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Abstract
The purpose of this paper is twofold; first, to present a simple proof of the Farkas theorem

(or Farkas lemma or Farkas-Minkowski lemma), proof performed through a nonlinear theorem of the

alternative; second, to present various new proofs of the so-called "Tucker key theorem", and to show

that these two results are essentially equivalent.
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1. Introduction
The Tucker key theorem for linear systems can produce many useful results,

namely several theorems of the alternative, and is a basic tool in the analysis of some lin-
ear economic models. The reader may refer to Koopmans (1951), Howe (1960), Nikaido
(1968, 1972), Mangasarian (1969), etc. Even in linear programming and in nonlinear
programming many results depend on the so-called Farkas theorem (or lemma) or Farkas-
Minkowski theorem (or lemma) or Farkas theorem of the alternative, which in turn can
be easily obtained from the Tucker key theorem (see, e. g., Mangasarian (1969)). The
original proof of Tucker (1956) of his "key theorem" is purely algebraic and performed by
induction. The same proof of Tucker is presented by Mangasarian (1969) and by Kemp
and Kimura (1978).
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Nikaido (1968) offers an interesting proof which utilizes the Stiemke theorem of the
alternative; the proof of Nikaido is however based on properties of closed convex cones
and is a little sophisticated. Singh and Praton (1996) present two proofs of the Tucker
key theorem: the first proof relies on results from the theory of convex polytopes, the
second proof relies on results of Linear Algebra and is more elementary but more intricate
than the first proof. Fujimoto (1976) presents an “autonomous” proof of the key theorem,
proof essentially based on properties of an optimization problem.
The aim of the present paper is to develop several proofs of the Tucker key theorem

and to give also a proof of the Farkas theorem which does not require to show previously
that a convex polyhedral cone is a closed set. This proof is an immediate consequence of
a nonlinear theorem of the alternative, which may be considered a nonlinar version of the
Farkas theorem.

The paper is organized as follows.

In Section 2 we recall the Tucker key theorem and the Farkas theorem of the alterna-
tive. We prove the Farkas theorem by means of a nonlinear theorem of the alternative,
considered by Berge and Ghouila-Houri (1965), and here proved in a simple way.

In Section 3 we obtain the Tucker key theorem from the Farkas theorem and the Motzkin
theorem, through a general theorem of the alternative obtained by De Giuli, Giorgi and
Magnani (1997). This shows that the key theorem and the Farkas theorem are essentially
equivalent results, as well as the key theorem and all the known theorems of the alternative
for linear systems.

In Section 4 we obtain the key theorem directly from the Stiemke theorem of the alter-
native, but with an elementary and algebraic proof.

In Section 5 we obtain the Tucker key theorem form another useful theorem, again due
to Tucker and concerning skew-symmetric matrices. In Section 6 we present the "direct"
proof of the Tucker key theorem, due to Fujimoto (1976) and based on an approach similar
to the one of Morishima (1969) for his proof of the Farkas theorem.

Throughout the paper all matrices and vectors are real. The notation [0] stands for
the zero (row or column) vector or for the zero matrix. The notations x = y, x > y (x
and y vectors of Rn) mean, respectively, xi = yi, ∀i = 1, ..., n; xi > yi, ∀i = 1, ..., n. The
notation x ≥ y means x = y, but x 6= y. If y = [0] , when x = [0] , x > [0] , x ≥ [0] ,
we call x, respectively, a nonnegative vector, a positive vector and a semipositive vector.
The notations x 5 y, x < y, x ≤ y are obvious.

2. The Tucker key theorem and the Farkas theorem
The Tucker key theorem states, in a slightly more precise version than the usual

original version, the following result.

Theorem 1. Given any (m,n) real matrix A and the following two problems:

(i) Find x ∈ Rn such that Ax = [0] and x = [0] .
(ii) Find y ∈ Rm such that y>A = [0] .
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Then the problems (i) and (ii) have at least one pair of solutions such that

x> + y>A > [0] and xi(y
>A)i = 0 for all i.

We note at once that the last equality of the thesis is easily obtained: if xi = 0 the
equality follows trivially, and if xi > 0, being, from (i), y

>Ax = 0, if (y>A)i > 0 we would
have a contradiction. So, if xi > 0 it will hold (y

>A)i = 0.
Obviously, we may have other equivalent reformulations of Theorem 1. For example,

we can consider the formulation: the systems

Ax = [0] , A>y = [0] , y = [0]

(x ∈ Rn, y ∈ Rm) have, respectively, solutions x◦ and y◦ such that Ax◦ + y◦ > [0] .

The well known Farkas theorem of the alternative can be given in the following version.

Theorem 2. Given any (m,n) real matrix A and any vector b ∈ Rm, then the system

S1 = {Ax = b, x = [0]}

has solutions x ∈ Rn if and only if the system

S∗1 =
{
y>A = [0] , y>b < 0

}

has no solution y ∈ Rm.

There are many proofs of this famous result. Perhaps one of the most elementary
proofs is the one given by Gale (1960), which, similarly to the proof of Tucker of his
“key theorem”, is purely algebraic and performed by induction. Other proofs are usually
based on a classical separation property of closed convex sets; however, most of the proofs
assume as an obvious fact the closedness of a polyhedral cone. This property is by no
means so obvious and it can be proved (see Borwein (1983)) that it is equivalent to the
Farkas theorem itself!

Remark 1. The system S∗1 can be equivalently reformulated as

S∗1 =
{
y>A 5 [0] , y>b > 0

}
;

moreover, S∗1 can be equivalently reformulated as

S∗1 =
{
A>y = [0] , b>y < 0

}
.

Moreover, the role of S1 and S
∗
1 can be interchanged, for example we can consider the

formulation
S1 =

{
Ax 5 [0] , b>y > 0

}
.

S∗1 =
{
A>y = b, y = [0]

}
.
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Remark 2. Sometimes the Farkas theorem is not formulated as an alternative theorem,
but in the following (equivalent) form (see, e. g. Giannessi (1982), Kemp and Kimura
(1978), Martos (1975)).

• A necessary and sufficient condition that the system S1 = {Ax = b, x = [0]} has a
solution is that the following implication holds

y>A = [0] =⇒ y>b = 0.

Remark 3. Note that the Farkas theorem is trivial for b = [0], as in this evenience S1
always has the zero solution and S∗1 is impossible.

We have said that there are many ways to prove the Farkas theorem; roughly speaking,
following Broyden (1998) it is possible to distinguish three classes of proofs: algebraic,
algorithmic, and geometric. In spite of what promised by some titles, not always the
related proofs are short, nor elementary. Without any claim of completeness, we recall
the proofs given by Bartl (2008), Broyden (1998), Dax (1997), Good (1959), Nikaido (1968,
1972), Avis and Kaluzny (2004), V. Komornik (1998), Pearl (1967). A good treatment
can be found in Bertsekas (1999); finally, there are proofs which use the Tucker’s key
theorem: see, e. g., Kemp and Kimura (1978), Mangasarian (1969).
We recall also an interesting proof of the Farkas theorem, due to Morishima (1969),

proof which is indeed elementary and short and which has never been taken into consid-
eration since now in the mathematical literature, as far as we are aware, perhaps because
it appeared in a book on economic analysis.

Here we propose a proof which is an immediate by-product of a general theorem of
the alternative for nonlinear systems.
Many theorems of the alternative for nonlinear systems are available in the math-

ematical literature. These theorems usually hold under various generalized convexity
assumptions on the functions involved and some of them are also formulated in an infinite-
dimensional topological setting. Curiously, several of these theorems do not recover di-
rectly, when applied to the (finite-dimensional) linear case, the Farkas-Minkowski theorem.
It is the case, for example, of the results of Bazaraa (1973), of Jeyakumar (1985), of Illés
and Kassay (1994) and of Frenk and Kassay (1999). An exception is a theorem presented
by Berge and Ghouila-Houri (1965), proved by means of a result, due to Berge, on the in-
tersection of convex sets, result which may be considered an extension of the famous Helly
theorem. The elegant proof of Berge and Ghouila-Houri is therefore not quite elementary.
Now we prove, with a simple and self-contained procedure, a slight generalization of the
theorem of Berge and Ghouila-Houri.

Theorem 3. Let be given the system






f(x) < 0;
gj(x) 5 0, j = 1, ...,m;
x ∈ C;

(1)
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where f : C −→ R, gj : C −→ R are convex functions on the convex set C ⊂ Rn. Let us
suppose that the following “generalized Slater condition” holds: there exists x◦ ∈ relintC
such that {

gj(x
◦) < 0 for all j such that gj is not linear;

gj(x
◦) 5 0, for all j such that gj is linear.

(2)

Then system (1) admits no solution if and only if there exists a vector y = [y1, y2, ..., ym] =
[0] such that

f(x) +

m∑

j=1

yjgj(x) = 0, ∀x ∈ C. (3)

Before proving Theorem 3 we introduce some notations and some preliminary consid-
erations. Let us denote by F the following set

F = {x ∈ C : gj(x) 5 0, j = 1, ...,m} .

Some functions gj may be identically zero on F ; we call these functions “singular
functions”, while the others are called “regular functions”. We introduce the following
index sets.

J = {1, 2, ...,m} ;

Js = {j ∈ J : gj(x) = 0, ∀x ∈ F} ;

Jr = J\Js = {j ∈ J : gj(x) < 0 for some x ∈ F} .

We note then, that if the generalized Slater condition holds, all singular functions gj
must be linear. We recall the following classical separation theorem (see, e. g., Mangasar-
ian (1969), Rockafellar (1970)), which does not require that the set X ⊂ Rn (involved in
the theorem) is closed.

Lemma 1. Let X ⊂ Rn be a nonempty convex set, with [0] /∈ X. Then, there exists a
hyperplane H = {x : x ∈ Rn, cx = 0} , with c ∈ Rn, c 6= [0] , which separates X from the
origin of Rn, i. e. such that cx ≥ 0, ∀x ∈ X and cx̄ > 0 for some x̄ ∈ X.

Proof of Theorem 3. If (1) admits a solution, obviously (3) cannot hold for that
solution. This is the trivial part of the proof, which holds without any convexity (or
generalized convexity) assumption and without the generalized Slater condition.
Now, let us assume that (1) does not hold. With u = [u0, u1, ..., um] ∈ Rm+1, let us

define the following set

U = {u : ∃x ∈ C such that u0 > f(x), uj = gj(x) if j ∈ Jr, uj = gj(x), if j ∈ Js} .

Clearly, U is convex and does not contain the origin of Rm+1. Therefore, thanks to
Lemma 1, there exists a separating hyperplane, defined by the nonzero vector [y0, y1, ..., ym] ,
such that

m∑

j=0

yjuj = 0, ∀u ∈ U (4)
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and
m∑

j=1

yjūj > 0, for some ūj ∈ U. (5)

We perform the remaining proof in three steps:

(I) First we prove that y0 = 0 and yj = 0 for all j ∈ Jr.

(II) Secondly we establish that (4) and (5) hold for u = (f(x), g1(x), ..., gm(x)) if x ∈ C.

(III) Then we prove that y0 > 0.

Proof of (I). We show that yj = 0 for all j ∈ {0}∪ Jr. Let us assume that y0 < 0. Let
us take an arbitrary vector (u0, u1, ..., um) ∈ U. By definition (u0 + λ, u1, ..., um) ∈ U for
all λ = 0. Hence by (4) one has

λy0 +
m∑

j=0

yjuj ≥ 0 for all λ = 0.

For sufficiently large λ the left hand side of the last inequality is negative, which is a
contradiction. Therefore it holds y0 = 0. The proof of the nonnegativity of all other yj,
j ∈ Jr, is similar.

Proof of (II). Secondly, we establish that

y0f(x) +

m∑

j=1

yjgj(x) = 0 for all x ∈ C. (6)

This follows from the remark that for all x ∈ C and for all λ = 0 one has u = (f(x) + λ,
g1(x), ..., gm(x)) ∈ U, thus

y0(f(x) + λ) +

m∑

j=1

yjgj(x) = 0 for all x ∈ C.

Taking the limit as λ→ 0 the claim follows.

Proof of (III). Thirdly we show that y0 > 0. The proof is by contradiction. We
already know that y0 = 0. Let us assume that y0 = 0. Hence, from (6) we have

∑

j∈Jr

yjgj(x) +
∑

j∈Js

yjgj(x) =

m∑

j=1

yjgj(x) = 0 for all x ∈ C.

Taking a point x∗ ∈ relintC, such that

gj(x
∗) < 0, ∀j ∈ Jr

gj(x
∗) = 0, ∀j ∈ Js

6



(this point surely exists, thanks to (2)) one has

∑

j∈Jr

yjgj(x
∗) ≥ 0.

Since yj = 0 and gj(x
∗) < 0 for all j ∈ Jr, this implies yj = 0 for all j ∈ Jr. Therefore it

holds ∑

j∈Js

yjgj(x) = 0 for all x ∈ C. (7)

Now, from (5), with x̄ ∈ C such that ūj = gj(x̄) for j ∈ Js, we have

∑

j∈Js

yjgj(x̄) > 0. (8)

Because x∗ ∈ relintC, there exist a vector x̃ ∈ C and 0 < λ < 1 such that x∗ = λx̄+(1−λ)x̃.
Taking into account that it holds gj(x

∗) = 0 for j ∈ Js and that the singular functions
are linear, one gets

0 =
∑

j∈Jr

yjgj(x
∗) =

∑

j∈Js

yjgj(λx̄+ (1− λ)x̃) =

= λ
∑

j∈Js

yjgj(x̄) + (1− λ)
∑

j∈Js

yjgj(x̃) > (1− λ)
∑

j∈Js

yjgj(x̃).

The last inequality follows from (8). Since (1− λ) > 0 we obtain the inequality

∑

j∈Js

yjgj(x̃) < 0

which contradicts (7). Hence we have proved that y0 > 0.

At this point we have (6), with y0 > 0 and yj = 0 for all j ∈ Jr. Dividing by y0 > 0 in
(6) and by defining yj ≡ (yj/y0) for all j ∈ J we obtain the thesis. �

Remark 4. Of course the multipliers of all singular constraints can always be chosen
strictly positive.

Remark 5. The classical Farkas-Minkowski theorem, where, e. g., S1 and S
∗
1 have the

form

S1 : Ax = b, x = [0]

S∗1 : A>u = [0] , b>u < 0,

can be simply deduced from Theorem 3. It is quite immediate to verify that S1 and S
∗
1

cannot have both a solution. It remains to prove that if S∗1 has no solutions, then S1
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admits a solution. Let us write S∗1 in the form f(u) ≡ b
>u < 0,−A>u 5 [0] . If S∗1 admits

no solutions, from Theorem 3 we have that there exists x ∈ Rn+ such that

b>u− x>A>u = u>(b− Ax) = [0] ,

for each u ∈ Rm, and therefore it holds b− Ax = [0] , x = [0] . �

Remark 6. In Giorgi (2002) it is proved the following generalization of Theorem 3,
by use of the Fan-Glicksberg-Hoffman theorem of the alternative (see, e. g., Mangasarian
(1969)), which may be considered a nonlinear version of the Gordan theorem of the
alternative and which can be proved in a quite elementary way.

Theorem 4. Let C ⊂ Rn be a nonempty convex set, f : C −→ Rp, g : C −→ Rq be
convex functions and h : Rn −→ Rr be a linear function. Let us assume that there exists
x̄ ∈ relintC such that gj(x̄) < 0, j = 1, ..., q, and hi(x̄) 5 0, i = 1, ..., r. Then the system






fk(x) < 0, k = 1, ..., p;
gj(x) 5 0, j = 1, ..., q;
hi(x) 5 0, i = 1, ..., r;

admits no solutions if and only if there exists a vector (u, v, w)> ∈ Rp+×R
q
+×R

r
+, u 6= [0] ,

such that
u>f(x) + v>g(x) + w>h(x) = 0, ∀x ∈ C.

From this theorem it is quite easy to deduce the Motzkin theorem of the alternative
(see the next Theorem 6). Another generalized Motzkin theorem has been obtained by
Jeyakumar (1985), under a regularity assumption, due to Karlin, which is equivalent to
Slater condition.

Remark 7. Other nonlinear theorems of the alternative, useful to deduce directly the
Farkas-Minkowski theorem, are due to Cambini (1986) and Giannessi (1980, 1984). In
particular, the following result is a particular case of a more general theorem proved by
the said authors.

Theorem 5. Let C ⊂ Rn be a nonempty convex set and let f : C −→ Rp, g : C −→ Rq

be convex functions. Then:

(i) If the system {
fk(x) < 0, k = 1, ..., p;
gj(x) 5 0, j = 1, ..., q;

(9)

admits no solutions, then there exist vectors u> ∈ Rp+, v
> ∈ Rq+, with (u, v)

> 6= [0] , such
that

u>f(x) + v>g(x) = 0, ∀x ∈ C. (10)

(ii) If (10) holds with u> ∈ Rp+, v
> ∈ Rq+, (u, v)

> 6= [0] and, moreover, if it holds

{
x ∈ C, fk(x) < 0, k = 1, ..., p; gj(x) 5 0, j = 1, ..., q; v

>g(x) = 0
}
= ∅,
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whenever u = [0] , then system (9) is impossible.

From this theorem Giannessi (1980) obtains in a simple way a non-homogeneous ver-
sion of the Farkas-Minkowski theorem, due to Duffin (see Mangasarian (1969)). From the
Duffin theorem at once the Farkas-Minkowski theorem follows.

3. The Tucker key theorem from the Farkas theorem
We first obtain the Motzkin theorem of the alternative from the Farkas theorem.

We recall the Motzkin theorem of the alternative.

Theorem 6. Given (real) matrices A, B and H of appropriate dimensions, exactly one
of the following two systems has a solution:

(i) Ax < [0] , Bx 5 [0] , Hx = [0] .
(ii) u>A+ v>B + w>H = [0] , u ≥ [0] , v = [0] .

Proof.
a) It is easy to show that both (i) and (ii) cannot have a solution. Suppose u>A+

v>B+w>H = [0] for some u ≥ [0] , v = [0] , w unrestricted in sign. Then, for every vector
x we have u>Ax+ v>Bx+w>Hx = 0. If Bx 5 [0] , then v>Bx 5 0 and if Hx = [0] , then
w>Hx = 0. Thus u>Ax = 0. Since u is semipositive, Ax < [0] cannot hold.

b) Suppose now that (i) has no solution. Then the system






Ax+ eθ 5 [0] , θ > 0;
Bx 5 [0] ;
Hx 5 [0] ;
−Hx 5 [0] ;

has no solution (the vector e is the summing vector, i. e. e = [1, 1, ..., 1]>). This system
can be rewritten in the form






A e
B [0]
H [0]
−H [0]






(
x
θ

)
5 [0] , (0, ..., 0, 1)

(
x
θ

)
> 0.

From the Farkas theorem, there exists a vector (u, v, w1, w2) = [0] such that






A e
B [0]
H [0]
−H [0]






>




u
v
w1

w2




 =






0
.
0
1




 .

This can be rewritten as u>A + v>B + (w1 − w2)>H = [0] , u>e = 1. Letting w> =
(w1 − w2)>, we have completed the proof of b). �
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Remark 8. Obviously also the Motzkin theorem of the alternative can be equivalently
reformulated in other forms, e. g., as an alternative between

S2 = {Ax > [0] , Bx = [0] , Hx = [0]}

and
S∗2 =

{
u>A+ v>B + w>H = [0] , u ≥ [0] , v = [0]

}
.

By means of the Motzkin theorem of the alternative and with algebraic operations
only, De Giuli. Giorgi and Magnani (1997) obtained a general theorem of the alternative
for linear systems which contains all the known theorems of the alternative for linear
systems and many other formulations: on the whole 225 theorems of the alternative!
Let the real matrix A of order (m,n), and the column vectors b ∈ Rm and x ∈ Rn be

partitioned in the following forms

A =






A11 A12 ... A1q
A21 A22 ... A2q
... ... ... ...
Ap1 Ap2 ... Apq




 , b =






b1

b2

...
bp





, x =






x1

x2

...
xq





,

with Aij of order (mi, nj), b
i ∈ Rmi , xj ∈ Rnj , p > 3.q > 3. Define the submatrices

Ai = [Ai1;Ai2; ...;Aiq] , i ∈ {1, 2, ..., p}

Aj =






A1j
A2j
...
Apj





, j ∈ {1, 2, ..., q}

and set up the system

S3 =






A1x = b
1

A2x 5 b
2

A3x < b
3

Aix ≤ b
i, i ∈ {4, 5, ..., p}

x1 sign unrestricted
x2 = [0]
x3 > [0]
xj ≥ [0] , j ∈ {4, 5, ..., q} .

The following general theorem of the alternative is valid for system S3 (see De Giuli,
Giorgi and Magnani (1997)).

Theorem 7. System S3 admits a solution x if and only if no vector

y> =
[
(y1)>; (y2)>; (y3)>; (y4)>; ...; (yp)>

]
,

10



(yi)> ∈ Rmi , i ∈ {1, 2, ..., p} , solves the system

S∗3 =






y>A1 = [0]
y>A2 = [0]
y>A3 = [0] y>A3 ≥ [0]
y>Aj = [0] , j ∈ {4, 5, ..., q} y>Aj > [0] for some j = 4
(y1)> sign unrestricted
(y2)> = [0]
(y3)> = [0] (y3)> ≥ [0]
(yi)> = [0] , i ∈ {4, 5, ..., p} (yi)> > [0] for some i = 4
y>b 5 0 y>b < 0
moreover, at least one of the relations
of the second column holds.

The effort to prove Theorem 7 pays us, because, as we have already mentioned, the
said theorem can generate 225 theorems of the alternative, among which all the "classical"
theorems of the alternative for linear systems, already known in the literature (see, e.
g., Mangasarian (1969), Giannessi (1982, 2005)). For other considerations the reader is
referred to the paper of De Giuli, Giorgi and Magnani (1997).

From Theorem 7 it is possible to deduce at once the Tucker key theorem: we have to
prove that the systems

Ax = [0] , A>y = [0] , y = [0]

(x ∈ Rn, y ∈ Rm) have, respectively, solutions x◦ and y◦ such that Ax◦ + y◦ > [0] . In
other words, we have to prove that the system






A>y = [0]
−Ax 5 [0]
−Ax− Iy > [0]
y = [0]

admits a solution. On the ground of Theorem 7, it is sufficient to prove that its “dual”
system 





A>u2 + A>u3 = [0]
Au1 − u3 = [0]
u1 ∈ Rn, u2 = [0] , u3 ≥ [0]

admits no solution.

Let us absurdly suppose that this last system admits a solution. We obtain

0 = (u1)>A>(u2 + u3) = (u2 + u3)>Au1 = (u2 + u3)>u3 = (u3)>u3 > 0,

which is a contradiction. So, the Tucker key theorem is proved. �
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We have mentioned that Tucker’s original proof is by induction and quite elementary:
more precisely, Tucker first proves the following result: the system

Ax = [0] , x = [0] , A>y = [0] (11)

has solutions x and y such that
(x+ A>y)1 > 0.

We note that this preliminary result can be easily obtained from the Farkas theorem,
which shows to be once more a "river from which many streams flow". Indeed, if there
exists a solution of (11) with x1 > 0, there is nothing to prove. If there does not exist a
solution with x1 > 0, then writing x1 = (e

1)>x, where (e1)> = [1, 0, ..., 0] , the system

Ax = [0] , x = [0] , (−e1)>x < 0

does not have a solution; then Farkas theorem states that the system A>z 5 −e1 has a
solution. Hence, with y = −z, one has a solution of (11) such that the first coordinate of
(x+A>y) is positive. From this preliminary result the Tucker key theorem follows easily:
let us define

x◦ =
n∑

j=1

xj and y◦ =
n∑

j=1

yj,

where xj ∈ Rn and yj ∈ Rm are solutions of (1), their existence following from the
preliminary result. Then

xi
◦ + (A>y◦)i = (x

i + A>y)i > 0, i = 1, ..., n.

4. The Tucker key theorem from the Stiemke theorem
We recall the Stiemke theorem of the alternative.

Theorem 8. (Stiemke theorem of the alternative). Given any matrix A of order (m,n),
the system

Ax ≥ [0]

admits a solution if and only if the system

A>y = [0] , y > [0]

does not admit solution.

The Stiemke theorem can be obtained by the Tucker key theorem. Here we shall prove
the converse (the fact that the two theorems are in fact equivalent comes also from the
results of the previous section).

Lemma 2. The system Ax = [0] can always be decomposed as follows

{x | Ax = [0]} =

{
x

∣∣∣∣
A(1)x = [0]
A(2)x = [0]

}
, (12)

12



{
x

∣∣∣∣
A(1)x = [0]
A(2)x > [0]

}
6= ∅, (13)

{
x | A(1)x ≥ [0]

}
= ∅, (14)

where one of the submatrices A(1) or A(2) can be empty.

Proof. We bild up the sets

Qi = {x | Ax = [0] , Aix > 0} , i = 1, ...,m,

and decompose the matrix A into the two submatrices

A(1) = (Ai)i∈I1 , I1 = {i | Qi = ∅}

A(2) = (Ai)i∈I2 , I2 = {i | Qi 6= ∅} .

We note that, owing to this construction, relation (12) is satisfied, as from Ax = [0] it
follows Aix = 0 for all i ∈ I1, that is A(1)x = [0] . Then, relation (13) follows, as, owing
to the above construction, there exist vectors qi ∈ Qi, i ∈ I2, and for q =

∑
qi we have

A(1)q = [0] , A(2)q > [0] .
Therefore q is an element of the set considered in (13). The property (14) will be

proved in an indirect way. If it holds A(1)z ≥ [0] for a given z, then it will follow, for
x = λq + z, being q the vector defined above and λ > 0,

A(1)x = A(1)z ≥ [0]

A(2)x = λA(2)q + A(2)z = [0]

where the second row is obtained thanks to the fact that it holds A(2)q > [0] and with λ
sufficiently large. But then x contradicts relation (12), i. e. x is in the set described by
the left-hand side of (12), but not in the set described in the right-hand side of (12). �

Proof of the Tucker key theorem. Let us decompose the system Ax = [0] on the
ground of Lemma 2. From (13) and (14) we get

∃x◦ ∈ Rn : A(1)x
◦ = [0] , A(2)x

◦ > [0] (15)

@x ∈ Rn : A(1)x ≥ [0] . (16)

From the Stiemke theorem and from (16) it follows

∃y1 > [0] : A>(1)y
1 = [0] .

Then we obtain, taking relation (15) into account,

∃x◦, y◦ =

[
y1

[0]

]
: Ax◦ + y◦ =

[
[0] + y1

A(2)x
◦ + [0]

]
> [0]
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with Ax◦ = [0] , A>y◦ = [0] , y◦ = [0] , i. e. the Tucker key theorem. �

The Stiemke theorem of the alternative is in fact equivalent to the Gordan theorem of

the alternative (Gordan (1873)), which is perhaps the first theorem of the alternative for
linear systems published on a mathematical journal.

Theorem 9. (Gordan theorem of the alternative). Given any matrix A of order (m,n),
the system

Ax > [0]

admits a solution x ∈ Rn if and only if the system

A>y = [0] , y ≥ [0]

does not admit a solution y ∈ Rm.

The said equivalence was noted by Antosiewicz (1955) for more general systems and
can be proved easily as follows. By means of the matrix A, let us construct the following
linear spaces (complementary to each other):

L = {v ∈ Rm : v = Ax, x ∈ Rn}
L⊥ =

{
y ∈ Rm : A>y = [0]

}
.

(17)

We can then rewrite the Gordan theorem in the “alternative form”:

(I) ∃v ∈ L, v > [0] ;
(II) ∃y ∈ L⊥, y ≥ [0] .

(18)

Being L⊥⊥ = L, we can dualize the alternative relations (18), by exchanging the order
relations on the respective vectors:

(I ′) ∃v ∈ L, v ≥ [0] ;
(II ′) ∃y ∈ L⊥, y > [0] .

(19)

If we express (19) by means of (17), we obtain a dual version of the Gordan theorem
of the alternative, i. e. the Stiemke theorem of the alternative:

(I ′′) ∃x ∈ Rn : Ax ≥ [0] ;
or

(II ′′) y ∈ Rm : A>y = [0] , y > [0] ,
but never both.
The proof of the Gordan theorem of the alternative by means of a separation theorem,

has the advantage, with respect to the similar proof of the Farkas theorem, to require a
weak separation theorem, where no “closedness property” is required. See, e. g., Bazaraa,
Sherali and Shetty (1993).

Also the Stiemke theorem of the alternative can be proved easily in a direct way:

a) (I ′′) =⇒ not(II ′′) : clearly both (I ′′) and (II ′′) cannot be true, for then we must
have both y>Ax = 0 (as y>A = [0]) and y>Ax > 0 (as y > [0] and Ax ≥ [0]).
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b) not(I ′′) =⇒ (II ′′) : let ∆ =
{
z ∈ Rm : z ≥ [0] and

∑n

j=1 zj = 1
}
be the unit sim-

plex in Rm. In geometric terms, (I ′′) asserts that the span M of the columns {A1, ..., An}
intersects the nonnegative orthant Rm+ at a nonzero point, namely Ax. SinceM is a linear
subspace, we may rescale x so that Ax belongs to M ∩ ∆. Thus the negation of (I ′′) is
equivalent to the disjointness of M and ∆. So, assume that (I ′′) fails. Then, since ∆ is
compact and convex andM is closed and convex, there is a hyperplane strongly separating
∆ and M. That is, there is some nonzero y ∈ Rm and some ε > 0 satisfying

yp+ ε < yz for all p ∈M, z ∈ ∆.

Since M is a linear subspace, we must have yp = 0 for all p ∈ M. Consequently,
yz > ε > 0 for all z ∈ ∆. Since the j − th unit coordinate vector ej belongs to ∆, we see
that yj = y>ej > 0, that is y > [0] . Since each Ai ∈ M, we have that y>Ai = 0, i. e.
y>A = [0] . This completes the proof. �

5. The Tucker key theorem from another Tucker theorem
In the same paper where the key theorem was proved, Tucker presented another

useful result, we call the Tucker existence lemma for skew-symmetric matrices. This
lemma is important to derive duality results for linear programming problems, but can
be used also to derive the Tucker key theorem.

Lemma 3. (Tucker existence lemma). Let L be a (square) skew-symmetric (real)
matrix (i. e. L> = −L). Then the system

Lx = [0] , x = [0] (20)

has a solution x̄ for which
Lx̄+ x̄ > [0] . (21)

Proof. This lemma can be proved directly from the "all-purpose" Theorem 7 of Section
3, by noting that the following systems are in alternative:

(i) Ax = [0] , Bx > [0] , x = [0] ;

(ii) A>u+B>v 5 [0] , u = [0] , v ≥ [0] .

Then, in order to prove that the system

Lx = [0] , (L+ I)x > [0] , x = [0]

admits a solution, it is sufficient to prove that its "dual" system

u = [0] , v ≥ [0] , L>u+ (L> + I)v 5 [0]

does not admit solutions. Being L> = −L, the last inequality can be rewritten as v 5
L(u+ v). Let us absurdly suppose that such a solution exists. We obtain

0 < v>v 5 (u+ v)>v 5 (u+ v)>L(u+ v) = 0,

15



which is obviously absurd. �

It is, however, possible to prove the Tucker existence lemma directly from the Farkas
theorem.

Let L be an arbitrary skew-symmmetric matrix, of order n, let ei be the i − th unit
coordinate vector and I the identity matrix of order n. By Farkas theorem, either the
system {

−L>x = [0] , Ix = [0] , (−ei)>x < 0
}

(22)

has a solution, or the system

{
Lv − Iz = ei, v = [0] , z = [0]

}

has a solution y, with y> = (v>; z>), but never both. In the first case, taking into account
the equality L> = −L, we have a solution xi of (22) for which Lxi = [0] , xi = [0] , xii > 0.
In the second case, we have a vector vi for which Lvi = ei, vi = [0] . Therefore, in either
case there exists a vector xi for which Lxi + xi = [0] and the i − th component of the
vector on the left-hand side is positive. Thus, the vector

x =
n∑

i=1

xi

meets (20) and (21). �

Theorem 10. Lemma 3 implies the Tucker key theorem.

Proof. Let A be an arbitrary matrix. Let us rewrite the system

Ax = [0] , A>y = [0] , y = [0]

in an equivalent matrix form:




[0] A −A
−A> [0] [0]
A> [0] [0]








y
x1

x2



 = [0] , y = [0] , x1 = [0] , x2 = [0] . (23)

The matrix appearing in (23) is skew-symmetric. By applying Lemma 3, there exists
a solution y, x1, x2 of (23) such that




[0] A −A
−A> [0] [0]
A> [0] [0]








y
x1

x2



+




y
x1

x2



 > [0] .

From this we have A(x1 − x2) + y > [0] and setting x = x1 − x2 we get the thesis of the
Tucker key theorem. �
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6. A direct simple proof of the Tucker key theorem
In this section we present, for the reader’s convenience, the proof of Fujimoto

(1976) of the Tucker key theorem, proof based on a minimization problem and similar to
the proof of Morishima (1969) of the Farkas theorem.

Proof of Theorem 1. (Fujimoto (1976)). If (i) of Theorem 1 has a solution which
is stricyly positive, x > [0] , then put y = [0] and we have the desired result. Next,
suppose that (i) of Theorem 1 has no solution such that x > [0] . Then, there is a vector
x̄ = [x̄1, ..., x̄n]

> which has the minimum number of zero element(s) among the solutions
of (i). Denote this minimum number as r and, without loss of generality, suppose that

x̄j = 0, for 1 5 j 5 r

and
x̄j > 0, for r + 1 5 j 5 n.

Of course, r may be equal to n, in which case there exists the zero solution only. Let be

M = x>A>Ax. (24)

Now, consider the following minimization problem

(P )

{
Minimize M subject to xj = 0 for each j and∑r

j=1 xj = 1.
(25)

Note that the variables are the elements xj and that the summation (25) in the con-
straint ranges form j = 1 to j = r. Since the above problem is quadratic, it has a solution
vector x∗. It can be shown that the minimum value ofM is positive,M∗ > 0. Because, if it
would be zero, we get Ax∗ = [0] and we can form a new vector x◦ = x̄+x∗, which satisfies
Ax◦ = [0] , x◦ ≥ [0] and has a less number of zero elements than x̄, thus a contradiction.
Now we apply the Lagrange multiplier theorem, taking into account that our problem has
nonnegative variables. We form the Lagrangian function

L =M − λ(
r∑

j=1

xj − 1).

At the solution point x∗, there is the corresponding multiplier value λ∗ and we have

2x∗>A>A− λ∗e◦ = [0] (26)

2x∗>A>Ax∗ − λ∗e◦x∗ = 0, (27)

where e◦ = [1, ...1, 0, ..., 0] , i. e. the first r elements are the unity, the others are the zero
element. Using (24) and (25), the above equation (27) leads to

2M∗ − λ∗ = 0.
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Thus, we find λ∗ > 0. Then, by putting ȳ> = 2x∗>A>, it follows from (26) that
ȳ>A ≥ [0] , where the first r elements are positive. Therefore, we obtain x̄> + ȳ>A > [0] .
Moreover, since Ax̄ = [0] , the vector x∗ + x̄ is again a solution whose last n− r elements
are strictly positive. Supposing x∗ is already such a solution, then from (26) and (27),
(ȳ>A)i = 0 for r + 1 5 i 5 n. Thus, x̄i(ȳ

>A)i = 0 for all i. �
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