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Abstract
We give an overview and make some remarks on the approximate optimality conditions, for a nonlinear

programming problem, given by Haeser and Schuverdt (2011) and by Fiacco and McCormick (1968a). Other
first-order optimality conditions in absence of constraint qualifications are examined. Finally, we extend to a
Pareto problem the approximate optimality conditions of Haeser and Schuverdt.
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1. Introduction

The characterization of a local solution of a constrained minimization problem has
traditionally been given in terms of the functions involved in the problem, put together to
form an associated Lagrangian function, whose gradient is evaluated at the solution point for
a corresponding set of finite multipliers (the Lagrange multipliers, the Fritz John multipliers,
the Karush-Kuhn-Tucker multipliers). Besides this classical approach, other treatments of
constrained optimality conditions give a characterization of optimality in terms of appropriate
sequences of points and multipliers. In this case we can speak of "approximate optimality
conditions" or also "asymptotic optimality conditions" or "sequential optimality conditions".
A recent paper on this second approach is due to Haeser and Schuverdt (2011). Other recent
papers treating similar questions are due to Andreani, Haeser and Martinez (2011) and to
Andreani, Martinez and Svaiter (2010).
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However, prior to these contributions, we can quote the works of Kortanek and Evans
(1968), Evand and Kortanek (1970) for pseudoconcave programming, the paper of Fiacco
and McCormick (1968a) and the papers of Zlobec (1970, 1971a, 1971b, 1972), where this
last author generalizes in an asymptotic way, the optimality conditions given by Guignard
(1969). Asymptotic versions of the Karush-Kuhn-Tucker conditions are considered also by
Craven (1984) and by Trudzik (1981/82).
The present paper is organized as follows. In Section 2 we give an overview of the approach

of Haeser and Schuverdt (2011); in Section 3 we follow mainly the approach of Fiacco and
McCormick (1968a), by extending the first-order approximate optimality conditions also to
second-order results. In Section 4 we are concerned with other optimality conditions in absence
of constraint qualifications. In Section 5 we extend the results of Haeser and Schuverdt (2011)
to a vector (Pareto) optimization problem.
The scalar mathematical programming problem we consider in Section 2 is:

(P) Minimize f(x), subject to x ∈ S

where
S = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} ,

f : Rn −→ R, g : Rn −→ Rm, and h : Rn −→ Rr are continuously differentiable functions. The
associated Lagrangian function is

L(x, u, w) = f(x) +
m∑

i=1

uigi(x) +

r∑

j=1

wjhj(x).

We define the set of active (inequality) constraints at the feasible point x0 as

I(x0) =
{
i : gi(x

0) = 0
}

and we define the cone

Z(x0) =
{
z ∈ Rn : z∇gi(x

0) ≤ 0, i ∈ I(x0), z∇hj(x
0) = 0, j = 1, ..., r, and z∇f(x0) < 0

}
.

The following result is well known and is a direct consequence of the Farkas theorem of the
alternative.

Theorem 1. If x0 ∈ S and if Z(x0) = ∅, then there exist vectors u0 ∈ Rm and w0 ∈ Rr

such that
∇xL(x

0, u0, w0) = 0, (1)

u0i gi(x
0) = 0, i = 1, ...,m, (2)

u0i ≥ 0, i = 1, ...,m. (3)

The following result is perhaps the most widely invoked theorem on nonlinear programming.

2



Theorem 2. (Karush-Kuhn-Tucker) If x0 is a local solution of (P) and if some constraint
qualification holds at x0, then the hypotheses of Theorem 1 are satisfied and (1)-(3) follow.

One of the constraint qualifications more used for (P) is the Mangasarian-Fromovitz con-
straint qualification:

• At x0 ∈ S the gradients ∇h1(x0), ...,∇hr(x0) are linearly independent and there exists a
vector s ∈ Rn such that {

s∇gi(x
0) < 0, ∀i ∈ I(x0)

s∇hj(x
0) = 0, j = 1, ..., r.

This constraint qualification is necessary and sufficient for the set of the Karush-Kuhn-
Tucker multipliers (u,w) satisying (1)-(3) to form a bounded set (see Gauvin (1977)). The
above quoted conditions of optimality may fail for a large class of problems. This justifies the
search for optimality conditions for (P), even when the Karush-Kuhn-Tucker multipliesrs do
not exist.

2. The Approach of Haeser and Schuverdt

We give a short account of the sequential optimality conditions fo (P) of Haeser and
Schuverdt (2011), as these conditions will be generalized to a Pareto multiobjective problem
in Section 5. See also the paper of Andreani, Martinez and Svaiter (2010) and of Andreani,
Haeser and Martinez (2011).

Definition 1. Let us consider (P); we say that the Approximate Karush-Kuhn-Tucker
Condition (AKKT) is satisfied at a feasible point x0 ∈ S if, and only if, there exist sequences{
xk
}
⊂ Rn,

{
uk
}
⊂ Rm+ ,

{
wk
}
⊂ Rr, such that xk −→ x0,

∇f(xk) +

m∑

i=1

uki∇gi(x
k) +

r∑

j=1

wkj∇hj(x
k) −→ 0 (4)

and
gi(x

0) < 0 =⇒ uki = 0 for sufficiently large k. (5)

This AKKT condition corresponds to the AKKT(∅) condition of Andreani, Haeser and
Martinez (2011). It must be noted that AKKT implies the Karush-Kuhn-Tucker optimality
conditions (1)-(3) under the constant positive linear dependence condition (CPLD):

• CPLD holds at x0 ∈ S if there exists a neighborhood B(x0) of x0 such that for every
I ⊂ I(x0) and every J ⊂ {1, ..., r} , whenever ({∇gi(x0)}i∈I , {∇hj(x

0)}
j∈J
) is positive-linearly

dependent, then {∇gi(y)}i∈I ∪ {∇hj(y)} is linearly dependent for every y ∈ B(x
0).

CPLD is a constraint qualification weaker than the Mangasarian-Fromovitz c. q.: see
Andreani, Haeser, Schuverdt and Silva (2012). Moreover, CPLD is also implied by the constant
rank constraint qualification (CRCQ) at x0 ∈ S, which in turn implies the relaxed constant rank
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condition (RCR) at x0 ∈ S. Andreani, Haeser, Schuverdt and Silva (2012) have introduced a
relaxed version of CPLD, which is implied by all conditions mentioned above.
Note, moreover, that if x0 ∈ S is a local minimum point for (P) and any constraint qualifi-

cation holds at x0, then AKKT holds at x0 for constant sequences xk = x0, uk = u0, wk = w0,
being u0 ∈ Rm+ and w

0 ∈ Rr.

Haeser and Schuverdt (2011) prove the following result, which is a special case of a more
general result of Andreani, Haeser and Martinez (2011).

Theorem 3. If x0 ∈ S is a local minimum for (P), then x0 satisfies the AKKT condition
(4)-(5).

The same authors then prove that a stronger version of the AKKT condition is suffient for
optimality in convex programming.

Definition 2. A point x0 ∈ S satisfies the strong AKKT condition (SAKKT) if there exist
sequences

{
xk
}
⊂ Rn,

{
uk
}
⊂ Rm+ ,

{
wk
}
⊂ Rr such that (4) holds and

gi(x
k) < 0 =⇒ uki = 0.

We note that every local minimizer for (P) satisfies also SAKKT.

Theorem 4. Let in (P) be f and g convex functions and let h be an affine function. If
x0 ∈ S satisfies SAKKT and if the sequences

{
xk
}
,
{
wk
}
are such that wkjhj(x

k) ≥ 0 for every
j = 1, ..., r and for every k ∈ N, then x0 is a solution for (P).

From the proof of Haeser and Schuverdt we can deduce that Theorem 4 holds also uinder the
more general assumption of f and g pseudoconvex functions. Another approach to optimality
conditions for (P), which has some aspects of similarity with the present approach, is due to
Martinez and Svaiter (2003).

3. The Approach of Fiacco and McCormick

The pioneering contributions of Fiacco and McCormick (1968a) to asymptotic optimal-
ity conditions benefit from some results of their basic book on sequential unconstrained mini-
mization techniques for mathematical programming problems (Fiacco andMcCormick (1968b)).
Their main results are summarized below.

Definition 3. A nonempty set M∗ ⊂M ⊂ Rn is called an isolated set of M if there exists
a closed set E such that int(E) ⊃M∗ and such that if x ∈ E�M∗, then x /∈M.

Fiacco and McCormick consider the following slight variant of (P):

(P1) Minimize f(x), subject to x ∈ S1

where

S1 = {x ∈ R
n : g(x) ≥ 0, h(x) = 0} .
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The assumptions on (P1) are the same made on (P); the associated Lagrangian function is

L1(x, u, w) = f(x)−

m∑

i=1

uigi(x) +

r∑

j=1

wjhj(x).

The Karush-Kuhn-Tucker conditions for (P1) are obviously the same for (P), i. e. conditions
(1)-(3), with L1(x, u, w) instead of L(x, u, w).

Definition 4. Let O(x) be a continuous function such that O(x) = 0 if x ∈ S1 (i. e. if x
satisfies the constraints of problem (P1)) and O(x) > 0 otherwise.

Fiacco and McCormick (1968a) remark that the function T (x, t) = f(x)+tO(x) is a penalty
function for (P1).

Definition 5. Let M be the set of local minimum points for (P1), with local minimum
value v∗.

Lemma 1. (Fiacco and McCormick (1968a, 1968b)) Let the functions involved in (P1)
be continuous; if a compact set M∗ is an isolated set of M , if T (x, t) is a penalty function,
and if {tk} is an increasing unbounded positive sequence, then there exists a compact set K
containing M∗ in its interior and such that the unconstrained minima of T (x, tk) in int(K)
exist for k large enough, and every limit point of any subsequences

{
xk
}
of the minimizing

points is in M∗. Furthermore, it follows that T (xk, tk) and f(xk) monotonically increase to v∗,
O(xk) monotonically decreases to 0, and lim

k−→∞
tkO(x

k) = 0.

Several examples of penalty functions had been considered in the literature. Fiacco and
McCormick (1968a) choose the following one:

T (x, t) = f(x) + t

m∑

i=1

g2i (x)H(gi) + t

r∑

j=1

h2j(x) (6)

where H(gi) = 0 if gi(x) ≥ 0 and H(gi) = 1 if gi(x) < 0.

This penalty function has been rather extensively studied by various authors: see, e. g.,
Butler andMartin (1962), Fiacco andMcCormick (1967, 1968b), Pietrzykowski (1962), Zangwill
(1967).
It may be easily verified that (6) satisfies the definition of a penalty function as given above.

Based on the above concepts and results, Fiacco and McCormick (1968a) present the following
optimality conditions for problem (P1).

Theorem 5. Let us suppose that there exists a compact set M∗ which is an isolated set of
M (set of local minima of (P1) associated with local minimum value v∗). Then there exists a
triplet (xk, uk, wk) such that xk −→ x∗ ∈ M∗, f(xk) −→ v∗, uki ≥ 0 and uki gi(x

k) −→ 0 for
i = 1, ...,m, wkjhj(x

k) −→ 0 for j = 1, ..., r, and ∇L1(xk, uk, wk) ≡ 0.

Proof. From Lemma 1, it follows that an unconstrained minimizing point xk for any
penalty function T (x, tk) exists with the property that xk −→ x∗ ∈ M∗ and f(xk) −→ v∗.
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Numerous realizations of T (x, t) can be used to obtain the desired results. Let us consider
the example of the penalty function given in (6). A necessary condition for unconstrained
minimization implies that

∇xT (x
k, tk) ≡ ∇f(x

k) + 2tk

m∑

i=1

gi(x
k).H

[
gi(x

k)
]
∇gi(x

k) + 2tk

r∑

j=1

hj(x
k)∇hj(x

k) = 0. (7)

If we define
uki ≡ −2tkgi(x

k)H
[
gi(x

k)
]
, i = 1, ...,m (8)

and
wkj ≡ 2tkhj(x

k), j = 1, ..., r, (9)

then it follows from (7) that

∇xT (x
k, tk) = ∇xL1(x

k, uk, wk) ≡ 0 (10)

where L1(x, u, w) is the Lagrangian function associated to (P1) and previously defined. Note
that uki ≥ 0 for all i. Further, invoking the last conclusion of Lemma 1, i. e. lim

k−→∞
tkO(x

k) = 0

and interpreting this in terms of our present penalty function (6) leads immediately to the fact
that uki gi(x

k) −→ 0 and wkjhj(x
k) −→ 0 for all i, j. �

The next results are essentially the approximate necessary optimality conditions for (P1)
given by Haeser and Schuverdt (2011).

Corollary 1. If x∗ ∈ S1 is a local minimum for (P1), then the conclusions of Theorem 5
hold, with the exception that the identical vanishing of the gradient of Lagrangian function
along the sequence must be substituted with the condition

∇xL1(x
k, uk, wk) −→ 0.

Proof. Consider problem (P1) with the objective function replaced by f(x)+ 1
2
‖ x−x∗ ‖2,

and denote this perturbed problem by (P∗1). Since x
∗ is a local minimum of problem (P1), it

follows that x∗ is an isolated (i. e. unique in a neighborhoood) local minimum of problem (P∗1).
The conclusions of the corollary now follow immediatedly from Theorem 5 applied to problem
(P∗1), noting that

∇xL1(x
k, uk, wk) + (xk − x∗) ≡ 0,

so that ∇xL1(x
k, uk, wk) −→ 0. �

It is worthwhile to remark that if a solution x̄ of problem (P1) is isolated, i. e. locally
unique, then the final conclusions of Corollary 1 can be strengthened to ∇xL1(x

k, uk, wk) ≡ 0.
This follows from the fact that the set of local minima M∗, as in Theorem 5, can be selected
such that M∗ = {x∗} .
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Fiacco and McCormick remark also that Corollary 1 leads easily to the Fritz John optimality
conditions for (P1). Define the generalized Lagrangian function

L̃1(x, u, w) = µ0f(x)−

m∑

i=1

µigi(x) +

r∑

j=1

ωjhj(x).

Corollary 2. If x∗ ∈ S1 is a local minimum point for (P1), then there exists a pair (µ∗, ω∗) 6=
0 such that µ∗i ≥ 0, i = 0, 1, ...,m, µ

∗
i gi(x

∗) = 0, i = 1, ...,m, and ∇L̃1(x∗, u∗, ω∗) = 0.

Proof. If
{
µk, ωk

}
has a finite limit point µ∗, ω∗, the conclusion follows immediately from

the conclusions of Corollary 1, with µ∗0 = 1, µ∗i = u∗i , i = 1, ...,m, and ω∗j = w∗j , j = 1, ..., r.
Otherwise, define vk =

∑
i µ

k
i +

∑
j | ω

k
j | . We can assume v

k > 0 for every k and vk −→ +∞.

Let µk0 = 1/vk, µki = uki /v
k, i = 1, ...,m, and ωkj = wkj /v

k, j = 1, ..., r. There must exist a
subsequence which we still denote by

{
µk, ωk

}
, and a pair (µ∗, ω∗) such that µk0 −→ µ∗0 = 0,

µki −→ µ∗i , i = 1, ...,m, and ω
k
j −→ ω∗j , j = 1, ..., r. The conclusions now follow by dividing the

necessary limiting relations of Corollary 1 by vk and passing to the limit along the indicated
convergent subsequence. �

Corollary 2 shows that, all things considered, the main optimality result os Haeser and
Schuverdt is not, beyond its algorithmic relevance, more general than the classical optimality
theorem of Fritz John. We will make other similar considerations in the next Section.
If (P1) is a convex programming problem, i. e. if f is convex, g is concave and h is linear

affine, by exploiting some results in Fiacco and McCormick (1968b, Theorem 28), it is possible
to state also necessary and sufficient asymptotic optimality conditions for (P1), under the above
assumptions. In particular, the sufficient conditions are quite similar to the sufficient conditions
obtained by Haeser and Schuverdt.

Theorem 6. If (P1) is a convex programming problem and the set M∗ of its solutions
is nonempty and bounded, then there exist vectors (xk, uk, wk) such that xk −→ x∗ ∈ M∗,
f(xk) −→ f(x∗), uki ≥ 0 and u

k
i gi(x

k) −→ 0 for i = 1, ...,m, wkjhj(x
k) −→ 0 for j = 1, ..., r, and

L1(x
k, uk, wk) ≤ L1(x, u

k, wk) for all k.

Theorem 7. Necessary and sufficient conditions that x∗ be a solution of the convex pro-
gramming (P1) are that there exists (xk, uk, wk) such that xk −→ x∗ ∈ S1, u

k
i ≥ 0 and

uki gi(x
k) −→ 0 for i = 1, ...,m, wkjhj(x

k) −→ 0 for j = 1, ..., r, and lim infk L1(xk, uk, wk) ≤
lim infk L1(x, u

k, wk).

Theorem 8. Necessary and sufficient conditions that x∗ be a solution of the convex pro-
gramming problem (P1), are that there exists (xk, uk, wk) such that xk −→ x∗ ∈ S1, u

k
i ≥ 0

and uki gi(x
k) −→ 0 for i = 1, ...,m, wkjhj(x

k) −→ 0 for j = 1, ...r, and ∇xL1(x
k, uk, wk) −→ 0.

Next, Fiacco and McCormick (1968a) give also asymptotic second order conditions for (P1),
under the assumptions that the functions involved are twice continuously differentiable. For
the reader’s convenience we report their main results. To obtain the second order necessary
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conditions these authors utilize the following exterior penalty function, which is everywhere
twice continuously differentiable:

T (x, t) = f(x) + t
m∑

i=1

[min(0, gi(x)]
4 + t

r∑

j=1

h4j(x). (11)

The first order necessary condition that this function has an unconstrained minimum is that

∇T (x, t) = 0. (12)

The second order condition is that the Hessian matrix ∇2T (x, t) is positive semidefinite, i.e.

z>∇2T (x, t)z ≥ 0, for all z. (13)

Suppose x∗ is the limit of xk, a sequence of unconstrained minima of (11) corresponding to
{tk} , where 0 < tk −→ +∞. Expanding ∇2T (xk, tk), with fk ≡ f(xk), gki ≡ gi(x

k), etc., yields

∇2fk −
∑

i∈Fk u
k
i∇

2gki +
∑r

j=1w
k
j∇

2hkj +
∑

i∈Fk ∇g
k
i u

k
i

(
3
gki

) (
∇gki

)>
+

+
∑r

j=1∇h
k
jw

k
j

(
3
hkj

) (
∇hkj

)> (14)

where uki = −4tkg
3
i (x

k), i ∈ F k ≡
{
i | gi(x

k) < 0
}
and wkj = 4tkhj(x

k), j = 1, ..., r.
When tk is large enough, all constraints where gi(x∗) > 0 will be strictly satisfied and hence

do not enter into the penalty function. From the fact that (14) must be a positive semidefinite
matrix, it follows that (

zk
)>
∇2L1(x

k, uk, wk)zk ≥ 0 (15)

for all zk ∈ Zk ≡
{
z | z>∇hkj = 0, all j, and z

>∇gki = 0, all i ∈ F
k
}
.

On the grounds of the above considerations, Fiacco and McCormick (1968a) obtain the
following asymptotic second-order necessary conditions for an isolated compact set of local
minima for (P1).

Theorem 9. If in (P1) the functions are twice continuously differentiable, and if a compact
set M∗ is an isolated set of M , then there exists (xk, uk, wk) such that xk −→ x∗ ∈ M∗,
f(x) −→ v∗, uki ≥ 0 and uki gi(x

k) −→ 0 for i = 1, ...,m, wkjhj(x
k) −→ 0 for j = 1, ...r,

∇xL1(x
k, uk, wk) = 0 and (

zk
)>
∇2L1(x

k, uk, wk)zk ≥ 0

for all zk where (zk)>∇hkj = 0, j = 1, ..., r and (z
k)>∇gki = 0 for all i ∈ I(x

∗) = {i | gi(x
∗) = 0} .

Proof. The first part of this theorem duplicated Theorem 5. The final part follows from
(15) and the fact that for k large enough, F k ⊂ I(x∗). �

Corollary 3. If x∗ ∈ S1 is a local (not necessarily isolated) minimum of (P1), and if the
functions involved in (P1) are twice continuously differentiable, then the conclusions of Theorem
9 follow, except that the vanishing of the gradient of L1 is replaced by the condition

∇xL1(x
k, uk, wk) −→ 0,
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and the second-order conditions are replaced by

lim inf
k−→∞

(
zk
)>
∇2L1(x

k, uk, wk)zk ≥ 0

for all zk where (zk)>∇hkj = 0, j = 1, ..., r, and (z
k)>∇gki = 0 for all i ∈ I(x

∗).

Proof. The proof follows by applying Theorem 9 to problem (P1), modified by adding
the term

∑n

j=1(xj − x
∗
j)
2 to the objective function. This makes x∗ an isolated local minimum

of the modified problem, hence making Theorem 9 directly applicable. Since the gradient and
second order partial derivative matrix of the perturbation vanish as xk −→ x∗, the appropriate
conclusions can be replaced by limiting statements. �

Finally, we note that Fiacco and McCormick (1968a) obtain also asymtotic second-order
sufficient conditions for a strict local minimum of problem (P1).

4. Other Necessary First-Order Optimality Conditions in Absence of
Constraint Qualifications

Perhaps the most known necessary first-order optimality conditions for (P), in absence
of constraint qualifications, are the Fritz John conditions. With reference to (P) these conditions
have been obtained by Mangasarian and Fromovitz (1967); see also Birbil, Frenk and Still (2007)
and Giorgi (2011) for other more elementary and short proofs of the Fritz John conditions for
(P).
With reference to a mathematical programming problem with inequality only, i. e. to

problem
(P0) Minimize

x∈S0
f(x),

where S0 = {x ∈ Rn : gi(x) ≤ 0, i = 1, ...,m} , Elster and Götz (1972) have given a general-
ization of the Kuhn-Tucker conditions, with disregards of constraint qualifications. We recall
the classical definition of contingent cone or Bouligand tangent cone at a point x0 ∈ cl(M),
M ⊂ Rn :

T (M,x0) =

{
x ∈ Rn : ∃ {xn} ⊂M, xn −→ x0,∃ {λn} ⊂ R+ such that lim

n−→+∞
λn(x

n − x0) = x

}
.

We recall that the polar cone of a cone C ⊂ Rn is the convex cone

C∗ = {x ∈ Rn : xy ≤ 0, ∀y ∈ C} .

Theorem 10 (Elster and Götz). Let x0 be a local solution of (P0), where f and every
gi, i = 1, ...,m, are differentiable at x0. Then, for each number δ > 0 there exist vectors
εi ∈ T ∗(S0, x

0), with ‖ εi ‖< δ, i = 1, ...,m, and u = u(ε1, ..., εm) ∈ Rm, such that

∇f(x0) +

m∑

i=1

ui
[
∇gi(x

0) + εi
]
= 0

ui ≥ 0, uigi(x
0) = 0, i = 1, ...,m.

9



Furthermore, if a constraint qualification holds at x0, then the above conditions collapse to
the classical Karush-Kuhn-Tucker conditions.
On the above result we make the following three remarks.

Remark 1. The conditions of Theorem 10 seem more precise than the Fritz John conditions,
but from a strictly mathematical point of view they are in fact equivalent to the Fritz John
assertion. Indeed, since the vectors εi are essentially any multiple of the vector ∇f(x0), the
condition can be rewritten as

∇f(x0) +
∑

ui(∇gi(x
0) + (...)∇f(x0)) = (...)∇f(x0) +

∑
ui∇gi(x

0) = 0.

Conversely, from the Fritz John condition

u0∇f(x
0) +

∑
ui∇gi(x

0) = 0

e. g. with u0 +
∑
ui = 1, we get

∇f(x0) +
∑

ui(∇gi(x
0) +∇f(x0)) = 0

so that the conditions of the theorem are fulfilled with εi = ∇f(x0).

Remark 2. The proof of Elster and Götz (1972) can be simplified. The crucial point is the
fact that for an optimal solution x0 the inequality system

y>∇f(x0) < 0, y>∇gi(x
0) < 0, i ∈ I(x0),

has no solution (this is the "Abadie linearization lemma"; by using the Gordan theorem of the
alternative we obtain directly the Fritz John conditions). That means that for each y with
y>∇f(x0) < 0 there exists an index i ∈ I(x0) such that y>∇gi(x0) ≥ 0 and especially

y>(∇gi(x
0) +

1

M
∇f(x0)) > 0,

withM > 0 (this constant is not essential). Hence, by contraposition y>(∇gi(x0)+ 1
M
∇f(x0)) ≤

0, ∀i ∈ I(x0), implies y>∇f(x0) ≥ 0 and the Farkas theorem provides the conditions of Theorem
10 with εi = 1

M
∇f(x0).

Remark 3. The result of Elster and Götz can be extended to problem (P) using, as for
the Fritz John conditions, the implicit function theorem and assuming thet the functions hj,
defining the equality constraints hj(x) = 0, j = 1, ..., r, are continuously differentiable around
x0 ∈ S.

Yet another approach to optimality conditions for (P0), in absence of constraint qualifica-
tions, has been presented by Gould and Tolle (1972). Let us denote by C0 the linearizing cone
at x0 ∈ S0, i. e.

C0 =
{
x ∈ Rn : x∇gi(x

0) ≤ 0, ∀i ∈ I(x0)
}
.

10



It is well known (see, e. g., Abadie (1967), Bazaraa and Shetty (1976)) that it holds
T (S0, x

0) ⊂ C0, i. e. C∗0 ⊂ T
∗(S0, x

0). As T ∗(S0, x0) is a convex cone, from the relation

T ∗(S0, x
0) = C∗0 ∪ (T

∗(S0, x
0)�C∗0 ∪ {0})

we obtain
T ∗(S0, x

0) = C∗0 + (T
∗(S0, x

0)�C∗0 ∪ {0})

i. e.
T ∗(S0, x

0) = B∗0 + (T
∗(S0, x

0)�C∗0 ∪ {0}),

where B∗0 =
{
x ∈ Rn : x =

∑
i∈I(x0) λi∇gi(x

0), λi ≥ 0
}
is the cone of gradients.

Taking into account the well known necessary optimality condition of Gould and Tolle
(1971), Guignard (1969), Varaiya (1967), that is, if x0 ∈ X is a local solution of the problem
Min
x∈X

f(x), withX ⊂ Rn and f differentiable at x0, then−∇f(x0) ∈ T ∗(X, x0), we have therefore

the following result, due to Gould and Tolle (1972).

Theorem 11. If x0 is a local solution of (P0), where the functions are differentiable at x0,
then there exist scalars ui ≥ 0, i ∈ I(x0), such that

−



∇f(x0) +
∑

i∈I(x0)

ui∇gi(x
0)



 ∈ T ∗(S0, x0)�C∗0 ∪ {0} .

Remark 4.

i) If it holds
C∗0 = T

∗(S0, x
0),

i. e. if the Guignard-Gould-Tolle constraint qualification holds at x0, the the previous optimal-
ity conditions collapse to the usual Karush-Kihn-Tucker conditions.

ii) Theorem 11 can immediately be fitted to (P), by defining the cone

D0 =
{
x ∈ Rn : x∇hj(x

0) = 0, ∀j = 1, ..., r
}

and the linearizing cone E0 = C0 ∩D0. We have then the necessary optimality condition:

−
[
∇f(x0) +

∑
i∈I(x0) ui∇gi(x

0) +
∑r

j=1wj∇hj(x
0)
]
∈ T ∗(S, x0)�E∗0 ∪ {0} ,

ui ≥ 0, i ∈ I(x
0), wj ∈ R, j = 1, ..., r.

11



5. Approximate Karush-Kuhn-Tucker Conditions in Pareto Multiobjective
Problems

In the present Section we extend the main result of Haeser and Schuverdt (2011), i. e.
Theorem 3, to a Pareto optimization problem. We consider the following vector optimization
problem

(VP) Minimize
x∈S

f(x)

where S = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} , f : Rn −→ Rp, g : Rn −→ Rm, and h : Rn −→ Rr

are continuously differentiable functions. We recall that, given a problem

Minimize {f(x) : x ∈M} ,

where f : Rn −→ Rp and M ⊂ Rn, a point x0 ∈ M is said to be a weak Pareto minimum,
denoted x0 ∈ WMin(f,M), if there is no x ∈ M such that f(x) < f(x0). If the previous
conditions are required to hold on a neighborhood of the point x0, then x0 is a local weak
Pareto minimum point. In this Section we follow, in general, the notations of Haeser and
Schuverdt (2011).

Definition 6. We say that the Approximate Karush-Kuhn-Tucker conditions are satisfied
for (VP) at a feasible point x0 ∈ S if and only if there exist sequences

{
xk
}
⊂ Rn,

{
λk
}
⊂ Rp+,{

uk
}
⊂ Rm+ , and

{
wk
}
⊂ Rr, with xk −→ x0 and such that

p∑

`=1

λ`∇f`(x
k) +

m∑

i=1

uki∇gi(x
k) +

r∑

j=1

wkj∇hj(x
k) −→ 0 (16)

p∑

`=1

λ` = 1 (17)

gi(x
0) < 0 =⇒ uki = 0 for sufficiently large k. (18)

We define φ : Rp −→ R by
φ(y) =Max

1≤i≤p
{yi} .

This function will be used to scalarize (VP). The following properties of φ are clear:

(i) φ(y) ≤ 0⇐⇒ y ∈ −Rp+,

(ii) φ(y) < 0⇐⇒ y ∈ −intRp+.

Also the following result is well known. We prove it for the reader’s convenience.

Lemma 2. If x0 ∈ WMin(f,M), then x0 ∈Min(φ(f(·)− f(x0)),M).

Proof. Suppose that x0 /∈ Min(φ(f(·) − f(x0)),M), then there exists x1 ∈ M such
that φ(f(x1)− f(x0)) < φ(f(x0)− f(x0)) = 0. It follows that f(x1)− f(x0) ∈ −intRp+, which
contradicts the assumption. �

12



The main result of the present Section is the following

Theorem 12. If x0 ∈ S is a local weak solution of problem (VP), then x0 satisfies the
AKKT conditions.

Proof. By assumption, there exists δ > 0 such that x0 ∈ WMin(f, S ∩ B(x0, δ)),
where B(x0, δ) is the open ball centered at x0 and with radius δ. By Lemma 2 we deduce that
x0 ∈Min(φ(f(·)− f(x0)), S ∩B(x0, δ)). In consequence, we may suppose that x0 is the unique
solution of the problem

Minimize(φ(f(x)− f(x0)) +
1

2
‖ x− x0 ‖2, subject to x ∈ S, ‖ x− x0 ‖≤ δ (19)

(choosing a small δ, if necessary).

We define, for each k ∈ N,

Ψk(x) = φ(f(x)− f(x
0)) +

1

2
‖ x− x0 ‖2 +

m∑

i=1

kg2i (x)+ +

r∑

j=1

kh2j(x),

where. if v ∈ Rm, we denote v+ = (max {v1, 0} , ...,max {vm, 0})>.
Let xk be a solution of the problem

MinimizeΨk(x) subject to ‖ x− x
0 ‖≤ δ. (20)

Let us observe that xk exists because Ψk(x) is continuous and B̄(x0, δ) (closure of B(x0, δ))
is compact. Let z be an accumulation point of

{
xk
}
.We may suppose that xk −→ z, choosing

a subsequence if necessary. On one hand, we have

φ(f(xk)− f(x0)) ≤ Ψk(x
k) (21)

because Ψk(xk)− φ(f(xk)− f(x0)) = 1
2
‖ xk − x0 ‖2 +

∑m

i=1 kg
2
i (x

k)+ +
∑r

j=1 kh
2
j(x

k) ≥ 0.

On the other hand, as x0 is a feasible point of problem (20) and xk is a solution, one has

Ψk(x
k)− φk(x

0) = 0, ∀k ∈ N (22)

since x0 ∈ S.
Let us prove that z is a feasible point for problem (19). Indeed, first, as ‖ x − x0 ‖≤ δ it

follows that ‖ z − x0 ‖≤ δ. Second, suppose that
∑m

i=1 g
2
i (z)+ +

∑r

j=1 h
2
j(z) > 0. Then, there

exists c > 0 such that
∑m

i=1 g
2
i (x

k)+ +
∑r

j=1 h
2
j(x

k) > c for all k large enough, by continuity
and because xk −→ z.
Now, as

Ψk(x
k) = φ(f(xk)− f(x0)) + 1

2
‖ xk − x0 ‖2 +k(

∑m

i=1 g
2
i (x

k)+
+
∑r

j=1 h
2
j(x

k)) > φ(f(xk)− f(x0)) + kc,

13



taking the limit we obtain Ψk(xk) −→ +∞, which contradicts (22). Therefore we have∑m

i=1 g
2
i (z)+ +

∑r

j=1 h
2
j(z) = 0, and this implies that z ∈ S.

From (22) one has

Ψk(x
k) = φ(f(xk)− f(x0)) +

1

2
‖ xk − x0 ‖2 +

m∑

i=1

kg2i (x
k)+ +

r∑

j=1

kh2j(x
k) ≤ 0

and, as
∑m

i=1 kg
2
i (x

k)+ +
∑r

j=1 kh
2
j(x

k) ≥ 0, we get φ(f(xk)− f(x0)) + 1
2
‖ xk − x0 ‖2≤ 0.

Taking the limit we have

φ(f(z)− f(x0)) +
1

2
‖ z − x0 ‖2≤ 0.

As x0 is the unique solution of problem (19), with value 0, we conclude that z = x0.
Therefore, xk −→ x0 and ‖ xk − x0 ‖≤ δ for all k sufficiently large.

Now, as xk is a solution of the nonsmooth problem (20) and it is an interior point of
the feasible set, for k large enough, it follows that 0 ∈ ∂CΨk(xk), where ∂CΨ(x) is the Clarke
subdifferential of a locally Lipschitz function Ψ at x (we recall that all the functions of prob-
lem (VP) are continuously differentiable, and therefore locally Lipschitz). By applying some
calculus rules (see Clarke (1983)), we have

0 ∈ co

(
∪

1≤`≤p

{
∇f`(x

k)
})

+ xk − x0 +

m∑

i=1

kgi(x
k)+ · ∇gi(x

k) +

r∑

j=1

khj(x
k) · ∇hj(x

k).

Hence, there exists λk` ≥ 0, ` = 1, ..., p, such that
∑p

`=1 λ
k
` = 1 and

p∑

`=1

λk`∇f`(x
k) +

m∑

i=1

kgi(x
k)+ · ∇gi(x

k) +
r∑

j=1

khj(x
k) · ∇hj(x

k) = x0 − xk −→ 0.

Choosing ui = kgi(xk)+ ≥ 0 and wj = khj(xk) we see that x0 satisfies AKKT (condition (18)
is clearly satisfied, by the continuity of gi) and this ends the proof. �
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