally, we considered also an indicator to measure how many years have passed since
the coal plant project started: we noted that the more time the project spends in its
planning phase the less probable will be its full development. Given our dataset, we
found two reasons for this phenomenon: strong cost escalations and a prolonged legal
battle between the local communities and the plant developers. Often, these two reasons
were interconnected: the legal battle delayed the coal project to such an extent that
the new price environment was no longer profitable due to cost escalations and falling
prices of energy alternatives (see the Coal Issues Portal and the history of each coal
plant reported there). Moreover, this phenomenon also confirms again that separating the
different indicators in clear-cut categories is not always possible.
All data had yearly frequency or were converted to a yearly frequency to match the coal
plants data, the only exception being the plant capacities that were held constant for
the period of observation. Moreover, all data were transformed into logs, except for the
duration indicator and the binary variable governor. However, in the subsequent section,
devoted to the out-of-sample forecasting analysis, we considered a wide set of models,
including models with data in levels, that is without any transformation.
The first analysis that we performed after collecting the data was to compute the corre-
lation among regressors (see Figures 1 and 2), as well as the Variance Inflation Factors5

(VIF) for each regressors (see Tables 3 and 4), where we differentiated between coal power
plants and coal-to-liquids plants6.

CO2(TONS) 3.60 RAIL 5.57
CAPACITY(MW) 4.19 POPULATION 7.95
COST 2.18 GOVERNOR 1.29
UR 5.17 ELECTRICITY 2.16
LFP 6.91 WIND PRICE 3.03
INCOME 4.22 SOLAR PRICE 19.83
GI (COAL) 1.67 COAL PRICE 4.09
GI(COAL PLANT + COAL PLANT) 10.18 NG PRICE 7.68
GI(JOBS) 4.78 DURATION 2.55
GI(POLLUTION) 1.52

Table 3: Variance Inflation Factors (VIF): regressors for coal power plants. VIFs higher
than 10 are in bold font.

Figures 1 and 2 and Tables 3 and 4 show that some indicators display a high degree
of collinearity, even though this result was expected for many of them. Some examples
are the strong correlation between cost, capacity and CO2 output, and the correlation

5Variance Inflation Factors are used to measure the degree of collinearity among the regressors in a
linear equation. They can be computed by dividing the variance of a coefficient estimate with all the other
regressors included, by the variance of the same coefficient estimated from an equation with only that
regressor and a constant.

6The CO2 output was not considered for coal-to-liquids plants, given the very few plants for which this
data was available.
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Figure 1: Correlation among regressors: Coal power plants

CAPACITY (BBL/DAY) 9.58 RAIL 15.26
COST 8.74 POPULATION 16.87
UR 6.71 GOVERNOR 1.86
LFP 7.91 ELECTRICITY 5.58
INCOME 5.71 WIND PRICE 18.85
GI(COAL) 3.76 SOLAR PRICE 38.53
GI(COAL-TO-LIQUIDS+CTL) 11.37 COALPRICE 3.13
GI(JOBS) 6.04 NG PRICE 7.89
GI(POLLUTION) 2.06 DURATION 3.36

Table 4: Variance Inflation Factors (VIF): regressors for coal-to-liquids plants. VIFs higher
than 10 are in bold font.

between solar and wind prices, not to say the correlation between population and rail miles.
Classical “rules of thumbs” to get rid of collinearity are to eliminate those variables with a
VIF higher than 10 or to eliminate one of the two variables with a correlation higher than
0.7-0.8 (in absolute value) (see O’Brien (2007) and Dormann et al. (2013) for extensive
reviews of collinearity and methods to deal with it). Unfortunately, eliminating variables
can be a solution worse than the initial problem, as clearly shown by O’Brien (2007) and
Dormann et al. (2013). Therefore, we preferred to follow a less aggressive approach that
considers economic and financial logic: in the case that two variables have a correlation
coefficient (in absolute value) higher than 0.8, we took the first one and the ratio between
the first and the second one, where this ratio should have an economic and/or financial
meaning whenever possible. As the consequence we considered the following ratios:

• CO2/capacity in place of CO2 output (for coal power plants only);

• cost/capacity in the place of cost;

7



Figure 2: Correlation among regressors: Coal-to-liquids plants

• rail/population in place of rail miles;

• solar price/natural gas price in place of solar price (for coal power plants only);

• solar price/wind price in place of solar price (for coal-to-liquids plants only);

• the Google index for the keywords “coal-to-liquids+ctl” divided by the natural gas
price, in place of the initial GI (for coal-to-liquids plants only).

The last one is the only ratio without an immediate economic and/or financial meaning.
However, considering that hydrocarbon liquefaction can be implemented either using coal
or using natural gas, the previous ratio can be roughly interpreted as a ratio between the
interest for coal-to-liquids plants and gas-to-liquids plants.
The next step was to check whether our data are stationary. Given the moderate size
of our dataset in case of coal power plants and the small size for coal-to-liquids plants,
we employed a battery of panel unit root tests: the test by Levin et al. (2002), the test
by Im et al. (2003), the Fisher-type tests using ADF and PP tests by Maddala and Wu
(1999) and Choi (2001), and the Hadri test (Hadri (2000)). The first three of them test
the null hypothesis of a unit root, whereas the latter tests the null of stationarity. Panel
unit root tests tend to have higher power than unit root tests based on individual time
series. For the Hadri test we also considered bootstrap critical values that allow for poten-
tial cross-sectional dependence: this extension was proposed by Carrion-i Silvestre et al.
(2005) and represents an example of second-generation panel unit root test. See (Baltagi,
1961, chapter 23) for a detailed review of panel unit root tests. Given the very short time
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dimension of our dataset, we could not implement any panel unit root test with structural
breaks7.
The results in Tables 5-6 show that our data are stationary.

Unit Root Tests Statistic P-values
Null: Unit root (assumes common unit root process)
Levin, Lin and Chu t-stat -33.07 0.00
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -46.98 0.00
ADF - Fisher Chi-square 1596.10 0.00
PP - Fisher Chi-square 1712.77 0.00
Null Hypothesis: Stationarity
Hadri test (homogeneity) -2.92 1.00
Hadri test (heterogeneity) 0.27 0.40
Bootstrap critical values (Bartlett kernel) 5% C.V. 1% C.V.
Hadri test (homogeneity) 4.55 8.99
Hadri test (heterogeneity) 2.70 4.68

Table 5: Panel unit root tests: coal power plants.

Unit Root Tests Statistic P-values
Null: Unit root (assumes common unit root process)
Levin, Lin and Chu t-stat -12.56 0.00
Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -19.76 0.00
ADF - Fisher Chi-square 333.10 0.00
PP - Fisher Chi-square 291.10 0.00
Null Hypothesis: Stationarity
Hadri test (homogeneity) -2.94 1.00
Hadri test (heterogeneity) -1.94 0.97
Bootstrap critical values (Bartlett kernel) 5% C.V. 1% C.V.
Hadri test (homogeneity) 4.28 7.52
Hadri test (heterogeneity) 3.04 5.18

Table 6: Panel unit root tests: coal-to-liquids plants.

2.2 Methods

We first introduce some unifying notation that we will use throughout our work. For
observation i, (i = 1, . . . , n), time t, (t = 1, . . . , T ), let Yit denotes the response variable
that indicates whether a coal project is active/upcoming (Yit = 0) or abandoned/canceled
(Yit = 1), while Xit denote a p× 1 vector of regressors.
We are interested in predicting the expectation of the response variable as a function of
the regressors. The expectation of a simple binary response is just the probability that
the response is 1:

E(Yit|Xit) = π(Yit = 1|Xit)

In linear regression, this expectation is modelled as a linear function β′Xit of the regres-
sors. For binary responses, as in our case, this approach may be problematic because the
probability must lie between 0 and 1, whereas regression lines are not limited. Instead, a
nonlinear regression is specified in one of two ways:

π(Yit = 1|Xit) = h(β′Xit),

or
g{π(Yit = 1|Xit)} = β′Xit = νi,

where νi is referred to as the linear predictor. These two formulations are equivalent if the
function h(·) is the inverse of the link function g(·). We have introduced two components of

7However, in Section 4 dedicated to robustness checks, we will examine the potential effect of the global
financial crisis using a dummy variable for the recession in the US that took place in the years 2008 and
2009.
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a generalized linear model: the linear predictor and the link function. The third component
is the distribution of the response given the regressors. For binary response, this is always
specified as a Bernoulli distribution (πi). Typical choices for the link function g are the
logit or probit links. The logit link is appealing because it produces a linear model for

the log of the odds, log
{

π(Yit=1|Xit)
1−π(Yit=1|Xit)

}

, implying a multiplicative model for the odds

themselves (for more details, see e.g. A. (2002), Rabe-Hesketh and Skrondal (2004) and
Rabe-Hesketh and Skrondal (2005)). We remark that the logistic regression model can
also be viewed as a latent response model, which assumes that underlying the observed
dichotomous response Yit there is a continuous response Y ∗

it : if the latter is greater than
0, the observed response is 1. A linear regression model is specified for this latent response
and the error term in the regression model can follow a normal or a logit distribution:

Yit =

{

1 if Y ∗
it > 0

0 otherwise

Y ∗
it = β′Xit + εit

See W. (2011) for more details about this alternative interpretation. To relax the as-
sumption of conditional independence among the coal plants given the regressors, we can
include a plant-specific random intercept ςi ∼ N(0, ψ) in the linear predictor:

g{π(Yit = 1|Xit)} = β′Xit + ςi

This last model with a logit or a probit link, is called a random effects panel logit/probit
model in the econometric literature, see Fantazzini et al. (2009) for a recent application
with credit risk data. Similarly, we can add a state-specific random intercept ςj ∼ N(0, ϕ)
and/or random coefficients. However, all models with random intercepts and/or ran-
dom coefficients either they did not converge numerically, or they showed variances ψ,ϕ
that were not statistically different from zero (these results are not reported but they
are available from the authors upon request). Moreover, we point out that fixed effects
panel logit models were not considered since they would have implied working with aban-
doned/canceled projects only, that is with the only binary data having sequences different
from 0,0,0,. . . – see Cameron and Trivedi (2005) for more details. Therefore, in the follow-
ing discussion, we will only consider simple (pooled) logit and probit models.

2.3 Model Evaluation

The intensive widespread use of computational methods has led to the development of
intensive model selection criteria, see e.g. Giudici and Figini (2009) for a review of model
comparison. In particular, we will report the standard Akaike and Schwartz information
criteria (AIC and SIC, respectively) for each model. Moreover, we will also compute the
Ljung-Box Ljung and G. (1979) test statistic for testing the absence of autocorrelation up
to order k in the models’ standardized residuals and residuals squared, as well as the BDS
test by W. et al. (1996), to test whether the standardized residuals are independent and
identically distributed (iid). This test is robust against a variety of possible deviations
from independence, including linear dependence, non-linear dependence, or chaos.
Given that we work with binary data, we will focus on the results coming from the pre-
dictive classification table known as confusion matrix (Kohavi and Provost (1998)). A
confusion matrix contains information about actual and predicted classifications obtained
through a classification system, and the performance of a model is commonly evaluated
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Observed/Predicted EV ENT NON − EV ENT
EV ENT a b

NON − EVENT c d

Table 7: Theoretical confusion matrix. Number of: a true positive, b false positive, c false
negative, d true negative.

using the data in the matrix. Table 7 shows the confusion matrix for a two class classifier
(which is our case with binary models).
In the specific context of our analysis, the entries in the confusion matrix have the following
meaning:
a is the number of correct predictions that a project is abandoned/canceled,
b is the number of incorrect predictions that a project is abandoned/canceled,
c is the number of incorrect predictions that a project is active/upcoming, and
d is the number of correct predictions that a project is active/upcoming.
Given a confusion matrix the following conditional frequencies have a relevant role:

• sensitivity : a/(a+ b) proportion of correctly predicted events (hit rate);

• specificity : d/(d+ c) proportion of correctly predicted non events;

• false positive rate (or False Alarm Rate): c/(c + d) or equivalently, 1− specificity,
proportion of non events predicted as events (type II error);

• false negative rate: b/(a + b) or equivalently, 1 − sensitivity, proportions of events
predicted as non events (type I error).

A classifier is said cut-off dependent if the classification depends on a discrimination thresh-
old (the cut-off) applied to the score produced by the underlying model (i.e. the estimated
π(Yit = 1|Xit) = h(β′Xit) in a logit regression). For a cut-off dependent classifier a com-
mon performance evaluation tool is the ROC (Receiver Operating Characteristic) curve
by Metz and Kronman (1980), Goin (1982) and Hanley and McNeil (1982). The ROC
curve is obtained by plotting, for any given cut-off level, the sensitivity (y-axis) with re-
spect to the false positive ratio (x -axis). Each point in the curve corresponds therefore
to a particular cut-off, so that the ROC curve can also be used to select a cut-off point,
trading-off sensitivity and specificity. In terms of model comparison, the best curve is the
one that is leftmost, the ideal one coinciding with the y-axis (see Krzanowski and Hand
(2009) and Fantazzini et al. (2009) for a recent application). However, while the ROC
curve is independent of class distribution or error costs (Provost et al. (1998)), neverthe-
less it is cut-off dependent. Recent literature proposed the calculation of the Area Under
the ROC-Curve (AUC) as a cut-off independent measure of predictive performance, see
e.g. Buckland and Augustin (1997). The AUC is always between zero and one and the
closer it is to one, the more accurate the rating system is. We will report the AUC for all
competing models.
Even though the AUC is one of the most common measures to evaluate the discriminative
power of a predictive model for binary data, it has also some drawbacks, as recently
reviewed by Figini and Maggi (2014) and references therein. In particular, as stated in
(Krzanowski and Hand, 2009, p. 108), “one can easily conjure up examples in which the
AUC for classifier 1 is larger than the AUC for classifier 2, even though classifier 2 is
superior to classifier 1 for almost all choices of the classification threshold.”
Therefore, we also computed the Model Confidence Set (MCS), proposed by Hansen et al.
(2011) and extended by Figini and Maggi (2014) to binary models, to assess the prediction
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power of the competing models. Following Hansen et al. (2011), the MCS procedure selects
the best model and computes the probability that other models are undistinguishable from
the best one using an evaluation rule based on a loss function. In general, the more the
data are informative, the smaller the MCS will be. In this work, we computed the MCS
following the procedure set up by Hansen et al. (2011)8, adopting the χ2 test for the model
elimination rule and using different loss functions9.
In our analysis, we measure the predicting performances of the competing models eval-
uating the average loss 1

n

∑n
i=1 L (Pit, Yit)

2 , where Pit = P [Yit = 1 | Xit], and n is the
validation sample size. We will consider the following loss functions:

Square loss L(P, Y ) = (P − Y )2

Spherical loss L(P, Y ) =















1−
P

√

P 2 + (1− P )2
, if Y = 1

1−
1− P

√

P 2 + (1− P )2
, if Y = 0

Logarithmic loss L(P, Y ) =

{

− log(P ), if Y = 1
− log(1− P ), if Y = 0

Asymmetric quadratic loss L(P, Y ) =







k
(

1− (1−c)2−(1−P )2

T (c)

)

, Y = 1

k
(

1− c2−P 2

T (c)

)

, Y = 0

where c ∈ [0, 1], T (c) =

{

(1− c)2, P ≥ c
c2, P < c

and k =

{

c
2 , c ≤ 1

2
1−c
2 , c > 1

2

(1)

We remark that the first three loss functions in (1) are symmetric around 1
2 ; this means

that the magnitude of the corresponding value of the loss function does not depend on
the sign of the error: L(P, Y | Y = 0) = L(1 − P, Y | Y = 1). Following Winkler (1994),
it is possible to generalize symmetric loss functions, assigning different weights to the
different kinds of errors. The asymmetric quadratic loss has the ability to take this fact
into account and it directly generalizes the square loss, which can be obtained setting
c = 1

2 , see Figini and Maggi (2014) for further details.

3 Results

3.1 In-sample Analysis

We report the estimated models for coal power plants and coal-to-liquids plants in Tables
8-9, respectively, where the left columns show the results with all the regressors, while the
right columns the restricted models with only the regressors that were significant at the
5% level (for coal power plants) and at the 10% level (for coal-to-liquids plants)10.

8The results are obtained running the Ox package Mulcom 2.00
(http://mit.econ.au.dk/vip_htm/alunde/mulcom/mulcom.htm). This package can be run with
the Ox console (version 6.2), which is free for academic research, study and teaching purposes
(http://www.doornik.com/download.html).

9Other tests can be applied: for instance, the F statistic or other statistics built on the t-statistic that
do not require the computation of the model covariance matrix. In our applications, the F statistic and
other t-statistics delivered similar results to the χ2. However, the t-statistics are much more demanding
in terms of computing time and are convenient when the number of models is large relative to the sample,
which is not our case.

10We used a higher probability level for coal-to-liquids plants due to the small size of the dataset.

12

http://mit.econ.au.dk/vip_htm/alunde/mulcom/mulcom.htm
http://www.doornik.com/download.html


LOGIT PROBIT LOGIT restricted PROBIT restricted
Coef. P-value Coef. P-value Coef. P-value Coef. P-value

CO2/CAPACITY 0.95 0.21 0.48 0.26
GI(COAL) 0.09 0.62 0.06 0.57
COAL PRICE -1.32 0.04 -0.71 0.04 -1.59 0.00 -0.86 0.00
GI(COAL PLANT + COAL POWER) 13.17 0.00 7.35 0.00 14.18 0.00 7.85 0.00
COST/CAPACITY -0.53 0.55 -0.28 0.59
DURATION 0.22 0.03 0.13 0.03 0.22 0.02 0.12 0.02
ELECTRICITY -0.01 0.99 -0.01 0.98
GOVERNOR -0.29 0.26 -0.17 0.23
INCOME 1.36 0.40 0.84 0.37
GI(JOBS) 1.06 0.38 0.63 0.36
LFP -3.22 0.37 -1.96 0.34
NG PRICE -10.32 0.00 -5.72 0.00 -10.22 0.00 -5.72 0.00
GI(POLLUTION) 0.02 0.94 0.02 0.88
POPULATION -0.25 0.15 -0.14 0.16
RAIL/POPULATION -4.19 0.16 -2.25 0.16
SOLAR PRICE/NG PRICE -14.78 0.00 -8.13 0.00 -15.34 0.00 -8.53 0.00
CAPACITY (MW) 0.51 0.08 0.26 0.11
UR -1.26 0.08 -0.74 0.06
WIND PRICE 0.24 0.80 0.03 0.95
CONSTANT -16.63 0.22 -9.51 0.21 -14.77 0.00 -8.20 0.00

Information criteria and AUC
AIC 516.52 515.44 501.22 500.12
SIC 603.58 602.50 527.33 526.23
AUC 71.02% 71.08% 67.08% 67.11%

Residual tests
Ljung-Box(50) res.[p-val] 0.21 0.03 0.36 0.51
Ljung-Box(50) res.sq.[p-val] 0.29 0.34 0.00 0.50
BDS(dim=2) [p-val] 0.09 0.33 0.14 0.09
BDS(dim=6) [p-val] 0.56 0.91 0.56 0.57

Table 8: Coal Power Plants: Model Estimation Results. Smallest information criteria and
p-values smaller than 5 % are reported in bold font.

LOGIT PROBIT LOGIT restricted PROBIT restricted
Coef. P-value Coef. P-value Coef. P-value Coef. P-value

GI(COAL) 1.59 0.31 0.92 0.30
COAL PRICE 0.31 0.88 0.18 0.87
GI(COAL-TO-LIQUIDS+CTL)/NG PRICE 0.57 0.28 0.32 0.29
COST/CAPACITY -1.83 0.40 -1.08 0.37
DURATION 0.45 0.25 0.26 0.18
ELECTRICITY 3.20 0.28 1.86 0.18
GOVERNOR -2.28 0.02 -1.32 0.01 -1.27 0.03 -0.76 0.02
INCOME 0.81 0.87 0.43 0.86
GI(JOBS) -4.70 0.38 -2.74 0.31
LFP -8.11 0.41 -4.69 0.36
NG PRICE -0.22 0.92 0.00 1.00
GI(POLLUTION) -0.54 0.37 -0.34 0.32
POPULATION 1.32 0.14 0.74 0.10
RAIL/POPULATION 2.20 0.86 1.12 0.85
SOLAR PRICE /WIND PRICE -54.47 0.08 -31.10 0.07 -20.32 0.03 -11.80 0.02
CAPACITY (BBL/DAY) 0.06 0.88 0.04 0.85
UR -3.91 0.12 -2.21 0.12
WIND PRICE 1.83 0.49 0.86 0.54
CONSTANT 42.34 0.28 25.55 0.21 8.60 0.06 4.98 0.04

Information criteria and AUC
AIC 109.51 108.99 87.44 87.07
SIC 157.84 157.31 95.07 94.70
AUC 79.83% 80.21% 70.51% 70.51%

Residual tests
Ljung-Box(50) res.[p-val] 0.42 0.62 0.20 0.47
Ljung-Box(50) res.sq.[p-val] 0.21 0.91 0.06 0.44
BDS(dim=2) [p-val] 0.41 0.53 0.00 0.85
BDS(dim=6) [p-val] 0.54 0.95 0.07 0.93

Table 9: Coal-to-Liquids Plants: Model Estimation Results. Smallest information criteria
and p-values smaller than 5 % are reported in bold font.

In case of coal power plants, as expected, the longer the planning period the higher is
the probability that the project will be abandoned/cancelled: expensive legal battles, cost
escalations due to project modifications required to meet new regulations and/or legal
orders, can easily erase the profitability of a new coal project. Moreover, the lower the
price for natural gas and the lower the price for solar photovoltaics with respect to natural
gas, the higher is the probability that the project will be abandoned. Probably, the most
interesting result is that the higher the Google search volumes about coal plants and/or
coal power, the higher is the probability the coal project will be abandoned. Therefore, an
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increasing number of people looking for information about coal plants on the web highlights
a future growing opposition to coal projects. The only (partially) unexpected result is the
significant negative coefficient for coal price, which indicates that a higher coal price will
increase the probability that a coal plant will be fully developed. A potential explanation
of this result could be the strong commercial relationships between coal mining companies
and coal power companies, so that high coal prices can still be economically viable. Given
the very sketchy information about the business structure of the companies involved in
coal projects (particularly for abandoned projects), we leave this issue as an interesting
avenue of further research.
As for coal-to-liquids plants, only two regressors were found to be significant at the 10%
level: the political affiliation of the state governor and the ratio between solar and wind
prices. A Republican governor will increase the likelihood that the coal plant will be build,
whereas a lower price for solar photovoltaics with respect to wind price will increase the
probability that the project will be abandoned. Given the greater technical complexity
and the higher costs of coal-to-liquids plants (see Höök et al. (2014)), the importance of
the governor political affiliation is not a surprise: a coal-to-liquids project will have a
probability to succeed only with a strong political support at the level of the local state
government, otherwise it will be better not to proceed further. The population size and
the unemployment rate had coefficients whose significance level is almost close to 10% and
with the expected signs: a higher population increases the probability of project failure,
while the reverse is true in case of higher unemployment rate. However, the restricted
models with also these variables included did not reject the null hypothesis that their
coefficients were zero (with high p-values) and the information criteria were higher, so
that we did not report them.
In general, probit models fared better than logit models, showing lower information criteria
and better residuals properties. Restricted models showed lower information criteria, but
full models had higher AUC values.

3.2 Out-of-Sample Forecasting Analysis

To better evaluate the predictive performance for each model, we also implemented a
cross-validation procedure. We divided our dataset into two parts of equal size: the first
one was used as the training set, while the second one as the validation set. Moreover,
similarly to what performed by Young et al. (2011), we compare a set of alternative models
whose characteristics are reported in Table 10. We considered both logit an probit models,
models with all the regressors, as well as restricted models with only significant parameters
at the 5% level; models with data transformed in logs and models with data in levels
without any transformation; models without Google indexes and models with only Google
indexes. In case of coal-to-liquids plants, due to the very small sample size of the training
and validation sets, we only considered restricted models with Google indexes only and
without Google indexes.
The estimated AUC for all previous models are reported in Table 11. The restricted
probit model with data in logs was the best for coal power plants projects, while the
probit model with data in logs and no Google indexes was the best for coal-to-liquids
projects, thus confirming previous in-sample results.
We then employed the MCS approach developed by Hansen et al. (2011) and discussed
in Section 2.3 to test for statistically significant differences in the forecast performances
among the competing models. We remark that the MCS procedure will yield a set contain-
ing the best forecasting models at a given confidence level, see also Fantazzini and Fomichev
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COAL POWER PLANTS COAL-TO-LIQUIDS PLANTS
Data All regressors/ Google Data All regressors/ Google

Model transformation restricted model data Model transformation restricted model data
LOGIT log All YES LOGIT log restricted NO
PROBIT log All YES PROBIT log restricted NO
LOGIT log restricted NO LOGIT log restricted ONLY
PROBIT log restricted NO PROBIT log restricted ONLY
LOGIT log restricted NO LOGIT levels restricted NO
PROBIT log restricted NO PROBIT levels restricted NO
LOGIT log restricted YES LOGIT levels restricted ONLY
PROBIT log restricted YES PROBIT levels restricted ONLY
LOGIT log restricted ONLY
PROBIT log restricted ONLY
LOGIT levels All YES
PROBIT levels All YES
LOGIT levels restricted YES
PROBIT levels restricted YES
LOGIT levels restricted NO
PROBIT levels restricted NO
LOGIT levels restricted NO
PROBIT levels restricted NO
LOGIT levels restricted ONLY
PROBIT levels restricted ONLY

Table 10: List of forecasting models

Models: COAL POWER PLANTS AUC Models: COAL-TO-LIQUIDS AUC
Logit log 59.48% Logit log (no Google) 60.74%
Probit log 60.13% Probit log (no Google) 61.85%
Logit log (no Google) 57.14% Logit log (only Google) 52.04%
Probit log (no Google) 57.74% Probit log (only Google) 52.78%
Logit log (no Google) restricted 58.23% Logit levels (no Google) 60.37%
Probit log (no Google) restricted 58.25% Probit levels (no Google) 59.07%
Logit log restricted 63.91% Logit levels (only Google) 53.89%
Probit log restricted 64.13% Probit levels (only Google) 55.74%
Logit log (only Google) 48.18%
Probit log (only Google) 48.08%
Logit levels 60.13%
Probit levels 60.00%
Logit levels restricted 62.35%
Probit levels restricted 63.87%
Logit levels (no Google) 57.46%
Probit levels (no Google) 58.01%
Logit levels (no Google) restricted 60.17%
Probit levels (no Google) restricted 60.17%
Logit levels (only Google) 48.11%
Probit levels (only Google) 48.33%

Table 11: A.U.C. for each forecasting model. The best model is reported in bond font.

(2014) and Rossi and Fantazzini (2014) for recent applications in financial forecasting. The
p-values for the test statistics were obtained by using the stationary block bootstrap with
a block length of 2 years and 10000 re-samples: if the p-value was lower than a defined
threshold level α, the model was not included in the MCS and viceversa. We set α = 0.10
as in Hansen et al. (2011). The results of the MCS procedure are reported in Table 12.
In case of coal power plants, the restricted probit model with data in logs is the model
with the lowest loss for almost all loss functions considered, thus confirming the previous
results. Moreover, models with Google data represent the majority of models included in
the MCS at the 10% level, while models without Google data are seldom included, thus
confirming the important information that this type of data can provide. As for coal-to-
liquids plants, the logit models with data in levels without Google data is the one that
has the lowest loss across a spectrum of loss functions. However, almost all models are
now included in the MCS, which highlights that the validation set is not very informative
(which was expected given its small size).

4 Robustness checks

We wanted to verify that our previous results hold also with alternative data setups.
Therefore, we performed a series of robustness checks: we considered alternative keywords
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COAL LOGARITHMIC SPHERICAL MAD ASYMMETRIC QUADRATIC

c=0.1 c=0.25 c=0.5
(mse)

c=0.75 c=0.9

Model loss p-val. loss p-val. loss p-val. loss p-val. loss p-val. loss p-val. loss p-val. loss p-val.
Logit log 0.515 0.01 0.347 0.05 0.264 0.08 * 0.547 0.00 0.347 0.81 * 0.149 0.09 0.157 0.09 0.160 0.09
Probit log 0.537 0.01 0.345 1.00 * 0.262 1.00 * 0.544 0.00 0.344 0.88 * 0.148 0.09 0.156 0.09 0.159 0.09
Logit log NO GI 0.527 0.00 0.350 0.02 0.264 0.06 0.596 0.00 0.352 0.29 * 0.149 0.09 0.157 0.09 0.159 0.09
Probit log NO GI 0.558 0.00 0.347 0.60 * 0.262 0.94 * 0.596 0.00 0.349 0.81 * 0.148 0.09 0.156 0.09 0.159 0.09
Logit log NO GI res 0.464 0.01 0.376 0.00 0.276 0.00 0.451 0.00 0.333 0.88 * 0.145 0.09 0.154 0.09 0.157 0.09
Probit log NO GI res 0.464 0.01 0.375 0.00 0.276 0.00 0.452 0.00 0.333 0.88 * 0.145 0.09 0.154 0.09 0.157 0.09
Logit log res 0.449 0.75 * 0.366 0.00 0.270 0.06 0.436 0.02 0.317 0.88 * 0.141 0.39 * 0.151 0.39 * 0.155 0.39 *
Probit log res 0.448 1.00 * 0.364 0.00 0.269 0.06 0.434 0.21 * 0.315 1.00 * 0.141 1.00 * 0.151 1.00 * 0.155 1.00 *
Logit log only GI 0.462 0.01 0.387 0.00 0.281 0.00 0.433 0.22 * 0.348 0.29 * 0.144 0.09 0.153 0.09 0.157 0.09
Probit log only GI 0.461 0.47 * 0.386 0.00 0.281 0.00 0.432 0.93 * 0.347 0.81 * 0.144 0.23 * 0.153 0.23 * 0.156 0.23 *
Logit lev 0.472 0.01 0.365 0.00 0.274 0.00 0.439 0.01 0.338 0.88 * 0.150 0.09 0.157 0.09 0.160 0.09
Probit lev 0.471 0.01 0.364 0.00 0.274 0.00 0.444 0.00 0.338 0.88 * 0.149 0.09 0.157 0.09 0.159 0.09
Logit lev res 0.450 0.75 * 0.365 0.00 0.270 0.04 0.428 0.93 * 0.320 0.88 * 0.142 0.23 * 0.152 0.23 * 0.155 0.23 *
Probit lev res 0.448 0.83 * 0.363 0.00 0.269 0.06 0.428 1.00 * 0.318 0.88 * 0.142 0.39 * 0.152 0.39 * 0.155 0.39 *
Logit lev NO GI 0.474 0.01 0.366 0.00 0.272 0.00 0.491 0.00 0.341 0.88 * 0.147 0.09 0.156 0.09 0.158 0.09
Probit lev NO GI 0.474 0.01 0.365 0.00 0.272 0.00 0.494 0.00 0.340 0.88 * 0.147 0.09 0.155 0.09 0.158 0.09
Logit lev NO res 0.455 0.47 * 0.373 0.00 0.273 0.00 0.447 0.00 0.327 0.88 * 0.142 0.23 * 0.152 0.23 * 0.155 0.23 *
Probit lev NO res 0.454 0.75 * 0.373 0.00 0.273 0.00 0.447 0.00 0.326 0.88 * 0.142 0.39 * 0.152 0.39 * 0.155 0.39 *
Logit lev only GI 0.467 0.01 0.390 0.00 0.283 0.00 0.447 0.00 0.353 0.29 * 0.145 0.09 0.154 0.09 0.157 0.09
Probit lev only GI 0.467 0.01 0.390 0.00 0.283 0.00 0.446 0.00 0.353 0.29 * 0.145 0.09 0.154 0.09 0.157 0.09

CTL LOGARITHMIC SPHERICAL MAD ASYMMETRIC QUADRATIC

c=0.1 c=0.25 c=0.5
(mse)

c=0.75 c=0.9

Model loss p-val. loss p-val. loss p-val. loss p-val. loss p-val. loss p-val. loss p-val. loss p-val.
Logit log NO GI 3.203 0.03 0.405 0.76 * 0.360 0.22 * 1.152 0.26 * 0.577 0.45 * 0.289 0.05 0.473 0.01 0.762 0.06
Probit log NO GI 4.034 0.03 0.396 0.76 * 0.343 0.52 * 1.145 0.28 * 0.560 0.88 * 0.260 0.23 * 0.366 0.02 0.707 0.06
Logit log only GI 0.949 0.05 0.389 0.98 * 0.342 0.25 * 1.378 0.26 * 0.640 0.22 * 0.265 0.10 * 0.267 0.02 0.267 0.09
Probit log only GI 0.960 0.05 0.388 0.98 * 0.339 0.52 * 1.375 0.26 * 0.634 0.45 * 0.261 0.23 * 0.264 0.07 0.265 0.23 *
Logit lev NO GI 1.651 0.05 0.359 1.00 * 0.300 1.00 * 1.086 0.32 * 0.528 1.00 * 0.213 1.00 * 0.232 1.00 * 0.231 1.00 *
Probit lev NO GI 2.752 0.05 0.361 0.98 * 0.306 0.52 * 1.095 0.32 * 0.534 0.88 * 0.223 0.23 * 0.248 0.07 0.234 0.57 *
Logit lev only GI 0.825 0.49 * 0.390 0.76 * 0.337 0.52 * 0.961 1.00 * 0.630 0.31 * 0.254 0.23 * 0.260 0.07 0.261 0.23 *
Probit lev only GI 0.819 1.00 * 0.387 0.98 * 0.333 0.52 * 0.987 0.32 * 0.620 0.45 * 0.250 0.23 * 0.257 0.07 0.259 0.32 *

Table 12: Model Confidence Set results for Coal Power Plants (upper table) and coal-to-liquids (lower table). Different loss functions are
evaluated: logarithmic, spherical, absolute deviation (MAD) and asymmetric quadratic, where the last is computed with different values
of the parameter c. The case c = 0.5 corresponds to square errors (MSE). The reported loss value should be multiplied by 103. * indicates
the model is included in the MCS at 10% confidence level.
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for Google search, and we evaluated the effect on our estimates of the global financial crisis
in 2008 and 2009.

4.1 Alternative Keywords

One of the regressors in our analysis was the Google index for the search term “pollution.”
While this keyword is very general and should include all possible searches related to
environmental hazards, it may be well be too way general and not related to coal plants: for
example, two of the top rising searches for this term in the US were “pollution in china” and
“china pollution.” In this regard, Google Trends provides also the search trends for specific
categories, which include all searches related to the chosen category according to some
internal selection algorithms. The closest category related to pollution and environmental
hazards is Business and Industrial / Energy and utilities / Waste Management. Similarly,
we also downloaded the GI related to the keywords “coal power+coal plant” and “coal-
to-liquids+ctl coal,” but restricted to the category Business and Industrial / Energy and
utilities. The estimated coefficients for the models including these two alternative GIs
in the place of the initial ones are reported in Tables 13-14 for coal power plants and
coal-to-liquids plants, respectively.

LOGIT PROBIT
Coef. P-value Coef. P-value

CO2/CAPACITY 1.01 0.19 0.52 0.24
GI(COAL) 0.04 0.82 0.03 0.81
COAL PRICE -0.18 0.78 -0.12 0.71
GI(COAL PLANT + COAL POWER) 2.02 0.06 0.95 0.05
COST/CAPACITY -0.64 0.53 -0.40 0.45
DURATION 0.21 0.07 0.12 0.05
ELECTRICITY 0.09 0.91 0.06 0.88
GOVERNOR -0.31 0.24 -0.18 0.20
INCOME 1.55 0.34 0.93 0.32
GI(JOBS) 1.65 0.13 1.01 0.12
LFP -3.33 0.37 -2.07 0.33
NG PRICE -3.69 0.03 -1.87 0.02
GI(WASTE) -0.49 0.66 -0.26 0.67
POPULATION -0.24 0.20 -0.14 0.19
RAIL/POPULATION -4.01 0.17 -2.12 0.18
SOLAR PRICE/NG PRICE -4.63 0.03 -2.35 0.03
CAPACITY (MW) 0.56 0.05 0.30 0.06
UR -1.28 0.06 -0.78 0.04
WIND PRICE 0.91 0.29 0.52 0.27
CONSTANT -8.11 0.57 -4.50 0.57

Information criteria and AUC
AIC 528.377 527.580
SIC 615.430 614.632
AUC 68.41% 68.54%

Residual tests
Ljung-Box(50) res.[p-val] 0.13 0.12
Ljung-Box(50) res.sq.[p-val] 0.01 0.01
BDS(dim=2) [p-val] 0.15 0.15
BDS(dim=6) [p-val] 0.69 0.69

Table 13: Coal Power Plants: Model Estimation Results with alternative Google Indexes.
P-values smaller than 5 % are reported in bold font.

In case of coal power plants, the results do not change much in terms of signs and sig-
nificance with respect to the baseline case in Table 8: the GI for “waste management” is
not significant like the GI for “pollution” was in the baseline case, whereas the restricted
GI for the related to the keywords “coal power+coal plant” is now significant only at the
10% level for the logit model. All parameters that were statistically different from zero
in the baseline case keep on being significantly different from zero in this setup and with
the same signs, even though in some cases only at the 10% level, like for the duration
indicator. The only major difference is that now we do not reject that the coal price has
a zero coefficient with p-values higher than 70%. The information criteria (AIC and SIC)
are higher than in the baseline case while the AUCs are lower. Moreover, the residuals
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LOGIT PROBIT

Coef. P-value Coef. P-value
GI(COAL) 2.26 0.11 1.45 0.08
COAL PRICE 2.07 0.36 1.06 0.33
GI(COAL-TO-LIQUIDS+CTL COAL)/NG PRICE 2.02 0.03 1.10 0.01
COST/CAPACITY -1.36 0.58 -0.76 0.55
DURATION 0.40 0.35 0.24 0.23
ELECTRICITY 3.99 0.30 1.93 0.23
GOVERNOR -3.08 0.01 -1.74 0.00
INCOME 0.47 0.94 -0.10 0.97
GI(JOBS) -11.54 0.09 -6.50 0.04
LFP -7.37 0.51 -3.46 0.53
NG PRICE -6.92 0.13 -3.60 0.09
GI(WASTE) -0.12 0.97 0.00 1.00
POPULATION 1.87 0.09 1.00 0.06
RAIL/POPULATION -2.54 0.83 -2.57 0.65
SOLAR PRICE /WIND PRICE -103.99 0.01 -57.39 0.00
CAPACITY (BBL/DAY) -0.14 0.79 -0.05 0.87
UR -7.61 0.03 -4.13 0.01
WIND PRICE 3.26 0.27 1.67 0.26
CONSTANT 96.16 0.04 56.34 0.03

Information criteria and AUC
AIC 105.88 105.78
SIC 154.20 154.10
AUC 81.67% 82.43%

Residual tests
Ljung-Box(50) res.[p-val] 0.75 0.62
Ljung-Box(50) res.sq.[p-val] 1.00 0.99
BDS(dim=2) [p-val] 0.48 0.52
BDS(dim=6) [p-val] 0.98 0.98

Table 14: Coal-To-Liquids Plants: Model Estimation Results with alternative Google
Indexes. P-values smaller than 5 % are reported in bold font.

tests highlights some small misspecification in the squared residuals. Therefore, in general,
this robustness check confirms the previous results but with a worse fit than the baseline
case.
In case of coal-to-liquids plants, the main findings of the baseline case are also confirmed,
but there are now some interesting differences. The indicator governor keeps on being a
strong significant variable (now even at the 1% level) and with the same sign as in the
baseline case. Similarly, lower solar prices -with respect to wind prices- will increase the
probability that the project will be abandoned. Moreover, the GI for “waste manage-
ment” is not significantly different from zero, as it was the case for the GI for the keyword
“pollution.” However, the ratio of the GI for the keywords “coal-to-liquids+ctl coal” and
the natural gas price is now significant at the 5% level with a positive coefficient: the
more people look for information about coal-to-liquids plants -with respect to natural gas
prices-, the higher the probability the project will be abandoned. Moreover, differently
from the baseline case in Table 9, the lower the unemployment rate and the lower the
number people looking for “jobs,” the higher is the probability that the coal project will
be abandoned/canceled. Furthermore, an higher population will decrease the odds that
the coal plant will be built. The information criteria are now slightly lower, the AUCs are
slightly higher, while the residuals tests do not highlight any particular misspecification.
In general, restricting the selection criteria for Google data seems to be beneficial for the
analysis of coal-to-liquids plants by eliminating too many unrelated searches and high-
lighting additional significant factors beyond the political affiliation of the state governor
and renewable prices, which still remain the most important factors11.

11Eliminating these variables results in steep increases of information criteria and a worse AUC, much
more than the other regressors.
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4.2 The Recession in the Years 2008-2009

The second robustness check was to evaluate the effect on our estimates of the global
financial crisis in 2008 and 2009. Given the small temporal dimension of our dataset, we
used a dummy variable for the years 2008 and 2009, in correspondence to the official NBER
recession for the US. The estimated models including this dummy variable are reported in
Tables 15-16 for coal power plants and coal-to-liquids plants, respectively.

LOGIT PROBIT
Coef. P-value Coef. P-value

CO2/CAPACITY 0.93 0.22 0.47 0.28
GI(COAL) 0.09 0.63 0.06 0.57
COAL PRICE -1.57 0.07 -0.88 0.07
GI(COAL PLANT + COAL POWER) 11.79 0.01 6.47 0.01
COST/CAPACITY -0.55 0.59 -0.29 0.57
DURATION 0.21 0.06 0.12 0.04
ELECTRICITY -0.02 0.98 -0.02 0.96
GOVERNOR -0.30 0.26 -0.17 0.23
INCOME 1.35 0.41 0.83 0.37
GI(JOBS) 1.20 0.32 0.71 0.30
LFP -3.24 0.36 -1.96 0.33
NG PRICE -9.75 0.00 -5.39 0.00
GI(POLLUTION) 0.02 0.96 0.02 0.91
POPULATION -0.26 0.13 -0.14 0.14
RAIL/POPULATION -4.17 0.16 -2.24 0.16
SOLAR PRICE/NG PRICE -14.25 0.00 -7.84 0.00
CAPACITY (MW) 0.51 0.08 0.26 0.10
UR -1.25 0.08 -0.73 0.06
WIND PRICE 0.01 0.99 -0.10 0.86
DUMMY(2008-2009) 0.35 0.65 0.23 0.62
CONSTANT -11.20 0.52 -5.91 0.56

Information criteria and AUC
AIC 518.34 517.22
SIC 609.74 608.63
AUC 71.18% 71.19%

Residual tests
Ljung-Box(50) res.[p-val] 0.21 0.17
Ljung-Box(50) res.sq.[p-val] 0.28 0.33
BDS(dim=2) [p-val] 0.08 0.08
BDS(dim=6) [p-val] 0.51 0.53

Table 15: Coal Power Plants: Model Estimation Results with a dummy variables for the
recession in 2008-2009. P-values smaller than 5 % are reported in bold font.

LOGIT PROBIT
Coef. P-value Coef. P-value

GI(COAL) 1.54 0.30 1.01 0.24
COAL PRICE 6.43 0.08 3.43 0.06
GI(COAL-TO-LIQUIDS+CTL COAL)/NG PRICE 1.62 0.07 0.87 0.04
COST/CAPACITY -0.86 0.74 -0.49 0.71
DURATION 0.41 0.37 0.25 0.23
ELECTRICITY 5.97 0.13 3.10 0.07
GOVERNOR -2.91 0.02 -1.62 0.01
INCOME 2.25 0.74 1.03 0.74
GI(JOBS) -12.16 0.10 -6.70 0.04
LFP -13.09 0.25 -6.96 0.21
NG PRICE -6.64 0.18 -3.34 0.15
GI(POLLUTION) -1.01 0.07 -0.60 0.07
POPULATION 2.02 0.04 1.10 0.02
RAIL/POPULATION 0.78 0.95 -0.36 0.95
SOLAR PRICE /WIND PRICE -84.36 0.04 -46.35 0.01
CAPACITY (BBL/DAY) -0.26 0.61 -0.12 0.66
UR -8.83 0.02 -4.76 0.01
WIND PRICE 12.53 0.04 6.65 0.02
DUMMY(2008-2009) -4.65 0.03 -2.49 0.02
CONSTANT 38.50 0.33 23.70 0.29

Information criteria and AUC
AIC 106.16 105.98
SIC 157.02 156.85
AUC 83.12% 82.66%

Residual tests
Ljung-Box(50) res.[p-val] 0.66 0.52
Ljung-Box(50) res.sq.[p-val] 1.00 0.98
BDS(dim=2) [p-val] 0.46 0.46
BDS(dim=6) [p-val] 0.95 0.98

Table 16: Coal-To-Liquids Plants: Model Estimation Results with a dummy variables for
the recession in 2008-2009. P-values smaller than 5 % are reported in bold font.
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In case of coal power plants, the dummy variable is not statistically different from zero
across all model specifications, and the coefficients of all other parameters are very close
to the baseline case reported in Table 8. Instead, the results for coal-to-liquids projects
are partially different: the coefficients for the political affiliation of the state governor
and for the ratio between solar and wind prices are again significantly different from zero,
with the same signs and similar magnitudes as reported in Table 9 for the baseline case.
However, other variables are now significant at the 5% level and 10% level: the lower the
unemployment rate and the lower is the number of people looking for “jobs”, the higher is
the probability that the coal project will be abandoned/canceled. Moreover, the higher is
the number of people looking for “coal-to-liquids or “ctl coal” in Google -with respect to
natural gas prices- and the higher is the coal price, the higher is the probability of project
failure. Besides, the higher is the population, the higher is the probability that the project
will be abandoned. In this regard, all these indicators have signs that conform to the
past literature, and they are very similar to those found restricting the GIs in the previous
section. The wind price has a significant positive coefficient, which means that higher wind
prices increase the probability of project failure. This result may seem unexpected at a
first glance: however, given the strong correlation between solar and wind price, it has to
be examined together with the solar/wind ratio, where an increase in wind prices strongly
decreases the probability of project failure. Probably, the most interesting new result is
the significant negative coefficient for the dummy variable for the years 2008 and 2009:
those two years witnessed very high prices for premium oil liquids (which represent the
main output of a coal-to-liquids plant), and this fact may have sparked a strong interest in
this type of coal plants. However, given that these results are very close to those in Table
14 using restricted Google Indexes, we also estimated a model including both the dummy
variable for 2008 and 2009 and the alternative Google search data (see Table 17).

LOGIT PROBIT

Coef. P-value Coef. P-value
GI(COAL) 2.06 0.17 1.37 0.10
COAL PRICE 3.14 0.33 1.58 0.34
GI(COAL-TO-LIQUIDS+CTL)/NG PRICE 1.92 0.04 1.05 0.02
COST/CAPACITY -1.09 0.66 -0.64 0.62
DURATION 0.39 0.37 0.24 0.24
ELECTRICITY 4.13 0.29 1.96 0.23
GOVERNOR -2.99 0.01 -1.72 0.00
INCOME 0.26 0.97 -0.29 0.92
GI(JOBS) -11.81 0.09 -6.62 0.04
LFP -6.61 0.54 -3.00 0.58
NG PRICE -7.46 0.13 -3.88 0.10
GI(POLLUTION) -0.63 0.86 -0.17 0.93
POPULATION 1.93 0.09 1.02 0.05
RAIL/POPULATION -2.97 0.79 -2.87 0.60
SOLAR PRICE /WIND PRICE -97.66 0.02 -54.38 0.01
CAPACITY (BBL/DAY) -0.23 0.69 -0.08 0.78
UR -7.90 0.03 -4.28 0.01
WIND PRICE 4.53 0.25 2.33 0.26
DUMMY(2008-2009) -0.84 0.59 -0.40 0.63
CONSTANT 86.97 0.10 52.38 0.07

Information criteria and AUC
AIC 107.58 107.55
SIC 158.44 158.4164
AUC 82.05% 82.20%

Residual tests
Ljung-Box(50) res.[p-val] 0.75 0.60
Ljung-Box(50) res.sq.[p-val] 1.00 1.00
BDS(dim=2) [p-val] 0.57 0.57
BDS(dim=6) [p-val] 1.00 0.98

Table 17: Coal-To-Liquids Plants: Model Estimation Results with a dummy variables for
the recession in 2008-2009 and with alternative Google Indexes. P-values smaller than 5
% are reported in bold font.

Once the restricted Google data are included, the coefficient for the dummy variable is no
more significant across all model specifications, whereas all other results remain basically
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the same. Therefore, the global financial crisis seems not to have influenced significantly
the fate of coal-to-liquids projects, similarly to what we found for coal power plants.

5 Conclusions

The construction of new coal plants has become an issue of great relevance in the US, given
the large fleet of old coal power plants that should be replaced. Besides, over the past
30 years the overall US coal consumption displayed a (weak) upward trend. Moreover,
even though the European consumption has constantly decreased (principally during the
’90s), Asian coal demand rapidly boosted and more than compensated this decrease12,
thus confirming a continued interest in this source of energy worldwide. Furthermore, the
recent price tensions in oil and natural gas markets renewed the interest in the use of coal
for electricity production. On the other hand, the increasing environmental awareness
about the hazards posed by coal plants has lead to an increase in the opposition by local
communities against the installation of coal plants in their region.
In this context, the analysis of the determinants that influence the success or failure of
coal plants projects may be relevant for both energy policy making and project planning.
In this paper we analyzed 145 coal plants and 25 coal-to-liquid plants that have been
proposed in US in the period 2004-2013 and we investigated the decision to settle the plant
or abandon the project using several variables. Beside common industrial explanatory
variables (size, input, output and labour costs, substitute costs, infrastructure), we also
considered measures of social and environmental awareness using Google search data.
After controlling for collinearity, stationarity and robustness, we performed an extensive
model specification, comparison and selection.
In case of coal power plants, we found that the project duration, the prices of energy sub-
stitutes for electricity generation, the coal price and the awareness about the coal projects
and its hazards are the main factors. More specifically, the longer the planning period the
less likely the project will be implemented: expensive legal disputes, and costly project
modifications to meet new requirements, can vanish the plant profitability. Moreover, the
lower the price for natural gas and the lower the price for solar photovoltaics with respect
to natural gas price, the higher is the probability that the project will be abandoned.
Interestingly, we found that the higher the coal price, the higher the probability that a
coal plant will be built. This result is partially puzzling. A possible explanation may rely
on the strong commercial relationships between coal mining companies and coal power
companies, so that the increase in coal prices will not weaken the interest toward the coal
plant. Finally, the awareness by local communities as measured by the Google search vol-
umes about coal plants and/or coal power plants increases the probability that the project
will be abandoned.
As for coal-to-liquids plants, we found that the state governor’s political affiliation, the
ratio between solar and wind prices, the population size, the unemployment rate and
the job searches as measured by Google data are the main drivers (however, the latter
three are only weakly significant). Particularly, coal-to-liquids plants are more likely to
be completed in conservative states, where we can presume that there is stronger political
support for heavy industry projects. Besides, the lower price of solar photovoltaics with
respect to wind price, the higher the probability that the project will be abandoned. Larger

12In 2012, China is by far the first coal consumer (49% of World consumption), followed by US (11%)
and India (9%) (source www.eia.gov).
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populations make these projects less likely, as expected, while higher unemployment rates
and job searches increase the probability of successful implementation.
Even though we considered a large set of alternative model specifications, we had to restrict
the potential range of models to keep the empirical analysis computationally tractable. An
avenue of future research would be twofold: on one hand we would integrate additional web-
based data, exploring the recent social network data; on the other hand we would consider
additional models like Bayesian models, non-parametric methods and generalizations of
the standard logit-probit model.
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Appendix: Coal power plants and Coal-To-Liquids plants

US State Plant name US State Plant name
AK Cook Inlet Region Inc. Project MS Mississippi Power Kemper IGCC
AK Healy Clean Coal Plant MT Highwood Generating Station
AK Nuvista - Bethel Power Plant MT Nelson Creek (aka Circle)
AK Western Arctic Coal Project MT Otter Creek (Bechtel / Kennecot Project)
AK Kenai Blue Sky Project MT Roundup Power Project
AR Plum Point I NC Cliffside Plant
AR Hempstead (AEP) ND South Heart Coal
AR Plum Point II ND Spiritwood Station
AZ Springerville Generating Station Unit 3 ND Gascoyne 175 Generating Station
AZ Springerville Generating Station Unit 4 ND Gascoyne 500 Generating Station
CA Hydrogen Energy California NE OPPD’s Nebraska City 2
CO Buick Coal and Power Project NJ PurGen One
CO Comanche Generating Station Unit 3 NJ West Deptford Project
CO Ray D. Nixon Power Plant NM Desert Rock
CO Xcel Energy IGCC plant NV Ely Energy Center
CO Lamar Light & Power/Arkansas River Power NV Toquop Energy Project
DE Indian River Expansion (IGCC) NV White Pine Energy Station
FL Orange County IGCC Plant NV Newmont coal plant
FL Seminole 3 NY Huntley (NRG)
FL Taylor Energy Center - Alternative Proposal NY BPU Jamestown plant
FL Polk Power Station 6 OH American Municipal Power Generating Station
FL Glades - Florida Power and Light OH Dominion Conneaut
GA Ben Hill Plant OH Great Bend IGCC
GA Longleaf Plant OH Lima Energy Station
GA Washington County Power Station OH Irontron Energy Center
IA Council Bluffs Energy Center Unit 4 OK AES Shady Point II
IA Sutherland Generating Station Unit 4 OK Sallisaw Electric Generating Plant
IA LS Power Elk Run Energy Station OK Red Rock Generating Facility
ID Idaho Power company IGCC proposal OR Lower Columbia Clean Energy Center
ID Power County Advanced Energy Center PA Beech Hollow Energy Project
IL Dynegy/Illinois Power - Baldwin Energy Complex PA Good Spring Plant
IL Franklin County Power Plant PA Greene Energy Resource Recovery Project
IL FutureGen PA River Hill Power Project
IL FutureGen 2.0 PA Sithe Shade Township Project
IL Madison Power Corp. SC Cross Generating Station Unit 3
IL Prairie State/Peabody SC Cross Generating Station Unit 4
IL Southern Illinois University at Carbondale Plant SC Pee Dee Facility
IL Springfield- Dallman Unit 4 SD Hyperion Energy Center
IL Taylorville Energy Center SD Milbank / Big Stone City
IN Duke Energy’s Edwardsport plant SD NextGen Energy Facility
IN Indiana Gasification TX ConocoPhillips Sweeny
IN Purdue University’s Wade Power Plant TX Freeport Plant
KS Holcomb / Tri-State TX TXU Oak Grove Plant
KS Westar Energy Kansas Plant TX Las Brisas Energy Center
KY Cash Creek IGCC TX Spruce Unit 2
KY Estill County Energy Partners TX Summit Power -Texas Clean Energy Project
KY Kentucky Mountain Power (EnviroPower) TX Twin Oaks Power Unit 3
KY BELL Sky Energy TX Sandy Creek Plant
KY Smith Station TX White Stallion Energy Center
KY Spurlock Power Station Unit 4 TX Limestone III
KY Thoroughbred Generating Station TX Coleto Creek Expansion
KY Trimble County Generating Station 2 TX Nueces IGCC Plant
LA Big Cajun II Unit 4 TX Tenaska - Trailblazer Energy Center
LA Little Gypsy refit UT NEVCO (Sevier Plant)
LA Rodemacher Power Station (unit 3) UT Green River Plant
LA Big Cajun I UT Hunter 4 Power Plant (PacifiCorp)
MA Somerset Generating Station VA Cypress Creek Power Station
MD Sparrows Point VA Virginia City Hybrid Energy Center
ME Twin River Energy Center WA Wallula Energy Resource Center
MI Northern Michigan University Ripley Heating Plant WA Energy Northwest-Pacific Mountain Energy Center
MI Wolverine Power Plant WI Cassville/Nelson Dewey III
MI Lansing Board of Water and Light WI Oak Creek Unit 1
MI Consumers Energy Plant WI Oak Creek Unit 2
MI Escanaba Power Plant WI Wausau / Weston 4
MI Midland power plant WV Greenbrier County / Rainelle (Western Greenbrier)
MI James De Young Station WV Longview plant/ Monongalia County
MI Great Lakes Energy and Research Park / Alma WV New Haven (Mason County) / Mountaineer Plant
MI TES Filer IGCC WY Jim Bridger unit 5
MN Mesaba Energy Project WY Wygen Unit 2
MN New Ulm Boiler #4 WY Wygen Unit 3
MO Associate Electric Cooperative’s Norborne WY Basin / Dry Fork Station
MO Iatan 2 (KCPL) WY Two Elk Energy Park Unit 1
MO Southwest Power Station Unit 2

Table 18: Coal power plants names
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US State Plant name
AK Alaska Natural Resources-to-Liquids Plant
AK Fairbanks Coal-to-Liquids
IL Drummond CTL
IL Decatur Plant
IN Clean Coal Refining CTL plant
KY Fuel Frontiers plant
KY Clean Coal Power Operations Coal-to-Liquids Plant
KY Buffalo Creek Energy CTL
KY Secure Energy Paducah Plant
MT Roundup Coal-to-Liquids
MT Malmstrom Air Force Base Coal-to-Liquids
MT Ambre Energy plant
MT Many Stars Coal-to-Liquids
ME Twin River Energy Center
MS Belwood Coal-to-Liquids Project (Natchez)
ND American Lignite Co’s Coal-to-Liquids plant
OH Ohio River Coal-to-Liquids plant
PA Gilberton Coal-to-Clean-Fuels and Power Project
PA EmberClear CTL
TN Freedom Energy Diesel
TX Hunton ”Green Refinery” CTL
WV Benwood project (Marshall County Industrial Park)
WV Mingo County Project
WV TransGas Development Systems CTL
WY Medicine Bow plant

Table 19: Coal-To-Liquids plants names
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