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Abstract

Financial network models are a useful tool to model interconnectedness and sys-

temic risks in financial systems. They are essentially descriptive, and based on

highly correlated networks. In this paper we embed them in a stochastic frame-

work, aimed at a more parsimonious and more realistic representation. First

we introduce Gaussian graphical models in the field of systemic risk modelling,

thus estimating the adjacency matrix of a network in a robust and coherent way.

Second, we propose a conditional graphical model that can usefully decompose

correlations between financial institutions into correlations between countries

and correlations between institutions, within countries. While the former may

be further explained by macroeconomic variables, the latter may be further ex-

plained by idiosyncratic balance sheet indicators. We have applied our proposed

methods to the largest European banks, with the aim of identifying central in-

stitutions, more subject to contagion or, conversely, whose failure could result

in further distress or breakdowns in the whole system. Our results show that, in

the transmission of the perceived default risk, there is a strong country effect,

that reflects the weakness and the strength of the underlying economies. In

addition, each country reveals specific idiosyncratic factors, with communalities

among similar countries.

Keywords: Conditional independence, network models, financial risk

management
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1. Introduction

In the latest financial crisis, started in 2007, the core capital of banks has

become insufficient to cover impairment losses arising from loans and security

portfolios. Consequently, several banks have been strengthened their capital

base or reduced their asset exposure. Other banks have been bailed out by state5

aids or have defaulted. To reduce the risk of similar crises in the future and

to enhance the resilience of the banking sector, a new regulatory framework,

the so-called Basel III package, has been proposed, implying more stringent

capital requirements for financial institutions [6]. The effectiveness of the new

regulatory framework to prevent banking default and financial crisis is an open10

problem, particularly as regulations themselves are still in progress, and may

thus benefit from the results of research findings in the field.

Research studies on bank failures can be classified in two main streams:

financial market models and scoring models.

Financial market models originate from the seminal paper of Merton [28],15

in which the market value of a bank’s assets, typically modeled as a diffu-

sion process, is insufficient to meet its liabilities. Due to its practical limita-

tions, Merton’s model has been evolved into the reduced form [34], leading to a

widespread diffusion of the resulting model, and the related implementation in

Basel II credit portfolio models. In order to implement market models, diffusion20

process parameters and, therefore, bank default probabilities can be obtained

on the basis of share price data that can be collected almost in real time from

financial markets. Market data are relatively easy to collect, are public, and are

quite objective. On the other hand, they may not reflect the true fundamentals

of the underlying financial institutions, and may lead to a biased estimation of25

the probability of failure. Indeed, the recent paper by [19] and [16] show that

market models may be good in very short-term predictions, but not in medium

and long-term ones, where the importance of fundamental financial data emerge.
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Scoring models are typically based on financial fundamentals, taken from

publicly available balance sheets. Their diffusion has followed the seminal paper30

by Altman [3], and has induced the production of scoring models for banks them-

selves: noticeable examples are [32], [33], [11]. The development of the Basel

regulation (www.bis.org) and the recent financial crisis have further boosted the

literature on scoring models for banking failure predictions. Recent examples

include [4], [13] and [22]. Scoring models have been extended in different ways:35

interesting developments include the incorporation of macroeconomic compo-

nents (see e.g. [23], [27], [20] and [21]) and the explicit consideration of the

credit portfolio, as in the Symbol model of [14], that allows stress tests of bank-

ing asset quality and capital, as emphasized in the recent paper by [17]. The

problem with scoring models is that they are mostly based on balance sheet40

data, which have, differently from the market, a low frequency of update (an-

nual or, at best, quarterly) and do depend on subjective management choices.

They may thus be good to predict defaults (especially in the medium term) but

not in the assessment of systemic risks, which occurr very dynamically and with

short notice.45

In this contribution we consider a novel mixed approach that uses both mar-

ket and balance sheet data. In addition, our focus will not be on the prediction

of single defaults but rather on how they are correlated with each other, in a

systemic perspective. The research literature on systemic risk is very recent,

and follows closely the developments of the recent financial crisis. A compre-50

hensive review is provided in [9] who also provide a historical comparison of

different crisis. Specific measures of systemic risk have been proposed, in par-

ticular, by [2], [1], [8], [18], [7] and, from a different perspective, [30]. All of

these approaches are built on financial market price information, on the basis of

which they lead to the estimation of appropriate quantiles of the estimated loss55

probability distribution of a financial institution, conditional on a crash event

in the financial market. These literature developments have led and are still

contributing to the identification of the Systemically Important Financial Insti-

tutions (SIFIs), at the global and regional level. They however do not address
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the issue of how risks are transmitted between different institutions.60

Trying to address this aspect of systemic risks, researchers have recently pro-

posed financial network models. In particular, [7] propose several econometric

measures of connectedness based on principal component analysis and Granger-

causality networks. They find that hedge funds, banks and insurance companies

have become highly interrelated over the past decade, likely increasing the level65

of systemic risk through a complex and time-varying network of relationships.

[10] and [5] follow similar approaches. Here we aim to statistically learn financial

networks from the available data and, to achieve this aim, we propose embed-

ding network models into multivariate graphical models. Graphical models are

based on the idea that interactions among random variables in a system can70

be represented in the form of graphs, whose nodes represent the variables and

whose edges show their interactions. For an introduction to graphical models

see, for example, [29, 26, 36, 35, 15].

In particular, graphical models can be employed to accurately estimate the

adjacency matrix, aimed at measuring interconnectedness between different fi-75

nancial institutions and, in particular, to assess central ones that may be the

most contaged or the strongest source of contagion [7]. Network models use

the correlation matrix estimated from the data to derive the adjacency ma-

trix. Although useful, this approach takes into account only the marginal effect

of a variable on another, without looking at the indirect effect of other vari-80

ables. Graphical models, instead, focus on the partial correlation matrix, that

is obtained by measuring the direct correlation between two variables. A partial

correlation coefficient can express the change in the expected value of a variable,

caused by a unitary change of another variable, when the remaining variables

are held constant. In so doing, the effect of a bank on another is split into a85

direct effect (estimated by the partial correlation) and an indirect effect (what

is left in the marginal correlation). Here we follow this approach and derive

the adjacency matrix, the main input of a financial network model, not from

the correlation matrix but, rather, from the partial correlation matrix obtained

from the application of graphical models to the available data.90
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The methodological contribution of this paper is a novel graphical model,

that allows correlations between financial institutions to be decomposed into a

country effect plus a bank-specific effect. This similarly to what is assumed for

the asset returns in CAPM models [31].

The applied contribution of this paper is in the understanding of whether95

and how a distress probability is transmitted between different banks, that be-

long to different countries, with different regulatory systems. A very interesting

case study, in this respect, is the Eurozone, where the European Central Bank is

about to assume the supervision of the largest banks (with total assets greater

than 30bn euro) in each of the member states. Thus, eventually, the euro bank-100

ing market will evolve into a single market but, at the time being, it is still

fragmented. It thus becomes timely and rather interesting to study the degree

of convergence towards a European banking union, looking at the comovements

between share returns of the banks in the European area, and at their depen-

dence on both macroeconomic and balance sheet variables. In this respect, we105

remark that, to our knowledge, this is the first paper that models systemic risks

using jointly market and balance sheet data.

The rest of the paper is organized as follows. In Section 2, we introduce

the proposed methodology based on conditional graphical models. In Section 3

we describe the empirical results obtained with the application of our proposed110

model to data that concern the largest European banks. Finally, Section 4

contains some concluding remarks.

2. Methodology

In this section we first review graphical Gaussian models and, then, present

our methodological proposal.115

2.1. Graphical gaussian models

Let g = (V,E) be an undirected graph, with vertex set V = {1, . . . , n}, and
edge set E = V ×V , a binary matrix, with elements eij , that describes whether
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pairs of vertices are (symmetrically) linked between each other (eij = 1), or not

(eij = 0). If the vertices V of the graph g are put in correspondence with a

vector of random variables X = X1, ..., Xn, the edge set E induces conditional

independence on X via the so-called Markov properties [25]. More precisely,

the pairwise Markov property determined by the graph g states that, for all

1 ≤ i < j ≤ n,

eij = 0 ⇐⇒ Xi ⊥ Xj |XV \{i,j};

that is, the absence of an edge between vertices i and j is equivalent to inde-

pendence between the random variables Xi and Xj , conditionally on all other

variables XV \{i,j}.

Here we are concerned with quantitative random variables and, therefore, the120

graphical model we assume is a graphical Gaussian model, specified as follows.

Let X = (X1, . . . , Xn) ∈ Rn be a random vector distributed according to a

multivariate normal distribution N (µ,Σ). In this paper, without loss of gener-

ality, we will assume that the data are generated by a stationary process, and,

therefore, µ = 0. In addition, we will assume throughout that the covariance125

matrix Σ is non singular.

[36] proved that the pairwise Markov property implies that the following

equivalence holds, for graphical gaussian models:

Xi ⊥ Xj |XV \{i,j} ⇐⇒ ρijV = 0,

where

ρijV =
−σij

√
σiiσjj

denotes the ij-th partial correlation, that is, the correlation between Xi and Xj130

conditionally on the remaining variables XV \{i,j}.

Therefore, given an undirected graph g = (V,E), a graphical Gaussian model

can be defined as the family of all N -variate normal distributions N (0,Σg) that

satisfy the constraints induced by a graph g on the variance-covariance matrix,

in terms of zero partial correlations.135

Statistical inference for graphical models can be of two kinds: quantitative

learning, which means that, given a graphical structure, with associated Markov
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properties, data is employed to estimate the unknown parameters of the model;

and structural learning, which means that the graphical structure itself is esti-

mated on the basis of the data.140

Here we focus on structural learning, as our aim is to infer from the data the

network model that best describes the interrelationships between the financial

institutions we consider. To achieve this aim, we now recall the expression of

the likelihood of a graphical Gaussian model, on which structural learning will

be based.145

For a given graph g, consider a sample X of size n from P = N (0,Σg), and

let S be the corresponding observed variance-covariance matrix. For a subset of

vertices A ⊂ N , let ΣA denote the variance-covariance matrix of the variables

in XA, and define with SA the corresponding observed submatrix.

When the graph g is decomposable the likelihood of a graphical gausssian150

model specified by P nicely decomposes as follows (see e.g. [12]):

p(x|Σ, g) =
Q

C2C p(xC |ΣC)
Q

S2Sp(xS |ΣS)
,

where C and S respectively denote the set of cliques and separators of the graph

G, and:

P (xC |ΣC) = (2π)−
n|C|

2 |ΣC |−n/2exp[−1/2 tr
(
SC (ΣC)

−1
)
]

and similarly for P (xS |ΣS).

Note that the likelihood depends on the parameter Σ and on g, which indi-155

cates the set of cliques and separators that factorise the likelihood, and deter-

mine which submatrices of Σ to consider.

Strcutural learning can be achieved replacing Σ with its maximum likeli-

hood estimator, the observed sample variance covariance matrix S (constrained

by g) and comparing all possible graphical models in terms of their resulting160

maximised likelihood. AIC and BIC criterions can enforce such choice adding

penalty terms to the maximum likelihood, that depend on the number or pa-

rameters of the model (AIC) or on the number of observations (BIC).
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2.2. Proposal

In high dimensional settings, such as those occurring in systemic risk mod-165

elling, there is a high chance that model selection algorithms used for structural

learning get trapped, spending much time to learn local optimum structures

which might not be optimal at a global level. In addition, it may be difficult

to extract interpretable information from a learned structure that is large and

shows many interrelationships. A possible solution to the above problems is to170

add more structure to graphical models, and this is what we propose. To ease

understanding, and without loss of generality, we will from now on refer the

notation to the specific systemic risk problem we face.

Assume that Ri,j,t is a random variable representing the return for the i-th

bank in the j-th country at time t and that R̄jt is the mean return of all banks175

present in country j, at time t. The joint distribution of all bank returns can

then be factorised, using the country mean variables, as follows:

P (R11t, . . . , RIJt) = P (R11t, . . . , RIJt|R̄1t . . . , R̄Jt) ∗ p(R̄1t, . . . , R̄Jt).

Our main modelling assumption concerns the conditional distribution of

bank returns, P (R11t, . . . , RIJt|R̄1t, . . . , R̄Jt). For any given time point we as-

sume that:180

P{(R11t, . . . , RI1t)
| {z }

Country1

, (R12t, . . . , RI2t)
| {z }

Country2

, (R1Jt, . . . , RIJt)
| {z }

CountryJ

|R̄1t, . . . , R̄Jt} =

= P (R11t, . . . , RI1t|R̄1t)∗ P (R12t, . . . , RI2t|R̄2t)∗ . . . ∗ P (R1Jt, . . . , RIJt|R̄Jt).

that is, returns of banks from different countries are assumed to be indepen-

dent, conditionally on the knowledge of their country means. From an economic

viewpoint, this assumption relies on the fact that, at least in Europe, countries

and banks are strongly intertwinned and, as the recent history has shown, the185

main source of market volatility of bank share prices is the state of the economy

of the country where they operate.
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According to the previous assumption, we can thus proceed decomposing the

dependence between bank returns into a dependence between country means

and a dependence between banks returns, within each country. Our second190

assumption is that both dependence structures can be described by a graphical

Gaussian model, as follows.

First, we assume that the vector of all bank returns Ri,j,t, conditionally on

the country means, is distributed as a graphical Gaussian model with mean

µj,t, the country mean. Indeed the (observed) country mean return can be195

substracted out, leading to the extra returns Yi,j,t = Ri,j,t − R̄j,t be distributed

as follows:

Yt =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Y1,1,t

Y2,1,t

.

.

YI,1,t

Y1,2,t

Y2,2,t

.

.

YI,2,t

. . .

Y1,J,t

Y2,J,t

YI,J,t

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

∼ N(0,Σb), t = 1, . . . , n,

where Σb indicates the (non singular) variance-covariance matrix between

bank extra returns. According to the pairwise Markov property, the following

then holds, for any pair of banks (i, i0):200

eii0 = 0 ⇐⇒ ρii0V = 0 :
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a missing edge between two banks is equivalent to a zero partial correlation

between the corresponding extra-returns.

Note that conditional independence between banks in different countries im-

plies that Σb is a block-diagonal matrix, with each block describing the variance-

covariance matrix between bank extra returns in each country:205

Σb =

0

B
B
B
B
B
B
B
B
B
@

Σ11 0 0 0

Σ22 0 0

. . .

ΣJJ

1

C
C
C
C
C
C
C
C
C
A

Further constraints on the matrix Σb are to be estimated from the data, in

a graphical model selection procedure, specific for each country, in accordance

with the pairwise Markov property.

Second, we assume that the vector of all country mean returns, R̄jt, is also

distributed as a graphical Gaussian model, with mean µt, the overall mean.210

The overall mean return can be substracted out, leading to the extra returns

Zj,t = R̄jt − R̄t distributed as follows:

Zt =

0

B
B
B
B
B
B
B
B
B
@

Z1,t

Z2,t

. . .

ZJ,t

1

C
C
C
C
C
C
C
C
C
A

∼ N(0,Σc), t = 1, . . . , n,

where Σc indicate the (non singular) variance-covariance matrix between

country mean extra returns. According to the pairwise Markov property the

following then holds, for any pair of countries j, j0:215

ejj0 = 0 ⇐⇒ ρjj0V = 0.

a missing edge between two countries means is equivalent to a zero partial

correlation between the corresponding extra-returns.
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Further constraints on the matrix Σc are to be estimated from the data, in

a graphical model selection procedure based on the country mean returns.

Note that the model we have specified is made up of two components: a220

graphical model between country mean returns and, conditionally on the mean

returns of each country, a graphical model between bank returns of that country.

We now further extend our proposed model to take into account covariates

that may explain the returns and their correlations. We will consider two types

of covariates: macroeconomic ones, that may affect returns at the country level,225

and microeconomic ones, that may affect returns at the bank level. This will

allow us ”to mix” market data with bank specific balance sheet data, and with

macroeconomic data as well. We remark that, to our knowledge, this is the first

paper that models ssytemic risk using more than one data source.

Covariates can be introduced in our model as further conditioning variables.230

For example, we may condition country mean returns on macroeconomic vari-

ables, and check whether the correlations between countries are due to common

macroeconomic cycles. Or we may condition bank returns on microeconomic

balance sheet ratios and check whether the correlations between banks in a

country are due to common bank management policies.235

Mathematically, the introduction of covariates can be done maintaining the

hierarchical structure seen before, specifying a linear regression model of bank

returns on the covariates, both at the country and at the bank level and, then,

model the regression residuals with a graphical Gaussian model.

More formally, we first assume that:240

Yt ∼ N(Xβ,Σb0), t = 1, . . . , n,

where Σb0 is such that, for any pair of banks (i, i0):

eii0 = 0 ⇐⇒ ρii0V = 0,

and X is a data matrix containing balance sheet micro economic explanatory

variables with β the corresponding vector of regression coefficients.
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Second, we assume that:

Zt ∼ N(WΓ,Σc0), t = 1, . . . , n,

where Σc0 is such that, for any pair of countries (j, j0):

ejj00 = 0 ⇐⇒ ρjj0V = 0,

and W is a data matrix containing macro-economic explanatory variables with245

Γ the corresponding vector of regression coefficients.

From an interpretational viewpoint, it is important to compare the selected

graphical models, before and after the introduction of covariates. At the coun-

try level, it may happen that: i) c contains more partial correlations than c0:

this means that the correlation between the macroeconomic variables of two250

countries explains that between the mean returns; ii) c contains less partial cor-

relations than c0: this means that financial markets adds relationships that are

not coherent with macroeconomic fundamentals; they may be due, for example,

to strategies of portfolio diversification of the investors.

The same kind of reasoning can be carried out at the bank-specific idiosyn-255

cratic level. In this case if b0 contains more edges than b it can be interpreted

as a sign that bank returns reflect common management strategies of banks

(rather than specific behaviours of the markets). Conversely, if b contains less

edges than b0 there may be additional market strategies, not consistent with

fundamentals (for example, due to portfolio diversification, or to speculative260

behaviours).

3. Application

In this section we apply our proposed model to the estimation of the sys-

temic risk of European banks. Europe is an interesting test case as banking

systems, that differ among many different countries, are progressing towards265

the integration in a single Banking Union.
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We consider only large banks, whose total assets are greater than 30b eu-

ros, and are therefore included in the European Central Bank comprehensive

assessment review, for the Eurozone countries. To obtain a more complete rep-

resentation of European risks, we also consider countries in the European Union,270

not belonging to the Eurozone, as well as Switzerland and Norway. We consider

only publicly listed banks, for which market data are available. In the case of

a banking group with more entities that satisfy the above criteria, we consider

only the controlling entity. The complete list of the 61 considered financial in-

stitutions is in Table 1, with the corresponding ticker code acronyms. Table 1275

contains, besides bank names and their codes, their prevalent country, and their

Total Assets from the last available balance sheet (in thousands of euro), at 4Q

2013.

For each bank, we have collected data on their reported (quarterly) balance

sheet, as well as on their (daily) market performance, from Bankscope, for the280

period 2009-2013. Concerning balance sheets, as they are published in the quar-

ter that follows their reference period, the corresponding data has been shifted

by one quarter, to make it consistent with the period in which they are pub-

lished. In more detail, from the balance sheet of each bank we have extracted

the ratio indicators suggested in the C.A.M.E.L. approach extensively employed285

in scoring models (see for example [4]), for a total of 9 candidate explanatory

variables: Leverage (equity/total assets) and Tier1 (capital/risk weighted as-

sets), that measure Capital adequacy; Coverage (loan reserves/gross loans) and

Impairments (loan losses/gross losses), that measure Asset quality; Assets (to-

tal assets), that measure Management; NIM (net interest margin) and ROAA290

(return/average assets), that measure Earnings; Liquid (liquid assets/total as-

sets) and Loans (loans/assets) that measure Liquidity. We found some missing

data, especially for ratios which are less common; we have decided to impute

them using a regression based approach, when the missing variable is strongly

correlated with another (as it is the case for Coverage and Impairments), or a295

moving average approach, in other cases.

Market performance has instead been measured, consistently with balance
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sheet data, taking the average quarterly share prices for each bank. Average

prices have than been converted into returns. Let Pt be the average price of

a bank in a quarter t. Its return can then be defined as: Rt = log(Pt/Pt−1),300

where t is a quarter and t− 1 the quarter that preceeds it.

Besides the above bank-specific data, we have extracted from Eurostat the

main macroeconomic information from the countries to which the considered

banks belong to, for the same period under consideration.

We now present the main results from the application of our conditional305

graphical gaussian models. We first search the graphical gaussian model that

best fits the interdependences between the mean returns of the 20 considered

countries.

Figure 1 shows the graphical network model between countries that is se-

lected by the stepwise graphical model selection procedure implemented in the310

software R, packages gRbase and gRim.

Figure 1 about here

Figure 1 shows that the largest and strongest economies of Europe (DE, FR,

GB) are related, and form an isolated clique. Southern and/or weaker economies

(ES, PT, IE, AT, HU) are also related, with IT acting as a central agent of315

contagion. Other economies, typically smaller, are (weakly) connected to the

latter, with a position that depends on the performance of their banks. In terms

of systemic risk, Figure 1 shows that, besides IT, the most contagious/subject

to contagion countries are NL (with its multinational bank, ING) and GR (with

its troubled economy).320

The links in Figure 1 may indeed be due to correlations in the macroeco-

nomic cycles. This can be checked looking at the selected graphical models on

the residuals from the regression of country mean returns on macroeconomic

variables, reported in Figure 2.

Figure 2 about here325

The structure of Figure 2 is similar to that of Figure 1: this indicates that the

relationships among country mean returns are not due only to macroeconomic

factors. We however underline two important differences. On one hand, CH
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gets linked to the strongest economies, making them connected with the others,

and more central: this, presumably, on the basis of market portfolio strategies.330

On the other hand, FI is removed from the group of weaker economies, revealing

that the link with IT that appears in Figure 1 may be due to a similar economic

cycle, but it is not supported by the market.

According to Figure 2 the most contagious/subject to contagion economies

are: IT , CH, GB, PL and IE: weaker economies and financial hubs, as one335

would expect. For the sake of completeness, we report the results from the

regression of country mean returns on macroeconomic variables, on which the

graph of residuals in Figure 2 is based, in Table 2.

Table 2 about here

Table 2 shows that, while the GDP affects positively the mean returns, the340

Unemployment rate and the Inflation rate are negatively related, at the overall

European level. The result for Unemployment and GDP indicates that down-

turn periods are associated to lower returns. The result for the inflation rate

indicates that in the considered deflationary period, the rate is negatively related

with the returns. These results are consistent with the economic literature.345

Having estimated the country-to-country connections, we now look in detail

at the interdependencies between banks, within countries. Figures 3 through 6

present the selected graphical models for four selected Eurozone countries, two

from northern Europe (France and Germany) and two from southern Europe

(Spain and Italy).350

Figures 3 through 6 about here.

Figure 3 shows that, in the case of Germany, the selected graph contains

three independent cliques: one that contains the large commercial banks (CBK

and DBK), and one that contains the smaller ones (ARL and WUW), with the

specialized bank IKB on its own, with the lowest systemic risk.355

Figure 4 shows that, in France, all banks are pairwise connected, apart from

KN, which has three connections, and therefore, appears the most risk systemic.

Figure 5 shows that in Spain there is one central clique, composed of the

largest two banks, BBVA and SAN, connected with the medium sized banks
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BKT and POP. SAB and CABK are instead disconnected. Therefore, in Spain,360

the largest banks are also the most risk systemic.

Figure 6 shows the more complex case of Italy. The most connected bank

appears to be PMI, whereas the large bank UCG and the investment bank MB,

togheter with CVAL, are disconnected. Besides PMI, the banks that are more

risk systemic are the large sized ISP and the medium size BPSO.365

We now investigate whether the previously found connections can be ex-

plained by a similar management strategy, as described by balance sheet ratios

or are, instead, due to other latent variables, such as market portfolio strategies.

To achieve this aim, we consider the graphical model selected on the basis of the

residuals from the regression model of bank extra returns on the balance sheet370

ratios. Table 3 presents, in a combined form, the results of the regressions for

the four considered countries.

Table 3 about here.

From Table 3 note that the significant variables differ considerably among

countries, with a degree of similarity present between the two southern countries,375

ES and IT and, on the other hand, between the two northern countries, DE and

FR.

In more detail, for both ES and IT, Asset quality has an important negative

sign on the returns (as expected), with an important difference between the two

countries: while in Italy what matters is the Coverage of credit losses, in Spain380

both Impairments and Coverage are significant: higher Impairments are related

with lower returns, and higher coverages partly correct this effect, increasing

returns. Besides asset quality, the only other variable that significantly affect

the returns, in Italy, is Tier1, with a positive effect, as expected. In Spain,

instead, further significant variables are Liquid and NIM. While the former has385

the expected positive sign, the sign of the net interest margin is instead coun-

terintuitive. One possible way to interpret it is in ”reversing” the causal chain:

banks with more difficulties, reflected by a lower return, have been prompted

to improve, increasing the interest margin. None of the remaining variables are

significant in the two southern countries.390
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The structure of the estimated linear regression model for France and Ger-

many is different from the previous one. For both countries, the significant

ratios concern Asset quality, Management and Liquidity, with neither Capi-

tal adequacy nor Earnings being significant. Asset quality acts through the

Impairments variable, significant and negative for both countries (as expected);395

Management through the Assets variable, significant and positive for both coun-

tries (as expected); Liquidity through the Loans variable (for Germany) and the

Liquid variable for France. None of the remaining variables are significant in

the two northern countries.

To summarise, the findings in Table 3 emphasize the importance of the coun-400

try effect, as similar countries have a similar structure of significant explanatory

variables.

As done for the country mean returns we now evaluate whether the intro-

duction of balance sheet variables changes the dependence structure between

the banks described in Figure 3 through 6. Figures 7 through 10 present the405

selected graphical model for the residuals of the same four countries: Germany,

France, Spain and Italy.

Figures 7 through 10 about here.

Comparing Figures 7-10 with Figures 3-6 note that some new links ar added,

and others are deleted.410

In more detail: the graph of Germany and that of France are unchanged,

revealing that the relationship between bank returns are not determined uni-

vocally by balance sheet ratios but, rather, by other factors, such as portfolio

diversification strategies, based on the economical strenghth of the underlying

country. In the case of Spain, the only change concerns the position of POP415

which is now connected to SAN rather than BBVA. This means that SAN be-

comes the most central bank, from a systemic risk viewpoint. In Italy, the

differences concern the positions of BPE which is now connected to ISP, rather

than BMPS. This means that, when balance sheet data is taking into account,

BMPS becomes less contagious, and ISP more contagious. This is good news,420

given the difficult situation of BMPS at the moment and conversely the good
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state of ISP.

Note, once, more, the difference between northern and southern countries:

the estimated systemic risk network is affected by microeconomic factors only

for the latter, weaker economically and, therefore, more fragile from a banking425

point of view.

4. Conclusions

Financial network models are a useful tool to model interconnectedness and

systemic risks in financial systems. Such models are essentially descriptive,

and based on highly correlated networks. This paper provides a stochastic430

framework for financial network models, based on graphical Gaussian models. In

addition, it proposes a conditional graphical model that can usefully decompose

dependencies between financial institutions into correlations between countries

and correlations between institutions, within countries. A model that can be

extended to include explanatory covariates, both at the microeconomic and at435

the macroeconomic level.

We have applied our proposed methods to the largest European banks, with

the aim of identifying central institutions, more subject to contagion or, con-

versely, whose failure could result in further distress or breakdowns in the whole

system. Our methods can use market prices, CAMEL based balance sheet ratios440

and macroeconomic variables, and it is therefore the first paper that considers

jointly more than one source of data in the estimation of systemic risks.

From an interpretational viewpoint the paper shows that, in the transmission

of the perceived default risk, there is a strong country effect, that reflects the

weakness and the strength of the underlying economies. Besides the country445

effect, the most central banks are those larger in size, consistently with the

economic literature (as shown, in particular, in the recent paper by [24]).

Future applied research may include the extension of the model to different

types of hierarchies of financial institutions (e.g. listed or unlisted; large or

small).450
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In addition, it would be interesting to insert in our proposed models further

sources data: for example, analysts opinions, ratings and other sources of soft

information.
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Table 1: The considered banks
Bank Name Code Country T.Assets

HSBC Holdings HSBA UK 2040674.62

Deutsche Bank DBK Germany 2012329.00

BNP Paribas BNP France 1907290.00

Credit Agricole ACA France 1842361.00

Barclays BARC UK 1782411.78

Royal Bank of Scotland RBS UK 1569494.14

Banco Santander SAN Spain 1269628.00

Societe Generale GLE France 1250696.00

ING Groep NV INGA Netherlands 1168632.00

Lloyds Banking Group LLOY UK 1105756.67

UBS UBSN Switzerland 1041208.74

UniCredit UCG Italy 926827.50

Credit Suisse Group CSGN Switzerland 764250.28

Nordea Bank AB NDA Sweden 677309.00

Intesa Sanpaolo ISP Italy 673472.00

Banco Bilbao Vizcaya Argentaria BBVA Spain 637785.00

Commerzbank CBK Germany 635878.00

Natixis-BPCE Group KN France 528370.00

Standard Chartered STAN UK 482417.01

Danske Bank DANSKE Denmark 466755.96

Dexia DEXB Belgium 357210.00

DnB ASA DNB Norway 308173.44

Skandinaviska Enskilda Banken SEB.A Sweden 285875.07

Svenska Handelsbanken SHB.A Sweden 277776.39

KBC Groep NV KBC Belgium 256886.00

CIC Credit Mutuel Group CC France 235732.00

Banca Monte dei Paschi di Siena BMPS Italy 218882.20

Swedbank SWED.A Sweden 215194.90

Erste Group Bank EBS Austria 213824.00

Banco de Sabadell SAB Spain 161547.10

Banco Popular Espanol POP Spain 157618.10

Raiffeisen Bank International RBI Austria 136116.00

Unione di Banche Italiane UBI Italy 132433.70

Banco Popolare BP Italy 131921.40

Allied Irish Banks AIB Ireland 122516.00

National Bank of Greece ETE Greek 104798.80

Banco Comercial Portuguese BCP Portugal 89744.00

Banco Espirito Santo BES Portugal 83690.80

Wustenrot and Wurttembergische WUW Germany 77192.90

Mediobanca MB Italy 72841.30

Piraeus Bank TPEIR Greek 70406.20

Eurobank Ergasias EUROB Greek 67653.00

Banca popolare Emilia Romagna BPE Italy 61637.80

Alpha Bank ALPHA Greek 58357.40

Bankinter BKT Spain 58165.90

Banca Popolare di Milano PMI Italy 52475.00

Banca Carige CRG Italy 49325.80

PKO Bank Polski PKO Poland 47308.75

Aareal Bank ARL Germany 45734.00

Pohjola Bank Oyj POH1S Finland 44623.00

Banco BPI BPI Portugal 44564.60

Bank Pekao PEO Poland 36909.55

OTP Bank OTP Hungary 34694.23

Jyske Bank JYSK Denmark 34585.96

Banca Popolare di Sondrio BPSO Italy 32349.10

IKB Deutsche Industriebank IKB Germany 31593.70

Komercni Banka BAAKOMB Czech Republic 31295.88

Credito Emiliano CE Italy 30748.70

Credito Valtellinese CVAL Italy 29896.10
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Table 2: Linear regression of country means on macroeconmic variables

Dependent variable:

Country mean Return

GDP 0.470⇤⇤⇤

(0.066)

Un -0.056⇤⇤⇤

(0.012)

Inf. -0.872⇤⇤⇤

(0.305)

Constant 0.701⇤⇤⇤

(0.148)

Observations 1,220

R2 0.060

Adjusted R2 0.058

Residual Std. Error 2.286 (df = 1216)

F Statistic 25.957⇤⇤⇤ (df = 3; 1216)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 3: Linear Regressions of bank returns on balance sheet ratios

Dependent variable:

share

IT DE FR ES

Leverage 0.340

(0.223)

Tier1 0.218⇤⇤

(0.094)

Coverage -0.170⇤ 0.833 0.547⇤⇤

(0.099) (0.511) (0.236)

Impairments -0.384⇤⇤⇤ -0.497⇤ -0.394⇤⇤⇤

(0.116) (0.293) (0.148)

Assetsstd 1.480⇤⇤ 0.574⇤

(0.671) (0.328)

NIM -0.914⇤⇤

(0.455)

ROAA

Liquid 0.040⇤⇤⇤ 0.059⇤

(0.015) (0.035)

Loans 0.121⇤⇤

(0.047)

Constant -1.249 -3.733⇤ -0.648 -0.692

(0.823) (1.887) (0.600) (1.329)

Observations 240 100 100 120

R2 0.028 0.116 0.079 0.106

Adjusted R2 0.019 0.088 0.040 0.066

Residual Std. Error 2.500 (df = 237) 2.357 (df = 96) 1.699 (df = 95) 1.966 (df = 114)

F Statistic 3.376⇤⇤ (df = 2; 237) 4.199⇤⇤⇤ (df = 3; 96) 2.042⇤ (df = 4; 95) 2.694⇤⇤ (df = 5; 114)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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FR

Figure 1: Selected graphical model between country mean returns

(AT) Austria (BE) Belgium (CH) Switzerland (DE) Germany (DK) Denmark

(ES) Spain (FI) Finland (FR) France (GB) UK (GR) Greece

(HU) Hungary (IE) Ireland (IT) Italy (NL) Netherlands (NO) Norway

(PO) Poland (PT) Portugal (SE) Sweden.
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Figure 2: Selected graphical model between country mean returns, conditional on macroeco-

nomic variables

(AT) Austria (BE) Belgium (CH) Switzerland (DE) Germany (DK) Denmark

(ES) Spain (FI) Finland (FR) France (GB) UK (GR) Greece

(HU) Hungary (IE) Ireland (IT) Italy (NL) Netherlands (NO) Norway

(PO) Poland (PT) Portugal (SE) Sweden.
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Figure 3: Selected graph of Germany bank returns

(ARL=Aareal Bank) (CBK=Commerzbank ) (DBK=Deutsche Bank )

(IKB=IKB Deutsche Industriebank) (WUW=Wustenrot and Wurttembergische)
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Figure 4: Selected graph of France bank returns

(ACA=Credit Agricole ) (BNP=BNP Paribas) (CC=Credit Industriel et Commercial )

(GLE=Societe’ Generale) (KN=Natixis)
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Figure 5: Selected graph of Spain bank returns

(BKT=Bankinter ) (BBVA=Banco Bilbao Vizcaya Argentaria ) (CABK=Caixabank)

(POP=Banco Popular Espanol ) (SAB=Banco de Sabadell ) (SAN=Banco Santander )
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Figure 6: Selected graph of Italy bank returns

(BMPS=Banca Monte dei Paschi di Siena) (BP=Banco Popolare ) (BPE=Banca popolare dell’Emilia Romagna)

(BPSO=Banca Popolare di Sondrio) (CE=Credito Emiliano) (CRG=Banca Carige )

(CVAL=Credito Valtellinese) (ISP=Intesa Sanpaolo) (MB=Mediobanca )

(PMI=Banca Popolare di Milano ) (UBI=Unione di Banche Italiane ) (UCG=UniCredit )
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Figure 7: Selected graph of Germany bank residuals

(ARL=Aareal Bank ) (CBK=Commerzbank ) (DBK=Deutsche Bank )

(IKB=IKB Deutsche Industriebank) (WUW=Wstenrot and Wrttembergische)
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Figure 8: Selected graph of France bank residuals

(ACA=Crdit Agricole ) (BNP=BNP Paribas) (CC=Credit Industriel et Commercial )

(GLE=Societe Generale) (KN=Natixis)
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Figure 9: Selected graph of Spain bank residuals

(BKT=Bankinter ) (BBVA=Banco Bilbao Vizcaya Argentaria ) (CABK=Caixabank)

(POP=Banco Popular Espanol ) (SAB=Banco de Sabadell )

(SAN=Banco Santander )
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Figure 10: Selected graph of Italy bank residuals

(BMPS=Banca Monte dei Paschi di Siena) (BP=Banco Popolare ) (BPE=Banca popolare dell’Emilia Romagna)

(BPSO=Banca Popolare di Sondrio) (CE=Credito Emiliano) (CRG=Banca Carige )

(CVAL=Credito Valtellinese) (ISP=Intesa Sanpaolo) (MB=Mediobanca ) (PMI=Banca Popolare di Milano )

(UBI=Unione di Banche Italiane ) (UCG=UniCredit )
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