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An Overview on D-stable Matrices

Gorgio Giorgi1 and Cesare Zuccotti2

Abstract
We give an overview on the main properties of D-stable matrices, i.e. of those square matrices

A for which the product DA is stable for any choice of the diagonal matrix D, with all positive diagonal

elements. These matrices, introduced in economic analysis by Arrow and Mc Manus (1958), have found,

besides applications in mathematical economics, applications also in other fields, such as mathematical ecology,

population dynamics, the theory of electric circuits, analysis of neural networks, control theory and other

questions.

Key words
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1. Introduction
D-stable matrices play an important role in various applications, especially in economic

analysis (see, e.g., Arrow (1973), Arrow and McManus (1958), Giorgi (2003), Hahn (1982),
Kemp and Kimura (1978), Newman (1959), Quirk and Saposnik (1968), Wods (1978)) but also
in other fields, such as iterative numerical methods, studies on neural networks, circuits, large
scale systems, mathematical ecology, etc.
A good reference work for these last applications is the book of Kaszkurewicz and Bhaya

(2000).
A (real) square matrix A, of order n, is said to be D-stable if the matrix DA is (negative)

stable (i.e. the real part of each its eigenvalue is negative) for all diagonal matrices D, with
positive entries on their main diagonal: dii > 0,∀i = 1, 2, ..., n.
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Obviously, if A is D-stable, then it is also stable (i.e. Re(λi(A)) < 0, for each i), but the
converse does not necessarily hold. The aim of this paper is to give an overview on the problems
concerning D-stability of real (square) matrices, with some new remarks.
The paper is organized as follows.

Section 2 is concerned with a short account on the economic motivations which gave rise to the
studies on D-stable matrices.

Section 3 is concerned with the mathematical concepts and properties related to D-stability.

Section 4 investigates some necessary conditions for D-stability and some sufficient conditions.

Section 5 is concerned with some developments on the necessary and sufficient conditions for
the D-stability of matrices of second and third order; some comments concerning the charac-
terization of D-stable matrices the fourth order are made.

Section 6 contains some concluding remarks.

As already mentioned, all matrices considered are real. Moreover, we adopt the following
notations, conventions and definitions.

◦ N denotes the set {1, 2, ..., n} ;

◦ the determinant of A is denoted by |A| or by detA;

◦ D is the class of real diagonal matrices D, i.e. D = [dij] , i, j ∈N , i 6= j ⇒ dij = 0;

◦ D+ is the subclass of D such that it holds dii > 0,∀i ∈N ;

◦ x = [0] is the zero vector of Rn;

◦ the vector x is nonnegative (x = [0]) if xi = 0, ∀i ∈N ;

◦ the vector x is semipositive (x ≥ [0]) if x = [0] , but x 6= [0] ;

◦ the vector x is positive (x > [0]) if xi > 0, ∀i ∈N ;

◦ the same conventions hold for matrices;

◦ the notations x 5 [0] , x ≤ [0] , x < [0] are of obvious meaning;

◦ the square real matrix A is (negative) stable if all its eigenvalues have a negative real
part;

◦ the matrix A is Metzlerian if i 6= j ⇒ aij = 0;

◦ the square real matrix A is negative quasi-definite if x 6= [0]⇒ xTAx < 0;

◦ the matrix A is negative definite if it is symmetric and negative quasi-definite;
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◦ the matrix A has a negative diagonal if aii < 0, ∀i ∈N ;

◦ the matrix A has a quasi-dominant diagonal (in the sense of McKenzie (1960)) if there
exists a matrix D ∈ D+ such that, with B = AD or equivalently for B = ATD, it holds

|bii| >
∑

j∈N
j 6=i

|bij| ,∀i ∈N .

If moreover, aii < 0, for all i ∈N , the A has a negative quasi-dominant diagonal.

◦ The principal minors of order k of A (square) are all the determinants made with k rows
and the corresponding k columns of A. The sum tk of all the

(
n
k

)
principal minors of

order k is called the trace of order k of A. The North-West principal minors or leading
principal minors are the determinants made with the first k rows and first k columns,
with k = 1, 2, . . . , n.

◦ The square matrix A is D-stable if DA is stable for any D ∈ D+ that is

D ∈ D+ ⇒ DA is stable.

This is the classical definition of D-stable matrices, however, in economic analysis we
encounter also a stronger definition, given in the pioneering paper of Arrow and McManus
(1958) and that we call “strong D-stability”: A is strongly D-stable if it holds

D ∈ D ⇒ {DA is stable ⇔ D ∈ D+} .

◦ The square matrix A is Hicksian if all its principal minors of order k have the sign of
(−1)k. A is almost Hicksian if, for each i ∈ N , its principal minors of order i have the
same sign of (−1)i or are zero, and their sum has the sign of (−1)i. See, e.g., Quirk
and Saposnik (1968). In the mathematical literature Hicksian matrices are also called
“(NP )-matrices” and almost Hicksian matrices are also called “(NP )+0 -matrices” (see
Woods (1978), Johnson (1974), Kemp and Kimura (1978)).

◦ The square matrix A, where aij 5 0,∀i 6= j, is a K-matrix (also called an “M-matrix”)
if it satisfies any one of the numerous equivalent conditions which characterize this class:
see, e.g., Fiedler and Pták (1962), Poole and Boullion (1974), Plemmons (1977), Magnani
and Meriggi (1981).

For example, given A (square) with aij 5 0,∀i 6= j, the following conditions (which charac-
terize the class of K-matrices) are mutually equivalent:

a) there exists an x = [0] such that Ax > [0] ;
b) for any c = [0], there exists an x = [0] such that Ax = c;
c) the matrix A is nonsingular and A−1 ≤ [0] ;
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d) all the principal minors of A are positive;
e) all the North-West principal minors of A are positive;
f) the real parts of all eigenvalues of A are positive (i.e. A is positive stable).

2. A short account on the main economic applications
of D-stable matrices
In economic analysis D-stable matrices were first considered by Arrow and McManus

(1958) in continuation of some questions posed in Enthoven and Arrow (1956); perhaps the
pioneering paper of Arrow and McManus is indeed the first study concerned with D-stability
of matrices. The interest of economists in this kind of problems arises from the study of
the dynamic stability of the so-called “tâtonnement process” in a Walrasian model of general
equilibrium.
Let us consider a model consisting of a set of n functional relations of the form Fi(p),

i = 1, 2, ..., n, where p is an n-dimensional real vector

p = [p1, p2, ..., pn]

whose elements are the market prices of the n goods exchanged in a competitive market and
where Fi(p) is the “excess demand function” for good i at the price vector p, that is Fi(p) is
demand minus supply, given the price vector p. Usually p is taken to be a positive vector:
p > [0] .
An equilibrium of the model is said to occur at an equilibrium price vector p if

Fi(p) = 0,∀i = 1, 2, ..., n.

Indeed, in this Walrasian competitive economy, an equilibrium occurs when all markets are
simultaneously cleared, that is excess demand is zero in all markets.
In order to describe the dynamic behavior of the model, the classical approach of Samuel-

son (1944, 1947) takes into consideration an adjustment process (the so-called “tâtonnement
process”, described in an informal way by L. Walras) represented by the following system of
first-order differential equations

p′i(t) = gi [Fi (p (t))] , i = 1, 2, ..., n,

where gi is an increasing function of Fi, that is dgi/dFi > 0,∀i = 1, 2, ..., n, and it is further
assumed that gi(0) = 0, i = 1, 2, ..., n.
We are interested in a linearized version of the above adjustment process (assuming the

differentiability of each gi and Fi) :

p′i = g
′
i

n∑

j=1

∂Fi
∂pj

(
pj − pj

)
, i = 1, 2, ..., n,
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where the linear approximation is taken with respect to an equilibrium price vector p. We can
write this in matrix terms as

p′ = B (p− p)

where B = DA, D is diagonal matrix with diagonal entries dgi/∂Fi, and

A =

[
∂Fi
∂pj

]
, i, j = 1, 2, ..., n.

The elements of the above diagonal matrixD describe, respectively, the various “adjustment
speeds” of the prices related to the markets. The more di is large, the more will be the variation
of the i-th price, with respect to time, for a given value of the excess demand for the i-th good.
If the n speeds of the adjustment, described by D, are all equal, then D is a “scalar matrix”

and the stability of B = DA coincides with the stability of A, otherwise the stability of DA
and the stability of A are distinct properties. Obviously, if A is D-stable, i.e. DA is stable for
each D ∈ D+, then A is stable (it is sufficient to choose D = I), but the converse is not true:

A is stable ; A is D-stable.

It is sufficient to consider the following example, taken from Arrow an McManus (1958),

A =

[
−2 −3
1 1

]

is stable, however

DA =

[
1 0
0 3

] [
−2 −3
1 1

]

is unstable.
We recall a remarkable result of Fisher and Fuller (1958); see also Fisher (1972):

◦ If A is a real Hicksian matrix, then there exists a diagonal matrix D ∈ D+ such that the
eigenvalues of DA are all real, negative and distinct.

From the above short notes, it appears unmistakable the importance of the role of D-stable
matrices in the dynamic analysis of economic models.
Indeed, it is supposed that the various “speeds of adjustment” are not known a priori and

therefore “there is interest in the class of cases in which stability of an equilibrium can be
established independent of speeds of adjustment, that is, cases in which stability can be proved
for all (positive) speeds of adjustment of markets” (Quirk (1981), page 125).
Likewise it is evident the importance to study the relations between D-stable matrices and

other concepts and classes of stable matrices.
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3. D-stable and related matrices
We recall once more that the square matrix A is D-stable if

D ∈ D+ ⇒ DA is stable. (1)

Arrow and McManus (1958) introduced the following definition, which perhaps is the first
definition where the term “D-stable matrices” appears. We call a square matrix A strongly

D-stable if
D ∈ D ⇒ {DA is stable⇔ D ∈ D+} .

Another class of matrices related to D-stable and to strongly D-stable matrices is the class
of the diagonally stable matrices, also known as the Volterra-Lyapunov stable matrices or also
Hurwitz diagonally stable matrices:
There exists a diagonal matrix D ∈ D+ such that DA+ A

TD is negative definite.
A square matrix A is said to be totally D-stable when every submatrix of A, whose deter-

minant is a principal minor of A, is D-stable.

A square matrix A is additively D-stable if A − D is stable for all nonnegative diagonal
matrices D.

Now we recall the notion of sign-stable matrix or qualitatively stable matrix.
If A is a square n-matrix, we define the matrix signA, as the matrix whose generic element

sign(aij) is given by

sign(aij) =






+1 if aij > 0
0 if aij = 0

−1 if aij < 0.

Now, let QA = {B : signB = signA} , i.e. QA is the set of all square n-matrices B with the
same sign pattern of A.
A is said to be sign-stable or qualitatively stable if every matrix of QA is stable.
A square matrix A is said to be potentially stable if there exists a stable matrix B ∈ QA.
Arrow and McManus (1958) introduced also the concept of S-stability:

A is said to be S-stable if SA is stable, for all (symmetric) definite positive matrices S. We
note that Arrow and McManus give a stronger definition, we may call “strong S-stability”:

A is said to be strongly S-stable if, for all symmetric matrices S, SA is stable if and only if
S is positive definite.
However (see Johnson (1974 b)) the two definitions for S-stable matrices yield the same

class of matrices.
We start from some basic results of Arrow and McManus (1958), not always considered in

the mathematical literature, and from some results of Magnani (1972), published (in Italian)
as an “Institute Report” and therefore not easily available to the interested readers.

Theorem 1 (Arrow and McManus (1958))

If there exists a diagonal matrix E such that E−1AE is either a stable Metzlerian
matrix or a negative quasi-definite matrix, then A is strongly D-stable.
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In the same paper Arrow and McManus make the following conjecture:

Conjecture 1

A is strongly D-stable if and only if it can be represented as

A = EME−1,

with E ∈ D and M is either a Metzlerian stable matrix or a negative quasi-definite matrix.

This conjecture is false: it is sufficient to choose n = 2, a11a22 = 0, a11+a22 < 0, a12a21 < 0.
It can be proved that a matrix having these properties is D-stable and also strongly D-stable,
but does not verify the assumptions of Conjecture 1.
It is quite obvious that the strong D-stability implies the usual D-stability. Apart from

the paper of Arrow and McManus, strong D-stability has received a scarce attention from the
researchers. We report the following results, which are a direct consequence of Theorem 1.

Theorem 2

If A admits the representation A = (S +M), with S skew-symmetric (ST = −S) and
M negative quasi-definite, then A is strongly D-stable.

Theorem 3

If A is a Metzlerian matrix and −A is a K-matrix (also called an “M -matrix”), then
A is strongly D-stable.

The following results are taken from Magnani (1972).

Theorem 4

I) There exist matrices A which are D-stable only in the usual sense.

II) If A is D-stable or also strongly D-stable, then A is almost Hichsian.

III) If A is D-stable, but not strongly D-stable, because there exists a matrix

D∗ ∈ D, D∗ /∈ D+, with D∗A stable, (2)

then it holds d∗ii 6= 0, ∀i ∈N and D∗ contains an even number of negative elements.

IV) Either if n = 2 or if A admits the representation A = EME−1, with E ∈ D and M a
Metzlerian matrix, then A is D-stable (in the usual sense) if and only if A is strongly
D-stable.

In order to prove Theorem 4, we recall the well-known Routh-Hurwiz criterion for the
stability of a square matrix (see, e.g., Gantmacher (1966)).
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Theorem 5

Let M be a square n-matrix. Let us denote by Si(M) its trace of order i, that is the
sum of all its

(
n
i

)
principal minors of order i, and let

Ki = Ki(M) =

{
(−1)iSi(M), ∀i ∈N
0, ∀i >N .

(3)

Then M is stable if and only if

∣∣∣∣∣∣∣∣∣∣∣∣

K1 K3 K5 ... K2i−1

1 K2 K4 ... K2i−2

0 K1 K3 ... K2i−3

0 1 K2 ... K2i−4

... ... ... ... ...
0 0 ... ... Ki

∣∣∣∣∣∣∣∣∣∣∣∣

> 0, ∀i ∈N . (4)

Note that (4) implies

Ki > 0, ∀i ∈N .

Proof of Theorem 4

I) It is sufficient to consider the following pair (A,D∗)









0 2 0

−1 0 1
4

1
4
0 −2



 ;




−1 0 0
0 −1 0
0 0 1










in which A verifies (1), but D∗ verifies (2).

II) SettingM = DA, D ∈ D+, from Theorem 5 we obtain at once the thesis of II). (See also
Quirk and Ruppert (1965)).

III) Being I ∈ D+, we get that IA = A and D
∗A are stable matrices; from Theorem 5 we

obtain (−1)n |A| > 0, (−1)n |D∗A| > 0, i.e. |D∗| = d∗11, d
∗
22, ..., d

∗
nn > 0, i.e. the thesis of III).

IV) We have already remarked that the strong D-stability implies the usual D-stability. Let
us suppose that, with n = 2, A is D-stable, but not strongly D-stable, i.e. (1) holds but there
exists a matrix D∗ verifying (2). From II) and III) of the present theorem, we have, with n = 2,

a11 5 0, a22 5 0, a11 + a22 < 0, d
∗
11 < 0, d

∗
22 < 0

and therefore

d∗11a11 + d
∗
22a22 > 0,

whereas with n = 2 the stability ofD∗A implies, by virtue of Theorem 5, the opposite inequality.
Therefore, with n = 2 the usual D-stability implies the strong D-stability.
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Let us now suppose that A = EME−1 is D-stable, with E ∈ D andM a Metzlerian matrix.
Therefore IA = A is stable, as well as M = E−1AE, because M is given by a similarity
transformation. Therefore M is a stable Metzlerian matrix and from Theorem 1 we get the
strong D-stability of A. The thesis IV) is therefore proved. �

In the same paper Magnani (1972) discusses the following conjecture.

Conjecture 2

The matrix A is D-stable (in the usual sense or in the strong sense) if and only if it
satisfies at least one of the following properties:

1) The matrix A admits the representation

A = EME−1 with E ∈ D and M a Metzlerian matrix. (5)

2) The matrix A admits the representation

A = EME−1 with E ∈ D and M a negative quasi-definite matrix. (6)

3) There exists a matrix C ∈ D+ such that (CA+ A
TC) is negative definite.

4) The matrix A has a negative quasi-dominant diagonal.

5) The matrix A is qualitatively stable.

Before discussing the validity of Conjecture 2 we recall the following basic results.

Theorem 6

If there exists a matrix C ∈ D+ such that (CA + A
TC) is negative definite, then A is

D-stable.

In other words, if A is diagonally stable, then A is D-stable. This classical result is either
attributed to Arrow andMcManus (1958) or is obtained from the well-known Lyapunov criterion
for the stability of a matrix: the square matrix A is stable if and only if there exists a symmetric
positive definite matrix B such that

(
BA+ ATB

)
is negative definite. See, e.g., Gantmacher

(1966).

Theorem 7

If the matrix A has a negative quasi-dominant diagonal, then A is D-stable.

This result is due to Mckenzie (1960); see also Quirk and Saposnik (1968) and Beavis and
Dobbs (1990).

Theorem 8

If the matrix A is qualitatively stable, then A is D-stable.
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This is a result due to Quirk and Ruppert (1965). On the grounds of the above results
Magnani (1972) discusses Conjecture 2 by means of the following theorem.

Theorem 9

Let A be a square matrix of order n, with

n = 2, a11 < 0, a22 < 0 (7)

Then, Conjecture 2 holds and every matrix D-stable (or strongly D-stable) for which (7) is
verified, satisfies at least 3 properties among the 5 properties listed in Conjecture 2. If (7) is
not verified, Conjecture 2 is in general false.

Proof

First of all, we remark that, thanks to Theorem 1, properties 1) and 2) of Conjecture
2 imply the strong D-stability of A, whereas the usual D-stability follows from properties 3),
4) and 5) of the Conjecture 2, by virtue of Theorems 6, 7 and 8.
Let us begin to check if, under assumption (7), the D-stability (usual or strong) of A implies

someone of properties 1) - 5) of Conjecture 2.
Let us consider the matrix

E = [eij] , i, j = {1, 2} , with e12 = e21 = 0, e11 = 1 and with

e22 = 1,

e22 =
∣∣∣a21/ (a11a22)

1/2
∣∣∣ ,

e22 =
∣∣∣(a11a22)

1/2 /a12

∣∣∣ ,

e22 =
∣∣∣(a21/a12)

1/2
∣∣∣ ,

(8)

depending on whether in (7) it holds, respectively

a12 = a21 = 0,
a12 = 0 6= a21,
a12 6= 0 = a21,
a12 6= 0 6= a21.

(9)

Obviously, E ∈ D+ and the matrix

M = [mij] = E
−1AE = [aijejj/eii] (10)

verifies the following properties

m11 = a11;∣∣M +MT
∣∣ = 4a11a22 − {a12e22 + (a21/e22)}

2 =

=






4a11a22, if either a12 = a21 = 0 or a12a21 < 0;
3a11a22, if either a12 = 0 6= a21 or a12 6= 0 = a21;
4 |A| , if a12a21 > 0.
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Therefore, if A is D-stable, from (7) and from Theorem 5, with n = 2, we have m11 < 0,∣∣M +MT
∣∣ > 0, i.e. (M +MT ) is negative definite, that is M is quasi-negative definite. As

(10) is equivalent to (6) and E ∈ D+, it is evident that if (7) holds and A is D-stable, then A
satisfies property 2) of Conjecture 2.
We note, moreover, that, under the same assumptions, property 3) of Conjecture 2 is equiv-

alent to the existence of a pair (c11, c22) which solves the system

{
c11 > 0, c22 > 0,

4a11a22 −
{∣∣∣(c11/c22)

1/2
∣∣∣ a12 +

∣∣∣(c22/c11)
1/2
∣∣∣ a21

}2
> 0,

system which surely admits the solution c11 = (e22)
2, c22 = 1, with e22 chosen as in (8) -

(9). Therefore, under assumption (7), if the matrix A is D-stable, it satisfies property 3) of
Conjecture 2.
Now let us suppose that A is D-stable, that (7) holds and that the following assumptions

hold:

either (a12 = 0, a21 = 0) or (a12 5 0, a21 5 0). (11)

In the first case A is a Metzlerian matrix and it is possible to chose E = I in order to obtain
M = E−1AE = A, a Metzlerian matrix. In the second case we can choose

E =

[
1 0
0 −1

]

in order to obtain

M = E−1AE =

[
a11 −a12

−a12 a22

]
,

again a Metzlerian matrix. We note that in both cases the following properties hold:

i) E ∈ D;

ii) the D-stability of A implies the stability of IA = A, because I ∈ D+;

iii) in relations (3) it holds Ki(M) = Ki(A) > 0, i = 1, 2; therefore the matrices A = EME
−1

and M = E−1AE are stable;

iv) it holds mii = aii, |mij| = |aij|, i, j ∈ {1, 2}.

A classical result of McKenzie (1960) (generalized in the next Theorem 11) states that a
Metzlerian matrix, is stable if and only if it has a negative quasi-dominant diagonal. It is
therefore evident that in both cases (11) A admits the representation described in relation
(5), with A stable Metzlerian matrix with a negative quasi-dominant diagonal. So A verifies
properties 1 and 4 of Conjecture 2.
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Let us now suppose that, under assumption (7), the matrix A is D-stable, but with a12a21 < 0.
In this evenience, for any matrix M = E−1AE, defined by relation (5) with E ∈ D, it holds
m12m21 = a12a21 < 0, thereforeM cannot be a Metzlerian matrix and A cannot verify property
1) of Conjecture 2. The matrix A will satisfy property 4) if and only if (a11a22 + a12a21) > 0:
this inequality is not, however, implied by the D-stability of A, nor by relation (7).
As for what concerns property 5), we note that, according to Theorems 4 (item IV) and 5,

under assumption (7), the same property is equivalent to a12a21 5 0.
It is therefore evident that, under assumptions (7), if A is D-stable (that is if a11a22 −

a12a21 > 0), with (a12a21 > 0), (a12a21 < 0 < a11a22 + a12a21), (a12a21 < 0 ≮ a11a22 + a12a21),
(a12a21 = 0), A satisfies, respectively, properties (1, 2, 3, 4) , (2, 3, 4, 5) , (2, 3, 5) , (1, 2, 3, 4, 5) of
Conjecture 2.
Magnani (1972) then proves that the following matrix

A =




−1 −1 0
1 −2 1
0 2 −1



 ,

which does not satisfy assumtions (7), is D-stable and also strongly D-stable, even if it does
not verify any one of properties 1) - 5) of Conjecture 2. �

We note that the class of D-stable matrices is closed with respect to the multiplication by
a positive scalar, but, as remarked by Johnson (1975), it is not closed with respect to addition.
The example taken into consideration by Johnson is the following one:

A =

[
−5 2
12 −5

]
; B = AT .

It may be seen (see, e.g., Johnson (1974) and Section 5) that both A and B are D-stable,
but their sum

A+B =

[
−10 14
14 −10

]

is not D-stable, because det(A + B) < 0 and this matrix, therefore, must have one negative
and one positive eigenvalue.

We now describe some relationships between various classes of matrices and the class of D-
stable matrices (see, e.g., Kemp and Kimura (1978), Giorgi (2003), Quink (1981), Hershkwitz
(1992), Newman (1959)). Some results have already been given and other results will be given
in the next Section.

Theorem 10

Let A be a real square matrix. Then the following relationships hold.

i) A is negative quasi-definite ⇔ AT is negative quasi-definite ⇔
⇔ A−1 is negative quasi-definite ⇒ A is S-stable ⇒ A is D-stable ⇒
⇒ A is stable ⇔ BAB−1 is stable for some (non-singular) matrix B.
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ii) A is negative quasi-definite ⇒ A is totally stable ⇒ A is D-stable and A ∈ (NP )
(that is, A is Hicksian).

iii) A has a negative quasi-dominant diagonal ⇒ A is totally stable.

iv) A is qualitatively stable ⇒ A is D-stable ⇒ A is stable.

v) A is qualitatively stable with all diagonal elements aii < 0 ⇒ A is totally stable.

vi) A has all diagonal elements aii negative ⇒ A is a potentially stable matrix.

Theorem11

Let A be a Metzlerian matrix (aij = 0, ∀i 6= j). Then the following equivalences hold:

A is stable ⇔ A is D-stable ⇔ A is totally stable ⇔

⇔ A is Hicksian ⇔ A has a negative quasi-dominant diagonal.

We note that if A is a Metzlerian matrix, then −A ∈ Z, Z being the class of matrices with
nonpositive off-diagonal elements, in the terminology of Fiedler and Pták (1962). Therefore the
equivalences of Theorem 11 can be reformulated so that a matrix A ∈ Z belongs to the class
of K-matrices (or M -matrices).
We recall also (Theorem 3) that, under the Metzlerian assumption, we can assert that A is

stable if and only if A is strongly D-stable (i.e. strong D-stability and D-stability coincide).
Theorem 11 holds also for a larger class than Metzlerian matrices, the so-called Morishima

matrices (Morishima (1952, 1970)).

Definition 1

A square matrix A of order n is a Morishima matrix if there exists a permutation
matrix Π such that

ΠAΠ−1 =

[
A11 A12
A21 A22

]
(12)

where A11 and A22 are square and Metzlerian and A12 5 [0] , A21 5 [0].

Morshima (1952) requires the stronger condition that A11 and A22 are to be square and non
negative. Moreover, he proves that if aij 6= 0, ∀i, j = 1, 2, ..., n, then this stronger requirement
is equivalent to aii > 0, ∀i; signaij = signaji, ∀i 6= j; signaij = signaikakj for any i, j, k distinct.

Theorem 12

Theorem 11 also holds under the assumption that A is a Morishima matrix.

Proof

See Kemp and Kimura (1978).

At the end of the present section we wish to stress that the already recalled result of Fisher
and Fuller (1958) is of another nature, with respect to the problem of D-stability: this result,

13



indeed, establishes that if A is an Hicksian matrix, then there is assured the existence of a
diagonal matrix D∗ ∈ D+, such that D

∗A is stable, with all negative and simple eigenvalues.

Besides the simpler proof of Fisher (1972), one may see the proof of Ballantine (1970),
who generalizes the above result also to complex matrices. The question has been recently
reconsidered by Locatelli and Schiavoni (2012), who give a necessary and sufficient condition
for the existence of a diagonal matrix D∗ such that D∗A is stable, together with all its principal
submatrix. They also give an explicit formula to find the diagonal matrix D∗.

4. Necessary conditions for D-stability. Sufficient conditions for
D-stability
Perhaps one of the most old necessary condition for the D-stability of a real matrix is

a slight variant of a condition due to Metzler (1945), which, however, concerns totally D-stable
matrices, and not D-stable matrices, as postulated by Metzler.

Theorem 13

Let A be a real matrix of order n; if A is totally D-stable, then A ∈ (NP ), i.e. A is
Hicksian: all its principal minors of order i (i = 1, 2, . . . , n) have the sign of (−1)i.

The Metzler condition has subsequently been taken into consideration by Arrow (1973) who
established a necessary condition for A to be D-stable. See also Johnson (1974 a) and Quirk
and Ruppert (1965).

Theorem 14

Let A be a real matrix of order n; if A is D-stable, then A ∈ (NP )+0 , i.e. A is almost
Hicksian: all its principal minors of order i (i = 1, 2, . . . , n) are nonnegative, if i is even,
and nonpositive if i is odd and, moreover, there exists at least one principal minor of order i
(i = 1 = 1, 2, . . . , n) different from zero.

The reverse implication does not hold, unless n = 2: in this case (see Section 5) the
conditions of Theorem 14 are both necessary and sufficient for A to be D-stable.
Another necessary condition for D-stability, equivalent to the one of Theorem 14, has been

given by Johnson (1974 a); however, this last condition cannot be performed in a finite number
of calculations. A flaw in the formulation of Johnson has been subsequently corrected by Cross
(1978).
We remark that if A is D-stable, then A is non-singular and each of the following matrices

is D-stable:

a) A−1;

b) P TAP , where P is any permutation matrix;

c) DAE, with D,E ∈ D+;

d) AT .

14



A classical paper in which several sufficient conditions for D-stability are presented is the
paper by Johnson (1974 b). Some conditions have already been discussed in the previous
Section.
Each of the following conditions is sufficient for A to be D-stable.

I) There exists a diagonal matrix D ∈ D+ such that (DA + A
TD) is negative definite.

See Theorem 6. This is essentially the condition given by Arrow and McManus (1958). In
other words, if A is diagonally stable (Volterra-Lyapunov stable), then A is D-stable. That the
present criterion is not necessary is shown by Johnson (1974 c). This important criterion has,
however, a weak relevance from a practical (i.e. computational) point of view. Khalil (1980)
presented an algorithm in which the existence of the diagonal matrix D ∈ D+ is verified by
means of a convex minimization problem. Define the function g : Rn → R as

g(p) = λmax(DA+ A
TD),

where λmax(·) denotes the maximum eigenvalue of the respective matrix, and define V =
{p ∈ Rn : 0 5 pi 5 1} . It can be verified that V is a convex compact set and that g(p) is a
continuous convex function. Khalil (1980) proves the following result.

Theorem 15

There exists a positive diagonal matrix D such that (DA + ATD) is negative definite
if and only if

min
p∈V

g(p) < 0.

Efficient numerical algorithms for such problems are discussed in the specialized literature
of mathematical programming.

II) The matrix A has a negative quasi-dominant diagonal (see Theorems 7 and 10). This
is the condition due to McKenzie (1960). This condition is finitely verifiable by means of
the theory of K-matrices (or M -matrices). A matrix A satisfies the above quasi-dominance
condition if and only if the matrix C = [cij] defined by

cij = − |aij| , i 6= j,

cii = −aii

is a K-matrix.

III) The matrix −A is a K-matrix; in other words (see Theorem 3) A is Metzlerian and
−A verifies any one of the equivalent characterizations of the K-matrices (orM -matrices) given
by Fiedler and Pták (1962) and by the other authors quoted in the Introduction.

IV) A quite trivial condition for D-stability is that A is triangular, with aii < 0 for all
i = 1, 2, . . . , n. An even more trivial condition is that A is diagonal with all negative diagonal
elements.
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V) The matrix A is qualitatively stable or sign-stable. The sign-stable matrices have
been introduced by Quick and Ruppert (1965). We have already listed in Theorem 10 the
present sufficient condition for D-stability. As Johnson (1974 b) remarks, “sign stability is an
essential combinatorial quality” and the most obvious examples of sign-stable matrices are the
real matrices satisfying conditions IV) above. Sign-stable matrices have been characterized by
Quirk and Ruppert (1965) for the case where A has all diagonal elements negative, and by
Jeffries, Klee and Van Den Driessche (1977) for the general case. We give only the theorem of
Quirk and Ruppert; first we need the notion of “cycle” of a square matrix A of order n (see
e.g., Maybee and Quirk (1969)).
For the nxn matrix A, we call the product

Ap = ai(1)i(2)ai(2)i(3)...ai(r−1)i(r)

a path or chain in A if r = 2 and the set

Vp = {i(1), i(2), ..., i(r − 1)}

consists of distinct elements of N . The number r − 1 is called the length of Ap and the set Vp
is called the index set of Ap.

The product
Ac = ai(1)i(2)ai(2)ai(3)...ai(r)i(1)

is called a cycle of A if r = 2 and the product

ai(1)i(2)ai(2)i(3)...ai(r−1)i(r)

is a path in A.

The length of the cycle is the number r, and the set Vc = {i(1), i(2), ..., i(r)} is called the
index set of the cycle.

The diagonal entries ai(q)i(q) can also be considered cycles of A and they have length one
and index set consisting of the single index Vc = {i(q)} .

Theorem 16 (Quirk and Ruppert (1965))

Let A be a square matrix of order n with all diagonal elements negative. Then A is
sign-stable if and only if

i) every cycle in A of length 2 is non-positive;

ii) every cycle in A of length 3 or more is zero.

VI) The matrix A is tridiagonal (or a Jacobi matrix) and A is Hicksian. We recall that
A = [aij] is tridiagonal if aij = 0 whenever |i− j| > 1.
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VII) The matrix A is oscillatory, that is, every ith order minor of A has sign(−1)i or zero
and for some power of A every ith-order minor has the sign of (−1)i.

VIII) For each x 6= [0] there exists D ∈ D such that xTDAx < 0.

IX) The Hadamard product of P and A, P ◦ A ≡ (pijaij), is stable for every positive
definite symmetric matrix P .

X) The matrix A is Hicksian stable and A is (strongly) sign-symmetric; that is, every pair
of symmetrically placed minors of A has a nonnegative product.

Carlson and Johnson (1974) formulated the conjecture that A is D-stable if and only if
(A − D) is stable for each nonnegative diagonal matrix D. We have called “additively D-
stable matrices” the matrices satisfying the above property. Subsequently, G. W. Cross (1978)
has shown that in general D-stability does not imply additive D-stability, and that additive
D-stability does not imply D-stability.

However, the same author proved that for matrices of order 2 and 3 additive D-stability is
both necessary and sufficient forD-stability. Moreover, if A is Volterra-Lyapunov stable, then it
is additively D-stable (Cross (1978) Proposition 1). Another interesting result of this author is
contained in the following theorem (we recall that an n-square matrix A (also complex) is called

normal if AA
T
= A

T
A, where A is the conjugate of A. Normal matrices include diagonal, real

symmetric, real skew-symmetric, orthogonal, Hermitian, skew-Hermitian and unitary matrices.

Theorem 17 (see also Berman and Hershkowitz (1983))

For normal matrices and for Metzlerian matrices, additive stability, D-stability and
Volterra-Lyapunov stability are equivalent.

For the reader’s convenience we report two diagrams, taken from Hershkowitz (1992), show-
ing the implication relations between some of the classes of matrices previously considered.

A is Volterra-Lyapunov
stable

↙ ↓ ↘
A is Hicksian
(i.e. A ∈ NP )

A is D-stable
A is additively
D-stable

↓ ↘ ↙

A is stable
A is almost Hicksian

(i.e. A ∈ (NP )+0 )

Let A be Metzlerian; then the following diagram holds.
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A is Volterra-Lyapunov
stable

↙↗ ↓↑ ↖↘

A is Hicksian A is D-stable
A is additively
D-stable

↓↑ ↓↑ ↗↙
A is a nonsingular

K-matrix (or M -matrix) A is stable

There are other sufficient conditions for D-stability: see, e.g., Datta (1978) and Kimura
(1981). However, also these conditions, in the same way as those previously described, are in
general not finitely verifiable.
Another important notion is the concept of “robust D-stability”, introduced by E. H. Abed

(1986), under the name “strong stability”, and studied extensively by Kafri (2002). A square
matrix A of order n is robustly D-stable if there is a scalar α > 0 such that (A+G) is D-stable
for each square matrix G of order n, having a norm less than α.
Kafri (2002) extends to robust D-stability the sufficient conditions for D-stability given by

Johnson (1974 b).

5. The problem of the characterization of D-stable matrices
First we report five necessary and sufficient conditions for the D-stability of a square

matrix. The first two are trivial extensions of well-known criteria for the stability of a square
matrix and no one of these five conditions can be considered as a true test for D-stability, as
none of the said conditions is finitely verifiable. Under this aspect, following the words of J.
P. Quirk (see Greenberg and Maybee (1981), especially the Discussion on Session II, pages
195-196), the search for a test of D-stability of practical use, for a square matrix of order n,
seems to be hopelessly complicated. These efforts have been successful only for matrices of very
low order (n = 2, 3, 4).
Necessary and sufficient conditions for A to be D-stable are:

I) The matrix DA satisfies the test of Routh-Hurwitz (Theorem 5) for any diagonal matrix
D ∈ D+ .

II) The matrix DA verifies the condition of Lyapunov for any D ∈ D+: there exists a
symmetric positive definite matrix B such that

BDA+ ATDB

is negative definite for any D ∈ D+ .

III) See Johnson (1974 b, 1975). Suppose that DA is stable for a diagonal matrix D ∈ D+.
Then A is D-stable if and only if A± iD is non-singular for all D ∈ D+.
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IV) See R. Johnson and A. Tesi (1999), Proposition 2.3: necessary and sufficient conditions
for D-stability of A are stability of A and

det

(
A D

−D A

)
6= 0, for all D ∈ D+ .

We remark that, being A non-singular, the above inequality can be equivalently written as

det
(
A+DA−1D

)
6= 0, for all D ∈ D+.

V) See Johnson (1975). We need a formal notation for principal minors of a square
matrix A of order n. Let As = Ai1, i2,..., ik denote the determinant of the principal submatrix
determined by deleting from A the rows and columns indicated by the index set

S = {i1, i2, ..., ik} ⊆N = {1, 2, ..., n} .

When k = 0, S = ∅ occurs, and when k = n, S = N occurs. By convention, A∅ = detA
and AN = 1. Moreover, let us define the following polynomials, where X ∈ D:

PA (x1, x2, ..., xn) = Re (det [A+ iX]) =

=
∑

05k5n
k even



(−1)k/2
∑

{i1, i2,..., ik}⊆N

Ai1, i2,..., ikxi1 , xi2 , ..., xik





and

QA (x1, x2, ..., xn) = Im (det [A+ iX]) =

=
∑

15k5n
k odd



(−1)(k−1)/2
∑

{i1, i2,..., ik}⊆N

Ai1, i2,..., ikxi1 , xi2 , ..., xik





Then PA and QA are polynomial in x1, x2, ..., xn, which are the elements of the diagonal
matrix X.
Johnson (1975) proves the following result.

Theorem 18

Suppose that A (real and square) is stable. Then A is D-stable if and only if the system

{
PA (x1, x2, ..., xn) = 0
QA (x1, x2, ..., xn) = 0

has no solution x1 > 0, x2 > 0, ..., xn > 0.
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An interesting consequence of the above theorem is that it seems possible to link the char-
acterization of D-stable matrices to a polynomial programming problem; this idea has been
exploited by Kanovei and Logofet (1998) to construct a test for the D-stability of matrices of
order four.
Beyond the trivial cases of diagonal matrices and triangular matrices (see the point IV) of

Section 4 and the case of Metzlerian matrices and also the case of Morishima matrices; see
Theorem 12), the search for a finitely verifiable test for general square matrices is a very hard
problem.
For n = 2 the problem is easy, but already for n = 3 the problem becomes more and more

complicate. The characterization of D-stable matrices of order 2 is due to Johnson (1974).
We recall, following Fiedler and Pták (1966) and Johnson (1974), that a square matrix A of
order n belongs to the class (NP )+0 if all principal minors of A of order i (i = 1, 2, . . . , n) are
nonpositive for i odd and nonnegative for i even, and at least one of the said minors of order
i has the sign of (−1)i . In the economic literature the class of matrices belonging to (NP )+0
is known also as the class of almost Hicksian matrices (see, e.g., Quirk and Ruppert (1965),
Quirk (1981)).

Theorem 19 (Johnson (1974))

Let A be a square matrix of order n = 2; then A is D-stable if and only if A ∈ (NP )+0 .

We recall also that A ∈ (NP )+0 is a necessary condition for the D-stability of a square
matrix of any order (see Theorem 14).
The characterization for n = 3 was given, independently and with different proofs, by Cain

(1976) and by Magnani (1990). For the reader’s convenience we report the proof of Magnani,
less short but more direct and elementary than the proof of Cain, and considering also the fact
that the proof of Magnani has never been published.
We first remark that for n = 3, the condition A ∈ (NP )+0 simply means:

a11 5 0, a22 5 0, a33 5 0, a11 + a22 + a33 < 0, (13)

m1 = 0, m2 = 0, m3 = 0, m1 +m2 +m3 > 0, (14)

detA < 0,

where mi is the cofactor of aii .

Theorem 20

Let A be a real square matrix of order 3 and let mi denote the cofactor of aii . Define

t = detA+
{
(−m1a11)

1/2 + (−m2a22)
1/2 + (−m3a33)

1/2
}2
. (15)

Then A is D-stable if and only if A ∈ (NP )+0 and:

either t > 0 if {mi = 0 ⇔ aii = 0} holds; (16)
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or
t = 0 if {mi = 0 ⇔ aii = 0} does not hold. (17)

Proof

As the class of D-stable matrices is closed under multiplication by a positive scalar, we
may normalize D by choosing

d3 = 1,

so that D ∈ D+ will be identified by the vector d = [d1, d2] > [0] . Now compute

k1 = −d1a11 − d2a22 − a33,
k2 = d2m1 + d1m2 + d1d2m3,
k3 = −d1d2 detA

and apply the standard stability test of Routh-Hurwitz (Theorem 5), to DA: A is D-stable if
and only if {

k1 > 0, k3 > 0, ∀d > [0] ,
k1k2 − k3 > 0, ∀d > [0] .

(18)

Assume A ∈ (NP )+0 , as this condition is necessary for D-stability. This ensures

k1 > 0, k2 > 0, k3 > 0, ∀d > [0] ,

so we must check only that (18) holds if and only if (16) or (17) hold. Now, define

f = f(d) = k1k2 − k3,

∆ = −m1a11 −m2a22 −m3a33 + detA, (19)

α = α(d1) = −a22(d1m3 +m1), (20)

β = β(d1) = −m3a11(d1)
2 + d1∆−m1a33, (21)

γ = γ(d1) = d1m2(−d1a11 − a33). (22)

Then (18) is equivalent to
f(d) > 0, ∀d > [0] (23)

and, being
f = α(d2)

2 + β(d2) + γ,

(23) means
f/d2 = αd2 + β + γ/d2 > 0, ∀d > [0] . (24)

Consider first the case where

m2a22(m1 +m3)(a11 + a33) > 0. (25)
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According to (13), (14), (20) and (22), the relations

α > 0, γ > 0, ∀d > [0]

follow; hence, for each fixed d1 > 0, f/d2 attains its global minimum over d2 > 0 when

d2 = δ2 = (γ/α)
1/2. As

f (δ2) /δ2 = β + 2(αγ)
1/2,

(24) means
g = g(d1) =

{
β + 2(αγ)1/2

}
/d1 > 0, ∀d > [0] , (26)

that is

g = ∆+ (−d1m3a11 −m1a33/d1)+

+2 {−m2a22 [(−d1m3a11 −m1a33/d1)−m1a11 −m3a33]}
1/2 > 0, ∀d1 > [0] .

(27)

It is useful to treat in a separate way the following four cases:

m3a11 < 0, m1a33 < 0, (28)

m3a11 = 0, m1a33 < 0, (29)

m3a11 < 0, m1a33 = 0, (30)

m3a11 = 0, m1a33 = 0, (31)

and to check that, by virtue of (13) and (14), (25) ensures that the paths of the signs the vectors

a = [a11, a22, a33] , m = [m1, m2, m3] ,

are only of the following kind:

◦ in the case (28): [− − −] ; [+ + +] ;

◦ in the case (29): [0 − −] ; [+ + 0] ;

[− − −] ; [+ + 0] ;

[0 − −] ; [+ + +] ;

◦ in the case (30): [− − −] ; [0 + +] ;

[− − 0 ] ; [0 + +] ;

[− − 0] ; [+ + +] ;

◦ in the case (31): [− − 0] ; [+ + 0] ;

[0 − −] ; [0 + +] .
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Hence, the implication
{mi = 0 ⇔ aii = 0} (32)

holds in the cases (28) and (31) only. In the case (28) the derivative of g with respect to d1 has
the same sign of

d1 − δ1 = d1 − {m1a33/(m3a11)}
1/2 ,

hence (26) is equivalent to the positiveness of g(δ1), the global minimum of g(d1) over d1 > 0:

g(δ1) > 0.

It is easy to check that this property just amounts to (16).
In the case (29) (or (30)), g is strictly decreasing (increasing) with d1 > 0, therefore (26) is

equivalent to g(+∞) = 0 (or g(0) > 0) , i.e. to

τ = 0,

being τ = ∆+ 2 {m2a22(m1a11 +m3a33)}
1/2 .

In the case (31) g is constant on the value τ , therefore (26) is equivalent to

τ > 0.

Note thatm11a11 and/orm3a33 vanish in the cases (29) to (31) (see the sign patterns above);
hence, according to (15) and (19), τ = t follows. Therefore the theorem is proved for the case
(25).
Now, let (25) be false. It is useful to separate the following two cases:

a22(m1 +m3) = m2(a11 + a33) = 0 (33)

m2a22(m1 +m3)(a11 + a33) = 0 > a22(m1 +m3) +m2(a11 + a33) (34)

and to define
θ = ∆+ 2 {m1m3a11a33}

1/2 .

In the case (33) the list of the sign patterns of the vectors a and m can be obtained from
the one yet shown for the case (25) above, simply by putting 0 for the signs of both a22 and
m2 and adding the extra case

a = [ 0 − 0 ] , m = [ 0 + 0 ] ,

for the case (31). Again, the implication (32) holds in the cases (28) and (31) only. Moreover,
it is easy the check that (24) is equivalent to

β

{
> 0, ∀d1 > 0, in the case (33);
= 0, ∀d1 > 0, in the case (33),
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and that this simply means

θ

{
> 0, if (32) holds and (33) occurs;
= 0, otherwise.

We may also note that from (33) or (34) it follows m2a22 = 0 and/or m1a11 = m3a33 = 0,
hence θ = t and therefore the theorem is proved also for the case where (25) does not hold.
This completes the proof. �

Remark 1

From the basic assumption A ∈ (NP )+0 , the non-negativeness of both α and γ follows.
Moreover (21) and (22) show that the additional assumption

∆ > 0,

i.e.
−2a11a22a33 + a12a23a31 + a21a13a32 > 0, (35)

is sufficient to ensure that β is positive too, therefore that (24) holds, hence that A is D-stable.
Condition (35) is just the sufficient condition for the D-stability of a matrix of third order,
proposed by Johnson (1974), taking into account that this author considers positive stability.
Obviously, there are matrices which do not verify (35) and yet are D-stable. Johnson (1974)
gives an example; another example is

A =




−1 +2 −0, 5
+0, 4 −1 −1
−0, 2 +13 −1



 .

The matrix A is D-stable (t ≈ 11, 09), but does not verify (35), as in this case ∆ = −0, 2 < 0.

Remark 2

As D-stability implies the usual stability of a square matrix, it is obvious that t cannot
be greater than the value

T = (−a11 − a22 − a33) (m1 +m2 +m3) + detA (36)

that f(d) assumes for d = [1, 1], i.e. the usual value whose positiveness must be checked in
order to be sure that an (NP )+0 matrix is stable. Note that from (15) and (36) the relation

T − t =
{
(−m1a22)

1/2 − (−m2a11)
1/2
}2
+
{
(−m1a33)

1/2 − (−m3a11)
1/2
}2
+

+
{
(−m1a33)

1/2 − (−m3a22)
1/2
}2

follows. As (T − t) vanishes if and only if the vectors a and m are linearly dependent, the usual
Routh-Hurwitz test for the stability of a real (NP )+0 matrix of order 3 is indeed also a test for
the D-stability of A if and only if a = ηm for some η < 0.
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Always for n = 3, Cross (1978) has given a finite test for the additive stability (A, of order
3, is additively stable if and only if A ∈ (NP )+0 and A is stable) and for the Volterra-Lyapunov
stability. The reader must pay attention, as in this paper of Cross results on negative stability
and results on positive stability are continuously mixed.
The case n = 4 is indeed more difficult than the case n = 3. The necessary and sufficient

conditions given by Johnson (1974) are not numerically checkable. There are at least (as for as
we know) two attempts to construct a finite criterion for D-stability with n = 4, but, in our
opinion, these criteria are not completely satisfactory.
Moreover, it seems that the problem of characterizing D-stability for general nxm matrices

is np-hard (see Chen, Fan and Yu (1995)). The first paper to treat the characterization of
D-stability for n = 4 is due to Kanovei and Logofet (1998); the second paper is due Impram,
Johnson and Pavani (2005) and it is based on some results of Johnson and Tesi (1999). Both
papers start from the classical Routh-Hurwitz criterion, but Kanovei and Logofet transform the
problem into one of polynomial programming (an idea hidden in the paper of Johnson (1975)),
whereas Impram and others consider chains of Hankel determinants.
Necessary conditions and some sufficient conditions for n = 5 have been examined by

Burlakova (2009).

6. Conclusion
In the last Section we have seen that the problem of characterizing D-stability for

matrices of order n > 4 has not (since now) been solved and that the question, from a numerical
point of view, grows “exponentially” in difficulty.
Perhaps it would be better to concentrate the efforts in order to find new classes of matrices

(beyond Metzler and Morishima matrices) for which stability and D-stability coincide. In this
respect a good starting point could be the paper of Hershkowitz and Keller (2003).
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