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Equilibrium and Optimality
in Gale-von Neumann Models

Giorgio Giorgi1 and Cesare Zuccotti2

Summary

We give an overview of the main properties concerning equilibrium, optimality and turnpike theorems
for a Gale - von Neumann economic growth model.
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1. Introduction
The aim of the present paper is to give an overview on the main equilibrium and

optimality properties of a Gale - von Neumann growth model. The classical von Neumann model
(von Neumann (1945-46)) of an expanding economy has been generalized by Gale (1956), who
considered production as expressed by a closed convex cone, instead of by a pair of nonnegative
matrices. The Gale - von Neumann model has been subsequently considered by Karlin (1959)
and by many other authors, such as, e. g., Drandakis (1966), Furuya and Inada (1962), Nikaido
(1964,1968), Morishima (1964), Radner (1961), Winter (1965, 1967), Makarov and Rubinov
(1970, 1977), Evstigneev and Shank-Hoppé (2006), Giorgi (2004), Wan (1971).
We base our treatment mainly on Cruceanu (1978), Makarov and Rubinov (1977), Nikaido

(1968), Morishima (1964), Takayama (1985).
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The paper is organized as follows.

Section 2 is concerned with the description of the Gale - von Neumann model.

Section 3 treats the existence of equilibrium solutions for the said model.

Section 4 is concerned with growth paths (or growth trajectories), balanced growth paths and
maximal balanced growth paths.

Section 5 is concerned with the optimal final paths (or trajectories).

Section 6 is concerned with efficient growth.

Section 7 treats the main Turnpike Theorems (for a Gale - von Neumann model).

We adopt the following conventions for vector inequalities. Let a, b ∈ Rn; then a = b means
ai = bi, ∀i = 1, ..., n; a ≥ b means a = b and a 6= b; a > b means ai > bi, ∀i = 1, ..., n. If
b = [0] (zero vector of Rn), then the vector a is, respectively, a nonnegative, a semipositive,
a positive vector. The same convention is adopted for the comparison of two matrices of the
same order. The norm ‖ x ‖ of a vector x in Rn is (x>x)1/2. If A is a matrix of order (m,n),
by Ai, i = 1, ...,m, we denote its i-th row and by Aj, j = 1, ..., n, we denote its j-th column.
The zero matrix is denoted by [0] .

2. Assumptions on Gale-von Neumann Growth Models
The model to be considered involves n commodities; at the beginning of each period

some amounts x1, ..., xn of the various commodities are used as inputs, in order to obtain, at the
end of the period, the outputs described by the commodities y1, ..., yn. The set of technologically
possible pairs (x, y) is denoted by T ; obviously T ⊂ Rn+×R

n
+ and the pair (x, y) is technologically

possible if and only if (x, y) ∈ T. On the transformation set (or technology set) T usually the
following assumptions are made.

Assumption (T1). The set T is a closed convex cone in Rn+×R
n
+. This assumption translates

the property of proportionality of the transformation, i. e. if (x, y) ∈ T, then (λx, λy) ∈ T for
any λ = 0 (“constant returns to scale”); of additivity of the transformation, i. e. if (x, y) ∈ T
and (x′, y′) ∈ T , then (x + x′, y + y′) ∈ T ; and of closedness of the transformation, i. e. also
the boundary points of T are feasible activities.

Assumption (T2). If ([0] , y) ∈ T , then y = [0] . In other words, it is impossible to produce
something from nothing (impossibility of the “Land of Cockaigne”).

Assumption (T3). For any x = [0] there exists a vector y = [0] such that (x, y) ∈ T.

In other words, this assumption makes possible a production with any initial endowment of
available stocks.
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Assumption (T4). For any i = 1, ..., n, there exists (xi, yi) ∈ T such that yii > 0. That is,
every commodity can be produced. In view of (T1), the present assumption is equivalent to:
there exists a process (x̂, ŷ) ∈ T such that ŷ > [0] .

Assumption (T5). If (x, y) ∈ T, then x∗ = x and [0] 5 y∗ 5 y imply that (x∗, y∗) ∈ T .
This assumption implies that disposal activity is costless: a smaller output is certainly possible
with a larger input.

Remark 1. Assumptions (T1) and (T5) imply assumption (T3). Indeed, from (T1) we get
([0] , [0]) ∈ T ; on the other hand, from (T5) we get (x, [0]) ∈ T, x = [0] .

Remark 2. The polyhedral technology set of the classical von Neumann model

T = {(x, y) : x = Av, y = Bv, v = [0]}

is obviously a special case of the technology set T introduced above. Here A = [0] and B = [0]
are, respectively, the inputs matrix and the outputs matrix, of order (n,m). Assumption (T1)
is obviously satisfied, as this cone is polyhedral. If we assume, as in Kemeny, Morgenstern and
Thompson (1956), the condition

(KMT 1) Aj ≥ [0] , j = 1, ...,m,

then assumption (T2) is satisfied. If, following the same authors, we assume the condition

(KMT 2) Bi ≥ [0] , i = 1, ..., n,

then assumption (T4) is satisfied. We can also extend the definition of the technology set, in
order that also assumption (T5) is satisfied. For this purpose we define the following technology
set

T ′ = {(x, y) : x = Av, [0] 5 y 5 Bv, v = [0]} .

We may call T ′ von Neumann normalized technology set. Obviously, T ⊂ T ′, assumption
(T5) is verified by T ′ and again (KMT 1) and (KMT 2) imply, respectively, (T2) and (T4).
It is easy to see that also the Leontief-von Neumann models introduced by Gale (1960),

Karlin (1959), Łos (1971), are special cases of the technology set T. It is the same for the
Leontief-Morishima-von Neumann model introduced by Morishima (1961, 1964).

Let T ⊂ Rn+×R
n
+ a technology set satisfying assumptions (T1) and (T2) and let us suppose

that T is not a trivial technology, that is that it does not contain only the pair ([0] , [0]), which
would be equivalent to the “inactivity” of all processes. We define the rate of expansion of the
process (x, y) ∈ T as the largest value of α such that y = αx :

α(x, y) = max
α∈R

{α : y = αx} ,

where (x, y) 6= [0] . By definition we put α([0] , [0]) = +∞. Several authors call α(x, y) factor of
expansion or factor of growth and call rate of expansion the number α − 1. It is evident that
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α(x, y) = 0.We can also define the real-valued function α(x, y) as follows. Let (x, y) 6= ([0] , [0])
and define

I(x,y) = {i : xi + yi > 0} .

For any i ∈ I(x,y) we define as follows the rate of expansion of the i-th commodity in process
(x, y) and denoted αi(x, y) :

αi(x, y) =

{ yi
xi
, if xi > 0

+∞, if xi = 0.
(1)

Then
α(x, y) = min

i∈I(x,y)
αi(x, y) (2)

or
α(x, y) = max {α : αx 5 y} . (3)

Since α(x, y) is a function of (x, y), the expansion rate varies from process to process; con-
trary to what asserted, e. g., by Morishima (1964) and by Nicola (1976) and to what (perhaps)
implicitly supposed by Gale (1960), the function α : T\{[0] , [0]}→R+ is not continuous but
only upper semicontinuous. See also Glycopantis (1970) and Giorgi (2004).

Lemma 1. The function α(x, y) is positively homogeneous of degree zero and upper semi-
continuous.

Proof. Let be given (x, y) ∈ T\{[0] , [0]} and λ > 0. For each i ∈ I(x,y) we have

αi(λx, λy) = αi(x, y). (4)

As in processes (λx, λy) and (x, y) the same commodities are implied, from (4) we get

α(λx, λy) = min
i∈I(x,y)

αi(λx, λy) = min
i∈I(x,y)

αi(x, y) = α(x, y),

that is the function α(x, y) is positively homogeneous of degree zero. Let us now consider a
sequence {(xn, yn)}∞n=1 ⊂ T\{[0] , [0]} such that (x

n, yn)→(x, y) for n→∞. Let ᾱ be a limit point
of the numerical sequence {α(xn, yn)}∞n=1 . Then, there exists a subsequence {(x

nk , ynk)}∞k=1 ⊂

{(xn, yn)}∞n=1 such that α(x
nk , ynk)→ᾱ when k→∞. From the inequality

α(xnk , ynk)xnk 5 ynk ,

when k→∞ we find the limit
ᾱx 5 y.
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From this result and from (3) we have ᾱ 5 α(x, y), but as ᾱ is an arbitrary limit point of the
sequence {α(xn, yn)}∞n=1, we deduce

lim sup
n→∞

α(xn, yn) 5 α(x, y).

Therefore the function α(x, y) is upper semicontinuous on T\{[0] , [0]} .
�

It is well-known that an upper semicontinuous function admits a global maximum over any
compact set. As the set T∩

{
(x, y) : (x, y) ∈ Rn+ × R

n
+, ‖ (x, y) ‖= 1

}
is compact, α(x, y) admits

a global maximum on this set. This maximum is also the maximum on the set T\{[0] , [0]} , as
α is a positively homogeneous function of degree zero on this set. We denote

α(T ) = max
(x,y)∈T,

‖(x,y)‖=1

α(x, y) = max
(x,y)∈T,

(x,y) 6=([0],[0])

α(x, y). (5)

Definition 1. The number defined by (5) is said to be the rate of expansion of the technology
T or von Neumann expansion rate of T. Any process (x̄, ȳ) ∈ T such that ȳ = α(T )x̄ is called
optimal process or von Neumann process.

Remark 3. LetQ = {(x, y) : (x, y) ∈ T, α(x, y) = α(T )} the set of all von Neumann processes
for a technological set T. Therefore a process (x, y) belongs to Q if and only if (x, y) 6= ([0] , [0]),
α(T )x 5 y; it is easy to verify that the elements of the set Q verify the following properties:

a) (x′, y′) ∈ Q, (x′′, y′′) ∈ Q implies (x′ + x′′, y′ + y′′) ∈ Q;

b) If (x, y) ∈ Q, then (λx, λy) ∈ Q for any number λ > 0.

Remark 4. The growth rate α(T ) has been defined for a technology T which satisfies
assumptions (T1) and (T2). These assumptions, however, do not assure the positivity of α(T ).
If, besides (T1) and (T2), also assumption (T4) is imposed, then α(T ) > 0. Indeed, let (x̂, ŷ) ∈ T
such that ŷ > [0] . From (1) and (2) we get α(x̂, ŷ) > 0 and therefore it holds α(T ) > 0.

Lemma 2. Let (T1) and (T2) be verified. There exists a vector p̄ ≥ [0] such that

p̄y − α(T )p̄x 5 0, ∀(x, y) ∈ T. (6)

Proof. Let us consider the following set of Rn :

L = {y − α(T )x : (x, y) ∈ T} .

Being T a convex cone, the set L is a convex cone too. From the definition of α(T ) we obtain

L ∩ intRn+ = ∅.
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It results therefore that the sets L and Rn+ can be separated by a hyperplane passing through
the origin. Therefore, there exists a vector p̄ ∈ Rn, p̄ 6= [0] , such that

p̄z = 0, ∀z ∈ Rn+.

p̄z 5 0, ∀z ∈ L.

From the first inequality we obtain p̄ ≥ [0] and from the second inequality relation (6) follows.
�

The vector p̄ of relation (6) is also called von Neumann price vector ; whenever p̄x > 0, the
ratio (p̄y)/(p̄x) may be considered as the “profit ratio” of process (x, y). Lemma 2 states that
this does not exceed the maximum expansion rate α(T ).

3. Equilibrium Solutions for the Gale-von Neumann Model
Following Łos (1971), who mainly analyzed the classical (polyhedral) von Neumann

model, we give the following definition.

Definition 2. A quadruplet ((x̄, ȳ), p̄, α),where (x̄, ȳ) ∈ T, x̄, p̄ ∈ Rn+, α ∈ R+, is called an
equilibrium solution for the technology T if it satisfies the following relations:

αx̄ 5 ȳ, (7)

p̄y 5 αp̄x, ∀(x, y) ∈ T, (8)

p̄ȳ > 0. (9)

From relations (7), (8) and (9) it results at once that for each equilibrium solution ((x̄, ȳ), p̄, α)
we have α > 0, x̄ ≥ [0] , ȳ ≥ [0] , αp̄x̄ = p̄ȳ. It is well-known (see, e. g., Kemeny, Morgenstern
and Thompson (1956)) that the classical von Neumann model, where matrices A and B satisfy
properties (KMT 1) and (KMT 2), admits at least the equilibrium solution where α = α(T ).

Besides the quoted paper of Kemeny, Morgenstern and Thompson, see also. e. g., Giorgi and
Meriggi (1987, 1988), Gale (1972), Howe (1960), Łos (1971).

Definition 3. An equilibrium solution of the form ((x̄, ȳ), p̄, α(T )) is called von Neumann
equilibrium solution.

It can be proved that the assumptions (KMT 1) and (KMT 2) on matrices A and B for the
classical von Neumann model imply assumptions (T1), (T2), and (T4); see, e. g., Takayama
(1985).
Now our problem is: are assumptions (T1), (T2) and (T4) sufficient for the existence of a

von Neumann equilibrium solution for the general Gale - von Neumann model? The following
example, due to Hülsmann and Steinmetz (1972), shows that, for a non-polyhedral technology,
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the above assumptions in general do not assure the existence of a von Neumann equilibrium
solution.

Example 1. Let T ⊂ R3+ × R
3
+ the convex cone generated by the set

T0 =
{
(1, 1, t; 3, 2±

√
1− (t− 1)2, t); 0 5 t 5 2

}
.

It can be seen that T satisfies assumptions (T1), (T2) and (T4). From what previously said,
these assumptions assure the existence of an expansion rate α(T ) > 0. In order to calculate
this expansion rate, first we note that (x, y) ∈ T implies x3 = y3. If x3 = 0, then process
(x, y) has the form λ(1, 1, 0; 3, 2, 0), with λ > 0 and hence α(x, y) = min {3/2, 2/1} = 2. If
x3 6= 0, then, as 0 5

√
1− (t− 1)2 5 1 for 0 5 t 5 2, we get (x, y) = 1. It results therefore

α(T ) = 2 and the von Neumann processes are given by λ(1, 1, 0; 3, 2, 0), λ > 0. Omitting the
multiplier λ, we consider a unique von Neumann process (x, y) = (1, 1, 0; 3, 2, 0). With respect
to this process, a von Neumann equilibrium solution consists in the existence of a price vector
p̄ = (p̄1, p̄2, p̄3) > [0] which satisfies the relations

p̄ȳ = 2p̄x̄, (10)

p̄y 5 2p̄x, ∀(x, y) ∈ T, (11)

p̄ȳ > 0. (12)

In a more explicit way, relations (10) and (12) are rewritten as: 3p̄1 + 2p̄2 = 2p̄1 + 2p̄2,

3p̄1 + 2p̄2 > 0, from which p̄1 = 0, p̄2 > 0. Therefore, the price vector which verifies (10) and
(12) and which may form a von Neumann equilibrium, must be of the form p̄ = (0, p̄2, p̄3), with
p̄2 > 0. As a vector p̄ satisfies (10), (11) and (12) if and only if p̄/(p̄1 + p̄2 + p̄3) satisfies the
same relations, we limit ourselves to consider the following family of price vectors

P = {(0, q, 1− q) : 0 < q 5 1} .

The proof of the non-existence of a von Neumann equilibrium solution for technology T,
results simplified by proving that for every vector p̄ ∈ P there exists a process (x, y) ∈ T0 ⊂ T
for which inequality (11) is not satisfied, that is p̄y > 2p̄x.
Let p̄ = (0, q, 1− q), (1/2) < q 5 1. By choosing the process (x, y) = (1, 1, 1; 3, 3, 1) ∈ T0 we

get p̄y = 3q+1−q = 2q+1 > 2, p̄x = q+1−q = 1, that is p̄y > 2p̄x. Let now be p̄ = (0, q, 1−q),
0 < q 5 (1/2). By choosing the process (x, y) = (1, 1, q2; 3, 2+

√
1− (q2 − 1)2, q2) ∈ T0, we get

p̄y = q(2 +
√
1− (q2 − 1)2) + (1− q)q2 = 2q + q2

√
2− q2 + q2(1− q), p̄x = q + (1− q)q2.

The condition 0 < q 5 (1/2) implies
√
2− q2 > 1 − q, therefore in this case it holds

p̄y > 2p̄x : relation (11) is not satisfied and hence a von Neumann equilibrium does not exist
for the model taken into consideration.
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The following result gives sufficient conditions for the existence of a von Neumann equilibrium.

Theorem 1. Let the technology T satisfy assumptions (T1), (T2) and (T4); moreover,
assume that

a) either T is a polyhedral cone;

b) or T contains a von Neumann process (x̃, ỹ), with ỹ > [0] .

Then there exists a von Neumann equilibrium solution.

Proof. The existence of an equilibrium solution for the case a), i. e. for the classical von
Neumann model, has been proved, e. g. by Kemeny, Morgenstern and Thompson (1956), Gale
(1972), Howe (1960), Łos (1971) and will not be repeated here.

Under assumptions (T1), (T2) and (T4) and under condition b), the existence of a von
Neumann equilibrium solution is an immediate consequence of Lemma 2.

�

Remark 5. A direct and self-contained proof of Theorem 1 (proof which does not make
reference to other proofs for the polyhedral case, nor to Lemma 2) is provided by Makarov and
Rubinov (1970, 1977). Note that condition b) of Theorem 1 may be viewed as a Slater-type
regularity condition. Soyster (1974) proved Theorem 1 under a regularity condition weaker
than b).

4. Growth Path, Balanced Growth Path, Maximal Balanced Growth
Path.
Throughout the present Section we assume that the technology T satisfies assumptions

(T1), (T2) and (T3). Suppose now that at a given period t, t = 0, 1, 2, ... , there are xi(t) = 0
units of the i-th good in the economy as a whole. We denote by x(t) the vector which represents
the state of the economy at period t. The economy reaches another state x(t + 1) at the next
period (t+1), through a production process described by the pair (x(t), x(t+1)) ∈ T. Similarly,
by means of the inputs described by x(t+1), the economic system can arrive at the state x(t+2),
through a production process described by the pair (x(t+ 1), x(t+ 2)), and so on. In this way,
starting from x(0), we can define a (feasible) growth path or (feasible) growth trajectory.

Definition 4. Given x0 = x(0), a finite sequence of vectors {x(t)}Nt=0 which satisfies the
condition

(x(t), x(t+ 1)) ∈ T, t = 0, 1, ..., N − 1, x(0) = x0

is called a feasible path or feasible trajectory of (finite) horizon N, starting from x0.

Definition 5. Given x0 = (x(0)), an infinite sequence of vectors {x(t)}∞t=0 which satisfies
the condition

(x(t), x(t+ 1)) ∈ T, t = 0, 1, ..., x(0) = x0

8



is called a feasible path or feasible trajectory of infinite horizon N, starting from x0.

A feasible path {x(t)}Nt=0 represents a dynamic movement over N periods. In general, given
an input vector x = [0] , the set {y : (x, y)} need not be a set consisting of a single element.
In other words, starting from a given input vector, there may be several feasible growth paths.
Let us denote by XT (x

0, N) the set of all feasible paths of horizon N starting at a given initial
vector x0 = [0] , and by XT (x

0) the set of all feasible paths of infinite horizon, always starting
at a given initial vector x0 = [0] . From assumption (T3) it results that for every x0 ∈ Rn+
and every integer number N, the sets XT (x

0, N) and XT (x
0) are nonempty. Similarly, under

assumptions (T1) and (T2), we deduce that the unique trajectory (finite or infinite) which starts
from the origin is the constant sequence of elements x(t) = [0] . Similarly to what appears in the
literature concerning the classical von Neumann model, let us now give the notion of balanced
growth path for the Gale - von Neumann model.

Definition 6. A feasible path {x(t)}∞t=0, not identically the zero vector, is calle a balanced
growth path or proportional growth path (or trajectory) if

x(t+ 1) = αx(t), t = 0, 1, ... ,

where α is a nonnegative constant.

The constant α is termed the growth rate of the path (or growth factor; in this case the
growth rate is α− 1). It is evident that a balanced growth path can be put in the form

x(t) = αtx, x(0) = x ≥ [0] (13)

where the pair (x, α) satisfies the relation

(x, αx) ∈ T. (14)

Conversely, every nonnegative number α and every semipositive vector x satisfying (14),
determine, thanks to (13), a balanced growth path. In Section 2 we have defined the growth
rate α(T ) of a technology T which satisfies assumptions (T1) and (T2), as the number

α(T ) = max {α : αx 5 y, (x, y) ∈ T, (x, y) 6= ([0] , [0])} .

Definition 7. A non trivial feasible growth path {x(t)}∞t=0 is called a maximal balanced
growth path or von Neumann balanced growth path if

x(t+ 1) = α(T )x(t), t = 0, 1, ... .

9



From (13) and (14) we can note that a technology T possesses a maximal balanced growth
path

x(t+ 1) = α(T )x, x(0) = x ≥ [0] (15)

if and only if
(x, α(T )x) ∈ T. (16)

We are now interested in the problem of the existence of a maximal balanced growth path,
i. e. of a vector x ≥ [0] such that (16) holds. A general theorem on the existence of the said
path has been given by Nikaido (1968). We follow a proof different from the one of Nikaido
and taken from Cruceanu (1978).

Theorem 2. If the technology T satisfies assumptions (T1), (T2) and (T3), there exists a
maximal balanced growth path.

In order to prove the above theorem, we need some preliminaries definitions and results.

Definition 8. A convex cone K ⊂ Rn is said to be acute if K ∩ (−K) = {[0]} .

Lemma 3. If K is a closed acute convex cone, then there exists a vector p ∈ Rn such that

pu > 0, ∀u ∈ K, u 6= [0] . (17)

Proof. LetK∗ be the polar cone ofK (i. e. K∗ = {y : yx = 0, ∀x ∈ K}). We prove thatK∗

has a nonempty interior; suppose the contrary: hence the cone K∗ is contained in a hyper-
plane H.
Let q 6= [0] be perpendicular to the said hyperplane:

H = {u : qu = 0} .

As K∗ ⊂ H, for each v ∈ K∗ we have qv = q(−v) = 0. Therefore q and −q belong to the
cone K∗∗. Being K closed and convex, it holds K∗∗ = K. So, q and −q belong to K, which is
in contradiction with the assumption that K is an acute cone. Let us choose a vector p in the
interior of K∗ : there will exist a number ε > 0 such that p + r ∈ K∗ for each vector r, with
‖ r ‖5 ε. Let u ∈ K, u 6= [0] . By denoting r = −εu/2 ‖ u ‖, we obtain p + r ∈ K∗. Therefore
(p+ r)u = 0. It results

(p+ r)u = pu−
ε

2
‖ u ‖2= 0,

that is
pu =

ε

2
‖ u ‖2> 0.

�
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Definition 9. Let K ⊂ Rn be a convex cone and let be given the set-valued map Γ : K→2K ,
such that Γ(u) 6= ∅, ∀u ∈ K. The map Γ is said to be sublinear if

Γ(λu+ λ′u′) ⊃ λΓ(u) + λ′ Γ(u′), ∀u, u′ ∈ K and ∀λ, λ′ ∈ R+. (18)

The map Γ is said to be closed if its graph {(u, v) : v ∈ Γ(u)} is a closed set in Rn × Rn.

From Definition 9 it results at once that the sublinear map Γ satisfies the equality

Γ(λu) = λΓ(u), ∀u ∈ K, ∀λ ∈ R+, λ 6= 0.

Indeed, from (18) we get

Γ(λu) ⊃ λΓ(u) = λΓ [(1/λ)λu] ⊃ Γ(λu).

On the other hand, for each u ∈ K, the set Γ(u) is convex: from (18), for v, v′ ∈ Γ(u) and
0 < λ < 1, we get

λv + (1− λ)v′ ∈ λΓ(u) + (1− λ)Γ(u) ⊂ Γ [λu+ (1− λ)u] = Γ(u).

The following result is interesting, not only for the subsequent proof of Theorem 2, but also
as an autonomous result on the existence of characteristic vectors for a closed and sublinear
map.

Lemma 4. Let K ⊂ Rn, K 6= {[0]} , an acute closed convex cone and let Γ : K→2K a closed
sublinear map. Then, there exists vectors u, v ∈ K, u + v 6= [0] , and nonnegative numbers λ
and µ, λ+ µ 6= 0, such that v ∈ Γ(u) and λu = µv.

Proof. Let us fix a point u0 ∈ K, u0 6= [0] . Let us denote by F the hyperplane

F = {u : pu = 0, p 6= [0]}

where p is the vector which appears in Lemma 3. Let be

S = K ∩
{
u0 + F

}
.

Obviously, S is closed and convex. We now prove that it is also bounded. Assume on the
contrary that there exists in S a sequence {un}∞n=1 such that ‖ u

n ‖ →∞ when n→∞. Every
element of this sequence has the form un = u0 + zn, with zn ∈ F. As ‖ zn ‖ →∞ when n→∞,
we can suppose ‖ zn ‖6= 0 for every n. The sequence {vn}∞n=1, v

n = (u0 + zn) / ‖ zn ‖ belongs
to K and is bounded. Let v̄ be a limit point of this sequence. Obviously v̄ is also a limit point
of the sequence zn / ‖ zn ‖ . Therefore ‖ v̄ ‖= 1. From the closedness of K and F it results
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v̄ ∈ K, v̄ ∈ F. So, the cone K contains the element v̄ 6= [0] such that pv̄ = 0, in contradiction
with (17).

We remark that if u ∈ K, u 6= [0] , then for λ = pu0/pu we have λu ∈ S. Let us consider the
map G : S→2S defined as follows.

G(u) =

[
∪
λ>0
Γ(λu)

]
∩ S. (19)

Without loss of generality, we can suppose that u 6= [0] implies [0] /∈ Γ(u). Indeed, if for ū 6= [0]
we have [0] ∈ Γ(ū), then u = ū, v = [0] , λ = 1, µ = 0 satisfy the conclusions of the lemma. So,
we can suppose G(u) 6= ∅ for every u ∈ S.We can see that the map G satisfies the assumptions
of the Kakutani fixed point theorem (see, e. g., Nikaido (1968)). We already know that S is
a convex compact set. From (19) it is easy to see that for each u ∈ S, G(u) is a convex set.
It remains to prove that the map G is closed. Let be the sequence {(un, vn)}∞n=1 , such that
vn ∈ G(un) and (un, vn)→(u, v) when n→∞. From (19) we deduce the existence of a positive
sequence {λn}

∞
n=1 such that

vn ∈ Γ(λnu
n), n = 1, 2, ... . (20)

From this we obtain the boundedness of the sequence {λn}
∞
n=1 . Indeed, if absurdly this sequence

would have +∞ as a limit point, from the relation vn/λn ∈ Γ(un), it follows the closedness of
the map Γ, in contradiction with [0] /∈ Γ(u), u 6= [0] .
Let therefore be 0 5 λ̄ < ∞ a limit point of the sequence {λn}

∞
n=1 . By (20) and the

closedness of Γ we obtain
v ∈ Γ(λ̄, u). (21)

Being the set S closed, it results u, v ∈ S. Therefore v ∈ G(u), that is the map G is closed.
Therefore all the assumptions of the Kakutani fixed point theorem are satisfied: S is a convex
and compact set, for each u ∈ S the set G(u) is convex, G is a closed map. Therefore the map
G admits a fixed point. There exists a vector v ∈ S such that v ∈ G(v). From this and from
the definition of G by (19), we obtain the existence of a number λ > 0 such that v ∈ Γ(λu).

�

Proof of Theorem 2. Let us consider the set

Z = {(x, y) : α(T )x 5 y, (x, y) ∈ T} .

As already remarked, Z is a closed convex cone in Rn × Rn, Z 6= {[0] , [0]} . Moreover, as this
cone belongs to Rn+ × R

n
+, this cone is acute. For (x, y) ∈ Z we put z = x + y − (1 + α(T ))x.

From the definition of Z we have z = [0] . By assumption (T3) there exists r ∈ Rn+ such that
(z, r) ∈ T. We have

(x+ y, (1 + α(T ))y + r) = (1 + α(T ))(x, y) + (z, r) ∈ T.

12



Moreover, the following inequality holds

α(T )(x+ y) 5 (1 + α(T ))y + r.

Hence
((x+ y, (1 + α(T ))y + r) ∈ Z.

Let us consider the following set-valued map Ω : Z→2Z :

Ω(x, y) = {(x+ y, w) : (x+ y, w) ∈ Z} . (22)

We have already seen that Ω(x, y) 6= [0] for every (x, y) ∈ Z. The map Ω is sublinear. Let
(x1, y1), (x2, y2) ∈ Z, (x1 + y1, w1) ∈ Ω(x1, y1), (x2 + y2, w2) ∈ Ω(x2, y2) and let λ1 and λ2 be
nonnegative numbers. Being Z a convex cone, we get:

(
(λ1(x

1 + y1) + λ2(x
2 + y2)), λ1w

1 + λ2w
2
)
= λ1(x

1 + y1, w1) + λ2(x
2 + y2, w2) ∈ Z,

that is
λ1(x

1 + y1, w1) + λ2(x
2 + y2, w2) ∈ Ω

[
λ1(x

1 + y1) + λ2(x
2 + y2)

]
.

Hence
Ω
[
λ1(x

1 + y1) + λ2(x
2 + y2)

]
⊃ λ1Ω(x

1, y1) + λ2Ω(x
2, y2).

The map Ω is closed. Consider the sequences {(xn, yn)}∞n=1 ⊂ Z, {w
n}∞n=1 ⊂ R

n
+, (x

n+yn, wn) ∈

Z, n = 1, 2, ... . In other words, (xn + yn, wn) ∈ Ω(xn, yn), n = 1, 2, ... . Suppose that
(xn, yn)→(x̄, ȳ), wn→w̄ when n→∞. As the cone Z is closed, we get (x̄, ȳ) ∈ Z, (x̄+ ȳ, w̄) ∈ Z,
that is (x̄ + ȳ, w̄) ∈ Ω(x̄, ȳ). Therefore Ω is a closed map. By Lemma 4, there exist the pairs
(x′, y′), (x′′, y′′) ∈ Z, at least one of them different from ([0] , [0]), and nonnegative numbers λ
and µ, λ+ µ 6= 0, such that

λ(x′, y′) = µ(x′′, y′′) (23)

(x′′, y′′) ∈ Ω(x′, y′). (24)

From (22) and (24) we obtain that there exists a vector w′ such that

(x′′, y′′) = (x′ + y′, w′). (25)

Relations (23) and (25) give
λx′ = µ(x′ + y′). (26)

Equality (25) and assumption (T2) show that x′ 6= [0] , x′′ 6= [0] . From this and (26) we obtain
λ 6= 0, µ 6= 0. Finally, we obtain

y′ =
λ− µ

µ
x′. (27)
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Being (x′, y′) a von Neumann process, equality (27) implies

λ− µ

µ
= α(T ).

�

Remark 6. A short proof of Theorem 2 has been given by Karlin (1959), but under assump-
tions (T1), (T2) and (T5). On the other hand, we have already remarked that (T1) and (T5)
imply (T3). Another short proof of Theorem 2 has been given by Furuya and Inada (1962), but
under a different set of assumptions. More precisely, these authors assume (T1), but without
convexity, (T2) and (T3). Then they assume super-additivity:

Assumption (T6) (Super-additivity). If (x1, y1) ∈ T and (x2, y2) ∈ T, there exists

(λx1 + (1− λ)x2, y) ∈ T such that y = λy1 + (1− λ)y2, where 0 5 λ 5 1.

Finally, they assume primitivity. The technological set T is called primitive if any semipos-
itive input vector can yield a strictly positive output vector, after a finite number of periods.
Formally:

Assumption (T7) (Primitivity). There is a finite number s such that, for any x(0) ≥ [0]

and with x(s) > [0] , (x(0), x(s)) ∈ T (s), being

T (s) =
{
(x(0), x(s)) : x(t)st=0 ∈ XT (x

0, s)
}
.

Definition 10. The ray {λx} , λ = 0, generated by a process of balanced maximal growth
(x, α(T )x), x ≥ [0] , is called a maximal balanced growth ray or von Neumann ray.

On the grounds of Lemma 2, there exists a system of price vectors p̄ ≥ [0] (von Neumann
price vectors) such that

p̄y − α(T )p̄x 5 0 for any (x, y) ∈ T. (28)

For every process (x, y) ∈ T, let us consider the value

π(x, y; p̄, α(T )) = p̄y − α(T )p̄x.

The number π(x, y; p̄, α(T )) represents the revenue yielded by process (x, y), when evaluated
with the price vector p̄ and with the interest rate α(T ). If (x̄, α(T )x̄) is a process with maximal
balanced growth rate, it will hold

π(x̄, α(T )x̄; p̄, α(T )) = p̄ α(T )x̄− α(T )p̄x̄ = 0. (29)
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Definition 11. Let (x, αx) ∈ T, α = 0, x ≥ [0] be a process of balanced growth. We say
that this process is sustained by a price vector p ≥ [0] if

π(x, y; p, α) = py − αpx 5 0, for any (x, y) ∈ T.

Now we give the following variant of Lemma 2.

Theorem 3. Under assumptions (T1), (T2) and (T3), the processes of maximal balanced
growth are sustained by a system of price vectors p̄ ≥ [0] , called von Neumann price vectors,
that is, for every process of maximal balanced growth the revenue computed with these prices
and with the interest rate α(T ), is zero.

A natural question now arises: under which conditions a balanced growth process sustained
by a certain price system, is a maximal balanced growth process? The following result answers
the said question.

Theorem 4. Assume (T1), (T2) and (T3) and let (x̂, αx̂) ∈ T, α = 0, x̂ ≥ [0] , a balanced
growth process sustained by a price system p. If p > [0] , then α = α(T ), that is the process
(x̂, αx̂) is a maximal balanced growth process.

Proof. We have

π(x, y; p, α) = py − αpx 5 0, for any (x, y) ∈ T. (30)

Let (x̄, α(T )x̄) ∈ T be a process of maximal balanced growth. By (30) we get

π(x̄, α(T )x̄; p, α) = pα(T )x̄− αpx̄ 5 0. (31)

Therefore
(α(T )− α)px̄ 5 0. (32)

But p > [0] and x ≥ [0] imply px > 0, so from (32) we get α(T ) 5 α. On the other hand, from
(x̂, αx̂) ∈ T we deduce α 5 α(T ) and hence we obtain the equality α = α(T ).

�

The maximal balanced growth ray is in general not unique. We can obtain its uniqueness and
other useful properties of the maximal balanced growth processes under special assumptions.

Definition 12. The technology T is called strictly convex (Assumption (T8)) if for any
two processes (x, y) ∈ T and (u, v) ∈ T, with x and u linearly independent vectors, and for any
numbers δ > 0, γ > 0, δ + γ = 1, there is an output vector w such that

(δx+ γu, w) ∈ T, w > δy + γv.
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Theorem 5. Assume (T1), (T2) and (T3). Further assume (T8), i. e. the technology is
strictly convex. Then:

a) The maximal balanced growth ray or von Neumann ray is unique.

b) If n = 2, then α(T ) > 0.

c) If {λx̄} , λ > 0, is the von Neumann ray of the technology and if p̄ is a von Neumann price
vector, then p̄i = 0 implies x̄i > 0, x̄j = 0 for j 6= i (at most one component of p̄ can be zero).

Proof. Let {λx̄} , λ > 0, a von Neumann ray and p̄ a von Neumann price vector. First
we prove that for every process (x, y) ∈ T for which x is not proportional to x̄, we have
π(x, y; p̄, α(T )) < 0. Indeed, as (x̄, α(T )x̄) ∈ T, from the strict convexity of the technology T
it results the existence of a vector

w >
y + α(T )x̄

2
(33)

such that (
x+ x̄

2
, w

)
∈ T. (34)

Inequality (33) implies

p̄
y + α(T )x̄

2
− p̄w < 0, (35)

and taking (28) and (34) into account, we obtain

p̄w − α(T )p̄
x+ x̄

2
5 0. (36)

Putting together (35) and (36) we obtain

π(x, y; p̄, α(T )) = p̄y − α(T )p̄x < 0.

Now we prove points a), b) and c) of the theorem.

a) Let us absurdly suppose that the technology T generates a von Neumann ray {λx} different
from the ray {λx̄} . Hence, (x, α(T )x) is a maximal balanced growth process and x is not
proportional to x̄. On the ground of what previously proved, it holds π(x̄, α(T )x; p̄, α(T )) < 0,
in contradiction with Theorem 3. Whence, x must be proportional to x̄, which proves the
desired uniqueness.

b) If n = 2, we can choose a vector x ≥ [0] not proportional to x̄. By assumption (T3) there
exists a vector y such that (x, y) ∈ T. It results

π(x, y; p̄, α(T )) = p̄y − α(T )p̄x < 0,

whence 0 5 p̄y < α(T )p̄x, which implies α(T ) > 0.
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c) Let p̄i = 0. We choose a vector x such that xi > 0 and xj = 0 for j 6= i. From assumption
(T3) it results the existence of an output vector y such that (x, y) ∈ T. We obtain

p̄y − α(T )p̄x = p̄y = 0 (37)

and taking inequality (28) into account,

p̄y − α(T )p̄x 5 0. (38)

Therefore p̄y − α(T )p̄x = 0, whence x must be proportional to x̄, implying that x̄i > 0, x̄j = 0
for j 6= i. Now, if there were another vanishing component of p̄, say, the k-th one (k 6= i),
the components of x̄ would also satisfy x̄k > 0, x̄j = 0 (j 6= k) for the same reason as above,
yielding a contradiction.

�

Remark 7. The uniqueness of the von Neumann ray is obtained by Furuya and Inada (1962)
under the assumptions mentioned in Remark 6 and adding a further assumption: these authors
assume that T is strongly super additive, a property slightly weaker than strict convexity:

Assumption (T9) (Strong super additivity). Let x1 6= [0] , x2 6= [0] and x1 6= αx2 for any
positive α. The cone T is said to be strongly super additive if for (x1, y1) ∈ T, and (x2, y2) ∈ T,
there exists a process (x1 + x2, y∗) ∈ T such that y∗ ≥ y1 + y2.

We draw the reader’s attention on the fact that Theorem 2 of Furuya and Inada (1962, page
100) is not fully correct. It has been corrected by Fisher (1963).
Assumption (T9) and assumption (T8) of strict convexity (Definition 12) have been crit-

icized by Morishima (1964) who regards them as economically implausible properties. This
author obtains strong results on the uniqueness of the von Neumann ray and on the von Neu-
mann price vector, by means of various assumptions (in general weaker than strict convexity
of T and than the assumption of strong super additivity (T9)), but imposing also an inde-
composability property: let J(x, y) = {j : xj = 0 or yj = 0} . The technological set T is called
indecomposable at (x, y) if J(x, y) is empty or if J(x, y) contains at least one j such that xj > 0
or yj > 0.
Morishima (1964, page 180) assumes then:

Assumption (T10) (Indecomposability). The technological set T is indecomposable at every
point (x, y) ∈ T.

5. Optimal Final Paths
In the present section we discuss some criteria to compare paths (or trajectories). This

will be done in terms of the final state. We suppose that the technological set T satisfies the
assumptions (T1), (T2) and (T3).
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Lemma 5. Let us consider the set

B = {y : (x, y) ∈ T, x ∈ A} ,

where A is a nonempty set of Rn+. Then:

a) If A is convex, then B is convex.

b) If A is compact, then B is compact.

Proof.

a) Let the vectors y′, y′′ ∈ B and let us consider the number λ, 0 < λ < 1. Hence, there
exist vectors x′, x′′ such that (x′, y′), (x′′, y′′) ∈ A. Being A and T both convex sets, we obtain
λx′ + (1− λ)x′′ ∈ A, (λx′ + (1− λ)x′′, λy′ + (1− λ)y′′) = λ(x′, y′) + (1− λ)(x′′, y′′) ∈ T. Hence,
λx′ + (1− λ)x′′ ∈ B.

b) Let us suppose absurdly that the set B is unbounded. Therefore, there exists a sequence
{(xn, yn)}∞n=1 ⊂ T with xn ∈ A for all n, such that ‖ yn ‖ →∞ when n→∞. The bounded
sequence {yn/ ‖ yn ‖}∞n=1 contains a subsequence {y

nk/ ‖ ynk ‖}∞k=1 convergent to an element y.
As T is a cone, (xnk/ ‖ ynk ‖, ynk/ ‖ ynk ‖) ∈ T, k = 1, 2, ... . Taking the limit for k→∞, being
A a bounded set and T a closed set, we obtain ([0] , y) ∈ T. But ‖ y ‖= 1, in contrast with (T2).
Hence, the set B is bounded. Now consider a sequence {yn}∞n=1 ⊂ B such that yn→ȳ when
n→∞. Hence, there exists a sequence {xn}∞n=1 ⊂ A for which (x

n, yn) ∈ T, n = 1, 2, ... . The
sequence {xn}∞n=1 , belonging to the set A, is bounded. Let x̄ be a limit point of this sequence.
Being A a closed set, we have x̄ ∈ A, which, together with the closedness of T implies (x̄, ȳ) ∈ T.
Hence, ȳ ∈ B, that is B is a closed set.

�

Consider now the vector x0 ∈ Rn+. We recall that we have denoted by XT (x
0, N) the set of

all feasible paths (or trajectories) of horizon N starting at a given initial state x0 = [0] . We
consider the sequence of sets BT (x0, 1), BT (x0, 2), ... , defined as follows:

BT (x
0, 1) =

{
y : (x0, y) ∈ T

}
(39)

BT (x
0, t+ 1) =

{
y : (x, y) ∈ T, x ∈ BT (x

0, t)
}
, t = 1, 2, ... . (40)

The set BT (x0, t) therefore represents all the states that the economy can reach in t periods,
starting from the initial situation x0. By Lemma 5 every set BT (x0, t) is convex and compact.

Lemma 6. The set XT (x
0, N) is convex and compact in the cartesian product

V = Rn+ × R
n
+ × ...× R

n
+︸ ︷︷ ︸

N+1 factors

.
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Proof. Let {x1(t)}∞t=0 , {x
2(t)}

∞
t=0 be two paths of XT (x

0, N). Therefore we have (x1(t), x1(t+
1)) ∈ T, (x2(t), x2(t + 1)) ∈ T, t = 0, 1, ..., N − 1, x1(0) = x2(0) = x0. For λ ∈ (0, 1) let us
consider the sequence

{
xλ(t)

}N
t=0
, with xλ(t) = λx1(t)+ (1−λ)x2(t), t = 0, 1, ..., N. Obviously,

xλ(0) = λx1(0) + (1− λ)x2(0) = x0, but from convexity of the cone T we obtain (xλ(t), xλ(t+
1)) = λ(x1(t), x1(t + 1)) + (1 − λ)(x2(t), x2(t + 1)) ∈ T, that is

{
xλ(t)

}∞
t=0

= XT (x
0, N). As

XT (x
0, N) ⊂ {x0} ×BT (x

0, 1)× ...×BT (x
0, N), the set XT (x

0, N) is bounded.

It remains to prove that the same set is closed. Let be the sequence of paths {xn(t)}Nt=0 ∈
XT (x

0, N), n = 1, 2, ... , such that xn(t)→x̄(t) when n→∞ for all t = 0, 1, ..., N.We shall prove
that {x̄(t)}Nt=0 ∈ XT (x

0, N). From xn(0) = x0 for all n, it results x̄(0) = x0. In the same way
for all n we have (xn(t), xn(t+ 1)) ∈ T, t = 0, 1, ..., N − 1, so that, taking the limit for n→∞,
being T closed, we obtain (x̄(t), x̄(t+1)) ∈ T, t = 0, 1, ..., N − 1, that is {x̄(t)}∞t=0 ∈ XT (x

0, N).

�

Now we introduce a preference function (or utility function) u(x) in terms of which it is
possible to define an optimality criterion. Usually, u : Rn+→R+ is a continuous function and in
some models other economic and/or mathematical properties are imposed (see, e. g., Radner
(1961), Morishima (1964)). Important examples of preference functions are:

1) u(x) = max {c : xi = cαi, i = 1, ..., n} where the coefficients αi are fixed nonnegative num-
bers with α1 + α2 + ... + αn = 1. In this case the numbers α1, ..., αn represent the “desired
proportions” of the several commodities.

2) u(x) =
∑n

i=1 pixi = px, with pi = 0, i = 1, ..., n. We can interpret the component pi of p
as the price of the i -th commodity, so that u(x) gives the value of x under the set of prices
p1, ..., pn.

The growth path which maximizes the preference function with respect to the final state is
the solution of the problem

maximize u(x(N)) (41)

subject to {x(t)}Nt=0 ∈ XT (x
0, N). (42)

The existence of a solution of the said problem is an immediate consequence of Lemma 6 and
of Weierstrass Theorem: the continuous function f({x(t)}Nt=0) = u(x(N)) admits a maximum
on the compact set XT (x

0, N).

Definition 13. Every optimal solution of problem (41)-(42) is called final optimal path or
final optimal trajectory with respect to the preference function u(x).
We limit our next treatment to the preference function u(x) = px, with p ∈ Rn+.

Definition 14. The final optimal path with respect to the preference function u(x) = px is
called p-optimal path or p-optimal trajectory.
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By means of some classical results on duality for a concave programming problem, we
shall obtain necessary and sufficient conditions for p-optimality. We consider the following set,
related to the technology T :

T̃ = {(x̃, ỹ) : there exists (x, y) ∈ T with x 5 x̃, [0] 5 ỹ 5 y} . (43)

Obviously, T ⊂ T̃ , moreover, from (43) it results at once that T satisfies assumption (T5).

Lemma 7. If T satisfies assumptions (T1) and (T2), then also T̃ satisfies these assumptions.
If, moreover, we assume that T satisfies also (T3), then

T̃ = {(x̃, ỹ) : there exists y such that (x̃, y) ∈ T, [0] 5 ỹ 5 y} . (44)

Proof. The fact that T̃ is a convex cone which satisfies assumption (T2) directly comes from
(43) and from assumptions (T1) and (T2) made on the set T.
Now we prove that T̃ is a closed set. Consider the sequence {(x̃n, ỹn)}∞n=1 ⊂ T̃ such that

(x̃n, ỹn)→(x̃, ỹ) when n→∞.
We prove that (x̃, ỹ) ∈ T̃ . From (43) it results the existence of a sequence {(xn, yn)}∞n=1 ⊂ T

such that xn 5 x̃n, [0] 5 ỹ 5 yn, for each n. As the sequence {x̃n}∞n=1 is convergent, it
is bounded. The same holds also for the sequence {xn}∞n=1 . From Lemma 5 we deduce the
boundedness of the sequence {yn}∞n=1 . Let (x, y) be a limit point of the sequence {x

n, yn}∞n=1 .

We obtain x 5 x̃, [0] 5 ỹ 5 y, that is (x̃, ỹ) ∈ T̃ .
It remains to prove that when the set T satisfies also assumption (T3), then T̃ can be

defined also by means of relation (44). It is sufficient to prove that, with (x̃, ỹ) ∈ T, there
exists a vector y, with (x̃, y) ∈ T and [0] 5 ỹ 5 y. Let therefore be (x, ỹ) ∈ T̃ . From (43) we
deduce the existence of a process (v, w) ∈ T which verifies the inequalities v 5 x̃, [0] 5 ỹ 5 w.
As x̃ − v = [0] , from assumption (T3), there exists a vector z such that (x̃ − v, z) ∈ T. By
denoting y = z + w we obtain [0] 5 ỹ 5 y and (x̃, y) = (x̃− v, z) + (v, w) ∈ T.

�

LetXT̃ (x
0, N) be the set of the growth trajectories of horizonN from x0, referred to the tech-

nology set T̃ . From Lemmas 6 and 7 we deduce that XT̃ (x
0, N) is a convex and compact subset

of V. Similarly, from the inclusion T ⊂ T̃ we deduce the inclusion XT (x
0, N) ⊂ XT̃ (x

0, N).

Lemma 8. Let us suppose that the technology set T satisfies assumptions (T1), (T2) and
(T3). Let be p ∈ Rn, p ≥ [0] . A trajectory {x∗(t)}

∞
t=0 , p-optimal in XT (x

0, N) is also p-optimal
in XT̃ (x

0, N).

Proof. Let us absurdly consider that there exists a trajectory {y(t)}Nt=0 ∈ XT̃ (x
0, N) such

that p y(N) > px∗(N). Hence we have (x0, y(1)) ∈ T̃ , (y(1), y(2)) ∈ T̃ , ..., (y(N − 1), y(N)) ∈

T̃ . From (44) it results the existence of vectors z(1), z(2), ... ,z(N) for which (x0, z(1)) ∈ T,
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(y(1), z(2)) ∈ T, ... ,(y(N − 1), z(N)) ∈ T and y(1) 5 z(1), y(2) 5 z(2), ... ,y(N) 5 z(N). As
z(1)− y(1) = [0] , there exists a vector v(1) = [0] such that (z(1)− y(1), v(1)) ∈ T. We get

(z(1), z(2) + v(1)) = (y(1), z(2)) + (z(1)− y(1), v(1)) ∈ T.

As z(2)+v(1)−y(2) = [0] , there exists a vector v(2) = [0] , such that (z(2)+v(1)−y(2), v(2)) ∈
T. We obtain (z(2) + v(1), z(3) + v(2)) = (y(2), z(3)) + (z(2) + v(1)− y(2), v(2)) ∈ T.
Going on in this way, we can build nonnegative vectors v(1), v(2), ..., v(N) such that (x0, z(1)) ∈
T, (z(1), z(2)+v(1)) ∈ T, (z(2)+v(1), z(3)+v(2)) ∈ T, ..., (z(t−1)+v(t−2), z(t)+v(t−1)) ∈ T,
..., (z(N − 1) + v(N − 2), z(N) + v(N − 1)) ∈ T.

Therefore, the sequence x0, z(1), z(2) + v(1), ..., z(t) + v(t− 1), ..., z(N) + v(N − 1) forms a
trajectory of XT (x

0, N). By means of the inequality z(N) = y(N), we obtain p(z(N) + v(N −
1)) = p z(N) + p v(N − 1) = p y(N) > px∗(N), in contradiction with the p-optimality of the
trajectory {x∗(t)}Nt=0 in XT (x

0, N).

�

Remark 8. With a slight modification of the previous proof we can get the following more
general version of Lemma 8:
Let T satisfy assumptions (T1), (T2) and (T3) and let the preference function u be non

decreasing, i. e. x1 = x2 implies u(x1) = u(x2); then any final optimal trajectory {x∗(t)}Nt=0
with respect to u in XT (x,N) is also final optimal with respect to u in XT̄ (x

0, N).

For every x ∈ Rn+ and every index 0 5 t 5 N − 1, let us consider the problem

maximize p x(N) (45)

subject to (x(τ), x(τ + 1)) ∈ T, τ = t, t+ 1, ..., N − 1, (46)

x(t) = x. (47)

We denote by V tN(x) the optimal value of this problem. From Lemma 8 we deduce that
V tN(x) is at the same time also optimal value of the problem

maximize p x(N) (48)

subject to (x(τ), x(τ + 1)) ∈ T̃ , τ = t, t+ 1, ..., N − 1, (49)

x(t) = x. (50)

The value V tN(x) represents the maximum value (with respect to the price system p) of a
final state, that it is possible to obtain after N − t periods, starting from the initial state x.
So, for each index 0 5 t 5 N − 1, and for each vector x ∈ Rn+ of the value V

t
N(x) we have

defined a function V tN : Rn+→R+. The main properties of V
t
N are described in the following

lemma.
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Lemma 9. The function V tN has the following properties:

a) It is a concave, positively homogeneous and upper semicontinuous function.

b) V tN = max
(x,y)∈T

V t+1N (y) = max
(x,y)∈T̃

V t+1N (y), t = 0, 1, ..., N − 1.

c) If {x∗(t)}Nt=0 is a p-optimal growth trajectory (independent from the initial state), then

V 0N(x
∗(0)) = ... = V tN(x

∗(t)) = ... = V N−1N (x∗(N − 1)) = p x∗(N).

Proof. For every x ∈ Rn+ and every index 0 5 t 5 N − 1 we denote the following set

XT (x,N, t) =
{
{x∗(τ)}Nτ=t : x(t) = x, (x(τ), x(τ + 1)) ∈ T, τ = t, ..., N − 1

}
.

On the ground of this notation we can write

V tN(x) = max
{
p x(N) : {x(τ)}Nτ=t ∈ XT (x,N, t)

}
.

a) Let x′, x′′ ∈ Rn+. Let us choose the trajectories {x
′(τ)}Nτ=t ∈ XT (x

′, N, t), {x′′(τ)}Nτ=t ∈

XT (x
′′, N, t), such that V tN(x

′) = p x′(N), V tN(x
′′) = p x′′(N).

For λ ∈ (0, 1) let us denote xλ(τ) = λx′(τ) + (1 − λ)x′′(τ), τ = t, t + 1, ..., N. Obviously
we have

{
xλ(τ)

}N
τ=t

∈ XT (λx
′ + (1 − λ)x′′, N, t). Hence, V tN(λx

′ + (1 − λ)x′′) = p xλ(N) =

p [λx′(N) + (1− λ) x′′(N)] = λV tN(x
′) + (1 − λ)V tN(x

′′), therefore the function V tN is concave.
Consider now x ∈ Rn+ and the scalar α > 0. Being T a cone, we get

XT (αx,N, t) = αXT (x,N, t),

from which we have
V tN(αx) = αV

t
N(x),

that is, the function V tN is positively homogeneous.
Let us consider the sequence {xn}∞n=1 ⊂ R

n
+ and the vector x ∈ R

n
+ such that xn→x

when n→∞. For every n, let us choose the trajectory {xn(τ)}Nτ=t ∈ XT (x
n, N, t) for which

V tN(x
n) = p xn(N). The sequence {xn}∞n=1 , being convergent, is bounded. Hence, by Lemma 5,

it results that are bounded also the sequences {xn(t+ 1)}∞n=1 , {x
n(t+ 2)}∞n=1 , ..., {x

n(N)}∞n=1 .

By extraction of successive convergent subsequences, we obtain a sequence of indices {nk}
∞
k=1

and vectors x(t+ 1), ..., x(N), such that lim
k→∞

xnk(τ) = x(τ), τ = t+ 1, t+ 2, ..., N.

By denoting x(t) = x and being T a closed set, it results

{x(τ)}Nτ=t ∈ XT (x,N, t).

Hence
V tN(x) = p x(N) = lim

k→∞
p xnk(N) = lim

k→∞
V tN(x

nk),
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which implies
V tN(x) = lim sup

n→∞
V tN(x

n).

b) Let {x∗(τ)}Nτ=t ∈ XT (x,N, t) such that V tN(x) = p x
∗(N).

As {x∗(τ)}Nτ=t+1 ∈ XT (x
∗(t+ 1), N, t+ 1), we obtain

V t+1N (x∗(t+ 1)) = p x∗(N).

From this relation and being (x, x∗(t+ 1)) ∈ T, it results

V tN(x) 5 sup
(x,y)∈T

V t+1N (y). (51)

As the set {x : (x, y) ∈ T} is compact, the upper semicontinuous function V t+1N admits a max-
imum m on this set. Let (x, ȳ) ∈ T such that

max
(x,y)∈T

V t+1N (y) = V t+1N (ȳ).

Let us absurdly suppose that (51) holds only with the strict inequality relation, that is that

V tN(x) < V
t+1
N (ȳ). (52)

Let us choose a trajectory {x∗∗(τ)}Nτ=t+1 ∈ XT (ȳ, N, t+ 1) for which

V t+1N (ȳ) = p x∗∗(N). (53)

By denoting
x(t) = x

x(τ) = x∗∗(τ), τ = t+ 1, ..., N,

we obtain {x(τ)}Nτ=t ∈ XT (x,N, t), and at the same time (52) and (53) imply V tN(x) < px(N),
inequality which contradicts the definition of V tN . Hence relation (51) must hold with the equal-
ity sign. Finally, the equality

max
(x,y)∈T

V tN(y) = max
(x,y)∈T̃

V tN(y),

is an immediate consequence of Lemma 8.

c) Let {x∗(τ)}Nτ=0 be a p-optimal trajectory of XT (x
∗(0), N).

Let us note that from XT (x
∗(0), N) = XT (x

∗(0), N, 0) it results the equality

V 0N(x
∗(0)) = p x∗(N).
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As {x∗(τ)}Nτ=1 ∈ XT (x
∗(1), N, 1), we have

V 1N(x
∗(1)) = p x∗(N). (54)

On the other hand

V 1N(x
∗(1)) 5 max

(x∗(0),y)∈T
V 1N(y) = V

0
N(x

∗(0)) = p x∗(N). (55)

From (54) and (55) it results
V 1N(x

∗(1)) = p x∗(N). (56)

By repeating this procedure we get

V tN(x
∗(t)) = p x∗(N), t = 2, 3, ..., N − 1.

�

Now we formulate the following necessary and sufficient condition of p-optimality.

Theorem 6. Let us suppose that the technology T satisfies assumptions (T1), (T2), (T3)
and (T4). Let p ∈ Rn, p ≥ [0] be a price vector. If x0 > [0] , then the trajectory {x∗(t)}

N
t=0 is

p-optimal in XT (x
0, N) if and only if there exist vectors

p(t) ∈ Rn, p(t) ≥ [0] , t = 0, 1, ..., N,

such that:

1) p(0)x∗(0) = p(1)x∗(1) = ... = p(N) x∗(N);

2) p(t) x− p(t+ 1) y = 0, for every (x, y) ∈ T, t = 0, 1, ..., N − 1;

3) p(N) = p.

In order to prove the previous theorem we need some definitions and results of classical
concave programming (see, e.g. Gale (1967), Geoffrion (1971), Rockafeller (1970)).

Let us consider the following concave maximization problem

(P)
maximizeu(x, y),

(x, y) ∈ T

x = z
when u(·, ·) is a concave function and z is a given input.

Definition 15. We say that the triplet (x∗, y∗, λ∗), x∗ ∈ Rn, y∗ ∈ Rn, λ∗ ∈ Rn, satisfy the
optimality conditions for problem (P) if

a) (x∗, y∗) ∈ T,

b) (x∗, y∗) maximizes the Lagrangian function u(x, y)− λ∗(x− z) on T,
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c) x∗ = z.

Definition 16. Let us suppose that problem (P) admits a solution. We say that the
Kuhn-Tucker theorem holds for (P) if for each optimal solution (x∗, y∗) of the said problem,
there exists at least one vector λ∗ ∈ R

n, called optimal multipliers vector or Kuhn-Tucker
price vector or Kuhn-Tucker multipliers vector, such that the triplet (x∗, y∗, λ∗) satisfies the
optimality conditions given in Definition 15.
Now let us consider the set

Z = {x : there exists y such that (x, y) ∈ T} .

For every z ∈ Rn let us consider the function

v(z) =

{
sup {u(x, y)/(x, y) ∈ T, x = z} if z ∈ Z.
−∞ , if z /∈ Z.

Function v(z) (v : Rn → [−∞,+∞]) is called “perturbation function” for problem (P). It
can be proved that the set Z is convex and that function v is concave on Z.
We note also that problem (P) admits feasible solutions if and only if z ∈ Z. In any case the

optimal value of (P) is just v(z). We recall also that λ∗ ∈ Rn is a subgradient of the concave
function v at the point z, if the following inequality is satisfied:

v(z)− v(z) 5 λ∗ (z − z) , ∀z ∈ Rn.

Definition 17. Problem (P) is said to be stable if the optimal value v(z) is finite and if
function v admits a subgradient at z.

Theorem 7. Let us suppose that problem (P) admits at least an optimal solution. The
Kuhn-Tucker theorem holds for (P) if and only if (P) is stable. Moreover, λ∗ is an optimal
multipliers vector if and only if it is a subgradient of function v at the point z.

In general, given a concave programming problem

(C.P.)
maximize f(y)

gi(y) 5 zi , i = 1, ...,m,

y ∈ Y,

where Y is a convex set of Rn, f is a concave function defined on Y , gi, i = 1, ...,m, are convex
functions defined on Y and zi , i = 1, ...,m, are given numbers, we say that the Slater condition
or Slater constraint qualification is satisfied for (C.P.) if there exists an element ŷ ∈ Y such
that gi(ŷ) < zi , i = 1, ...,m.

Theorem 8. If the value v(z) is finite and if problem (C.P.) satisfies the Slater condition,
then (C.P.) is stable.
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Proof of Theorem 6.

Sufficiency. Let us consider the trajectory {x∗(t)}Nt=0 ∈ XT (x
0, N).

As (x(t), x(t+ 1)) ∈ T, t = 0, 1, ..., N − 1 , and x(0) = x∗(0), from condition 2 we get

p(1)x∗(0)− p(1)x(1) = 0

p(1)x(1)− p(2)x(2) = 0
...

p(N − 1) x(N − 1)− p(N) x(N) = 0.

Putting together all these inequalities, we get

p(0) x∗(0) = p(N) x(N).

Taking conditions 1 and 3 into account, it holds

p x∗(N) = p x(N),

which shows the p-optimality of the trajectory {x∗(t)}Nt=0 .

Necessity. First we prove that for every t = 0, 1, ..., N − 1, we can find a vector p(t) ∈ Rn+
such that

max
(x,y)∈T̃

[
V tN(y)− p(t− 1) x

]
= 0,

where the maximum is attained in (x, y) = (x∗(t− 1), x∗(t)).
From this, on the ground of Lemma 9,

V tN(x
∗(t)) = p x∗(N), t = 0, 1, ..., N − 1,

we shall obtain

p(0)x∗(0) = p(1)x∗(1) = ... = p(N − 1) x∗(N − 1) = p x∗(N).

In the same time we prove that from the construction of vector p(t) we get conditions 2 and
3 of the theorem. Before proving the existence of vector p(t), t = 0, 1, ..., N, with the desired
properties, we remark that conditions 2 and 3 imply p(t) ≥ [0] , t = 0, 1, ..., N − 1.
Let us absurdly suppose that for a certain index 0 5 t 5 N − 1, we have p(t) = [0]. Let
be (x̂, ŷ) ∈ T a process such that ŷ > [0]. Condition 2 implies p(t + 1)ŷ 5 0, inequality
which implies p(t + 1) = [0] . By reiterating this argument, we get finally the contradiction
p = p(N) = [0].

Let us consider the concave optimization problem

maximizeV 1N(y) (57)
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subject to (x∗(0), y) ∈ T̃ . (58)

From Lemma 9 the optimal value of this problem V 0N(x
∗(0)), being y = x∗(1) the optimal

solution. On the ground of this lemma, the perturbation function of problem (57)-(58) (see
Definition 17), defined on Rn+, is

V 0N(x) = max
{
V 1N(y)/(x, y) ∈ T̃

}
.

As x∗(0) = x0 > [0] , function V 0N admits a subgradient at x = x
∗(0). So, problem (57)-(58) is

stable and, on the ground of Theorem 7, the Kuhn-Tuker theorem holds. Then exists therefore
a vector p(0) ∈ Rn+ such that

max
(x,y)∈T̃

[
V 1N(y)− p(0) (x− x

∗(0))
]
= V 0N (x

∗(0)) , (59)

with the maximum attained at (x, y) = (x∗(0), x∗(1)) .
Being p(0) a subgradient of the function V 0N at x = x

∗(0), the following inequality is satisfied:

V 0N(x
∗(0))− p(0)x∗(0) = V 0N (x)− p(0)x, for any x ∈ R

n
+ . (60)

The function V 0N (x)−p(0)x is positively homogeneous on R
n
+ , so its maximum can be only

or zero or infinite. It results
V 0N(x

∗(0))− p(0) x∗(0) = 0. (61)

From this and from (60), taking into account that V 0N (x) = 0, for each x ∈ Rn+ we obtain
p(0) ∈ Rn+ .

From equality (61), relation (59) can be written as

max
(x,y)∈T̃

[
V 0N(y)− p(0)x

]
= 0, (62)

with the maximum attained at (x, y) = (x∗(0), x∗(1)) .
Now let us suppose that for a given index 1 5 t 5 N − 1 we have build a vector p(t− 1) ∈ Rn+
for which

max
(x,y)∈T̃

[
V tN(y)− p(t− 1) x

]
= 0, (63)

with the maximum attained at (x, y) = (x∗(t), x∗(t+ 1)) .
As V tN(y) = max

(y,u)∈T̃
V t+1N (u) relation (63) can be written as

max
(x,y)∈T̃
(y,u)∈T̃

[
V t+1N (u)− p(t− 1) x

]
= 0, (64)
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with the maximum attained at (x, y) = (x∗(t− 1), x∗(t)) , (x, u) = (x∗(t), x∗(t+ 1)) .
Taking into account the definition of the set T̃ , relation (64) shows that the problem

(Pt)





maximize
[
V t+1N (u)− p(t− 1) x

]
,

subject to: z − y 5 [0]
u− w 5 [0]

(x, y) ∈ T

(z, w) ∈ T

u ∈ Rn+

has optimal value equal zero, the optimal solutions being (x, y) = (x∗(t− 1), x∗(t)) , (z, w) =
(x∗(t), x∗(t+ 1)), u = x∗(t+ 1).
The problem satisfies the solution Slater condition. From assumptions (T1), (T2) and (T4), it
results the existence of a process (x̃, ỹ) ∈ T with x̃ > [0] , ỹ > [0] . Choosing a number k > 0
such that kỹ > x̃ and taking (x, y) = (kx̃, kỹ), (z, w) = (x̃, ỹ), u = [0] , the two inequality
constraints of problem (Pt) will be satisfied with the strict inequality. From Theorem 8 it
results that the Kuhn-Tucker theorem holds for this problem. There exist therefore multipliers
p(t), p′(t) ∈ Rn+ such that

V t+1N (u)− p(t− 1) x− p′(t)(z − y)− p′(t)(u− w) 5 0 (65)

for every (x, y) ∈ T, (z, w) ∈ T, u ∈ Rn+ .
In (65) the equality (to zero) is obtained for (x, y) = (x∗(t− 1), x∗(t)), (z, w) = (x∗(t), x∗(t+ 1)),

u = x∗(t+ 1).

Taking (x, y) = ([0] , [0]) , u = w, relation (65) becomes

V t+1N (w)− p(t) z 5 0 for every (z, w) ∈ T. (66)

For (z, w) = ([0] , [0]) , u = [0] relation (65) gives

p(t− 1) x− p(t) y = 0 for every (x, y) ∈ T. (67)

Finally, taking in (65) (x, y) = (x∗(t− 1), x∗(t)), (z, w) = (x∗(t), x∗(t+ 1)), u = x∗(t + 1), we
get

V t+1N (x∗(t+ 1))− p(t) x∗(t)− p(t− 1) x∗(t− 1) + p(t) x∗(t) = 0. (68)

Taking (67) and (68) into account, as both quantities between parentheses of the two equalities,
are nonpositive, we obtain

V t+1N (x∗(t+ 1))− p(t) x∗(t) = 0 (69)

p(t− 1) x∗(t− 1) + p(t) x∗(t) = 0. (70)
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From (66) and (69) it results

max
(x,y)∈T

[
V t+1N (y)− p(t) x

]
= 0, (71)

the maximum being attained at (x, y) = (x∗(t), x∗(t+ 1)) .

It remains to prove the existence of a vector p(N − 1) ∈ Rn+ with the property

p(N − 2) x− p(N − 1) y = 0, p(N − 1) x− py = 0,

for every (x, y) ∈ T and
p(N − 1) x∗(N − 1) = p x∗(N).

We have already proved that

max
(x,y)∈T̃

[
V N−1N (y)− p(N − 2) x

]
= 0, (72)

the maximum being attained at (x, y) = (x∗(N − 2), x∗(N − 1)) .
By substituting

V N−1N (y) = max
(x,y)∈T̃

pu,

relation (72) becomes
max
(x,y)∈T̃
(y,u)∈T̃

(pu− p(N − 2) x) = 0

with maximal values given by (x, y) = (x∗(N − 2), x∗(N − 1)) , (y, u) = (x∗(N − 1), x∗(N)) .

Recalling the definition of the technological set T , (72) puts in to evidence that the concave
programming problem

(PN−1)





maximize [pu− p(N − 2) x]

subject to: z − y 5 [0]
u− w 5 [0]

(x, y) ∈ T

(z, w) ∈ T

u ∈ Rn+

has optimum value equal to zero, the optimal solution being (x, y) = (x∗(N − 2), x∗(N − 1)) ,
(z, w) = (x∗(N − 1), x∗(N)), u = x∗(N).
We know that this problem satisfies the Slater condition. By the Kuhn-Tucker theorem there
exist vector p(N − 1), p′(N − 1) ∈ Rn+ such that

pu− p(N − 2) x− p(N − 1) (z − y)− p′(N − 1) (u− w) 5 0 (73)
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for every (x, y) ∈ T, (z, w) ∈ T, u ∈ R
n
+, obtaining the equality (to zero) for (x, y) =

(x∗(N − 2), x∗(N − 1)) , (z, w) = (x∗(N − 1), x∗(N)), u = x∗(N).
Taking (x, y) = ([0] , [0]) , u = w, relation (73) implies

p(N − 1)z − pw = 0, for every (z, w) ∈ T. (74)

By substituting (z, w) = ([0] , [0]) , u = [0] , relation (73) gives

p(N − 2) x− p(N − 1) y = 0, for every (x, y) ∈ T. (75)

Finally, for (x, y) = (x∗(N − 2), x∗(N − 1)) , (z, w) = (x∗(N − 1), x∗(N)), u = x∗(N), relation
(73) becomes

(p x∗(N)− p(N − 1)x∗(N − 1)) + p(N − 1)x∗(N − 1)− p(N − 2)x∗(N − 2) = 0.

From this relation and from (74) and (75) we obtain

p x∗(N)− p(N − 1)x∗(N − 1) = 0,

p(N − 1)x∗(N − 1)− p(N − 2)x∗(N − 2) = 0,

so that p(N − 1) satisfies all the required conditions.

�

Given the vectors x0 ∈ Rn+, p ∈ R
n
+, the p-optimal trajectories of XT (x

0, N) are optimal
solutions of the problem

(P)





maximize p x(N),

subject to: (x(t), x(t+ 1)) ∈ T,
t = 0, 1, ..., N − 1, x(0) = x0.

We want to link this problem to another optimization problem, whose optimal solutions are
vectors p(t), t = 0, 1, ..., N, which appear in Theorem 6. We first define the following set

TD =
{
(q, p) : (q, p) ∈ Rn+ × R

n
+, qx− py = 0,∀(x, y) ∈ T

}
, (76)

set we may call dual technological set of T .

Lemma 10. If the technology T satisfies assumptions (T1), (T2),(T3) and (T4), then TD
verifies assumptions (T1), (T2), (T4) and (T5). Moreover, for every p ∈ Rn+, there exists a vector
q ∈ Rn+, such that (q, p) ∈ TD.

Proof. From (76) it results at once that TD is a closed convex cone which satisfies assumption
(T5). In order to prove that TD satisfies assumption (T2), let ([0] , p) ∈ TD. Taking (76) into
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account, we find −py = 0 for every (x, y) ∈ T. As T satisfies assumption (T4), there exists
(x̂, ŷ) ∈ T, with ŷ > [0] . Therefore −pŷ = 0, which implies p = [0] .

It remains to prove that for every p ∈ R
n
+ there exists q ∈ R

n
+ with (q, p) ∈ TD. By

choosing x ∈ Rn+, x > [0] , let us consider the problem maximize py, subject to (x, y) ∈ T. Let
(x, y) be an optimal solution of this problem. By Theorem 6, there exists a vector q ∈ Rn+ such
that qx− py = 0 and qx− py = 0 for every (x, y) ∈ T. Therefore (q, p) ∈ TD.

�

Given the pair (q, p) ∈ TD, we can interpret vector q as a system of prices appointed to
the input goods, whereas p as a system of prices appointed to the output goods. Therefore TD
consists of the set of price vectors (p, q) related to those production processes of T that yield
no gain. Now let us define the problem

(D)





minimize p(0)x0,

subject to: (p(t), p(t+ 1)) ∈ TD,
t = 0, 1, ..., N − 1, p(N) = p,

we may call dual problem of (P).
Let {x(t)}Nt=0 and {p(t)}

N
t=0 be, respectively, feasible solutions of problems (P) and (D). We

have p(0)x0 = p(1)x(1) = ... = p(N − 1)x(N − 1) = p x(N).
Hence the equality

p(0)x0 = p x(N)

implies that {x(t)}Nt=0 is an optimal solution of (P), whereas {p(t)}
N
t=0 is an optimal solution of

(D). We obtain the following variant version of Theorem 6.

Theorem 9. Let {x∗(t)}Nt=0 be a feasible solution of problem (P). A sufficient condition for
{x∗(t)}Nt=0 to be optimal solution of the same problem, is that there exists a feasible solution
of problem (D), {p(t)}Nt=0 , such that p(0)x

0 = p x∗(N).

If x0 > [0] and if T satisfies assumptions (T1), (T2), (T3) and (T4), this condition is also
necessary.

6. Efficient Growth
The concept of efficiency was first used in an intertemporal context by Debreu (1951)

and Malinvaud (1953, 1962). See also Dorfman, Samuelson and Solow (1958), Furuya and
Inada (1962), Nikaido (1968). The definition of the concept of efficient growth is based on the
notion of Pareto maximum point or Pareto efficient point.

Definition 18. Let be given a set Ω ⊂ Rn. An element x ∈ Ω is a Pareto maximum point
for Ω if there is no elements x ∈ Ω such that x ≥ x∗.
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Let be given an initial state of a Gale - von Neumann model, say x0 ∈ Rn+ and let be given
the set BT (x0, N) of the states that can be obtained from x0 after N periods.

Definition 19. A growth trajectory {x∗(t)}Nt=0 ∈ XT (x
0, N) is called efficient if x∗(N) is a

Pareto maximum point for the set BT (x0, N).

Lemma 11. Under assumptions (T1), (T2) and (T3), for every x0 ∈ Rn+ , the set XT (x
0, N)

contains at least an efficient trajectory.

Proof. Let p ∈ R
n, p > [0] . We prove that every p-optimal trajectory of XT (x

0, N) is
efficient. Let {x∗(t)}Nt=0 be such a trajectory and let us absurdly suppose that it is not efficient.
Therefore there will exist a trajectory {x(t)}Nt=0 ∈ XT (x

0, N) such that x(N) ≥ x∗(N).
From this, being p > [0] , we get p x(N) > px∗(N), which is in contradiction with the

p-optimality of the trajectory {x∗(t)}Nt=0 .

�

Remark 9. Let u be an increasing preference function: x1 ≥ x2 ⇒ u(x1) > u(x2). What
proved in Lemma 11 can be extended to say that every final optimal trajectory {x∗(t)}Nt=0 ,
with reference to u, in the set XT (x

0, N), is also efficient in XT (x
0, N).

Now we prove a result which is, in a sense, the converse of Lemma 11.

Lemma 12. Let assumptions (T1), (T2) and (T3) be satisfied.

a) If {x∗(t)}Nt=0 is an efficient trajectory of XT (x
0, N), then there exists a price vector p ≥ [0]

such that{x∗(t)}Nt=0 is p-optimal in XT (x
0, N).

b) Given a price vector p ≥ [0] among the p-optimal trajectories of XT (x
0, N), there exists

an efficient trajectory.

Proof.

a) Let {x∗(t)}Nt=0 ∈ XT (x
0, N) an efficient trajectory. The set

M =
{
x(N)−X∗(N) : {x(t)}Nt=0 ∈ XT (x

0, N)
}

is convex. As the trajectory {x∗(t)}Nt=0 has been supposed efficient, it holds M ∩ Rn+ = {[0]} .

Therefore there exists a vector p ∈ Rn+, p 6= [0] , such that

pz 5 0, ∀z ∈M, (77)

pz = 0, ∀z ∈ Rn+. (78)

From (78) we have p ≥ [0] , whereas (65) shows the p-optimality of the trajectory {x∗(t)}Nt=0 .
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b) Let us denote by Q the set of p-optimal trajectories of XT (x
0, N). Let be

θ = max
{
p x(N) : {x(t)}Nt=0 ∈ XT (x

0, N)
}
.

Therefore
Q =

{
{x(t)}Nt=0 : {x(t)}

N
t=0 ∈ XT (x

0, N), p x(N) = θ
}
.

It is easy to see that the set Q is compact. Let us consider a vector q ∈ Rn+, q > [0] . Let
{x∗(t)}Nt=0 be an optimal solution of the problem

maximize q x(N) (79)

subject to {x(t)}Nt=0 ∈ Q. (80)

We prove that the trajectory {x∗(t)}Nt=0 is efficient. Let us absurdly suppose that the
said trajectory is not efficient. It will exist a trajectory {x(t)}Nt=0 ∈ XT (x

0, N), such that
x(N) ≥ x∗(N). From this we deduce

p x(N) = p x∗(N), (81)

q x(N) ≥ q x∗(N). (82)

From (81) we get {x(t)}Nt=0 ∈ Q. This relation, together with (82), contradicts the assumption
that the trajectory {x∗(t)}Nt=0 is an optimal solution of the problem (79)-(80).

�

Lemma 12, together with Theorem 6, allows to formulate the following conditions of effi-
ciency.

Theorem 10. Let us assume that the technology T verifies assumptions (T1), (T2), (T3)
and (T4). Let be x0 > [0] . In order that a trajectory {x∗(t)}

N
t=0 ∈ XT (x

0, N), is efficient, it is
necessary that there exist vectors p(t) ≥ [0] , t = 0, 1, ..., N, such that:

a) p(0)x∗(0) = p(1)x∗(1) = ... = p(N)x∗(N),

b) p(t) x− p(t+ 1) y = 0 for every (x, y) ∈ T, t = 0, 1, ..., N.

If p(N) > [0] , then conditions a) and b) are also sufficient.

Definition 20. Let be given the efficient trajectory {x∗(t)}Nt=0 ∈ XT (x
0, N); every set of

vectors p(t) ∈ Rn, p(t) ≥ [0] , t = 0, 1, ..., N, which satisfies conditions a) and b) of Theorem
10, is called sequence of efficient prices associated to the said trajectory.

Now we shall define a concept of efficiency for growth trajectories of infinite horizon.

Definition 21. Let be given a growth trajectory of infinite horizon {x(t)}∞t=0 ∈ XT (x
0). For

every index N = 1, the trajectory {x(t)}Nt=0 ∈ XT (x
0, N) is called N-opening of the trajectory

{x(t)}∞t=0.
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Definition 22. A growth trajectory of infinite horizon {x∗(t)}∞t=0 ∈ XT (x
0) is called in-

tertemporally efficient if every its opening is efficient.

Remark 10. Let {x(t)}∞t=0 , x(t) = αt(T ) x, t = 0, 1, ... , a maximal growth trajectory
sustained by a von Neumann price vector p > [0] . On the ground of Theorem 10 it is easy to
see that the trajectory {x(t)}∞t=0 is intertemporally efficient in XT (x). Before discussing the
problem of the existence of a trajectory intertemporally efficient, we shall prove that under the
assumptions of the Theorem 9, to every trajectory intertemporally efficient we can associate a
sequence of efficient prices.

Theorem 11. Let us suppose that the technology T satisfies assumptions (T1), (T2), (T3)
and (T4). Let x0 > [0] . If the trajectory {x∗(t)}

∞
t=0 ∈ XT (x

0) is intertemporally efficient then
there exists a sequence of prices {p(t)}∞t=0 ∈ R

n
+, p(t) ≥ [0], t = 0, 1, ... , such that:

a) p(0)x∗(0) = ... = p(t− 1) x∗(t− 1) = p(t) x∗(t) = ... ,

b) p(t) x− p(t+ 1) y = 0, for every (x, y) ∈ T, t = 0, 1, ... .

Proof. Being the trajectory {x∗(t)}∞t=0 intertemporally efficient, every its opening is efficient.
Being satisfied all assumptions of Theorem 10, to each opening there is associated a sequence of
efficient prices. Let be N = 1. For each indexM = 1 we denote by PN+M the set of sequences of
efficient prices associated to the opening {x∗(t)}N+Mt=0 . Therefore PN+M consists of all sequences
of semipositive vectors (p(0), ..., p(N), ..., p(N +M)) such that

p(0)x∗(0) = ... = p(N) x∗(N) = ... = p(N +M) x∗(N +M) (83)

and
p(t) x− p(t+ 1) y = 0, for every (x, y) ∈ T, t = 0, 1, ..., N +M − 1. (84)

To the sets PN+M we associate the set QN,M , a sequence of vectors (p(0), ..., p(N)) with the
properties:

1)
N∑
t=0

n∑
i=1

pi(t) = 1.

2) For a given number µ > 0 and for a given sequence (p(N+1), ..., p(N+M)), the sequence
(µ p(0), ..., µ p(N), p(N + 1), ..., p(N +M)) is in PN+M .

The sets QN,M are nonempty, convex and compact. Moreover, QN,M+1 ⊆ QN,M . It results
that the set

QN,∞ =
∞⋂

M=1

QN,M (85)

is nonempty.
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Let (p(0), ..., p(N)) ∈ QN,∞ . We prove that there exists a number λ > 0 and a vector

p′(N + 1) such that (λ p(0), ..., λ p(N), p′(N + 1)) ∈ QN+1,∞ . As (p(0), ..., p(N)) ∈
∞⋂
M=1

QN,M ,

for every M there exist vectors pM(N + 1), ..., pM(N + M) and numbers µM > 0 with the
property (µM p(0), ..., µM p(N), p

M(N + 1), ..., pM(N +M)) ∈ PN+M .

From this, taking in to account that for M = 2, it holds PN+M = PN+1+(M−1), we obtain

(αM µM p(0), ..., αM µM p(N), αM p
M(N + 1)) ∈ QN+1,M−1 , (86)

where
αM =

1

µM +
n∑
i=1

pMi (N + α)
. (87)

The equality (87) implies the boundedness of the sequences {αM µM}
∞
M=2 ,

{
αM p

M(N + 1)
}∞
M=2

.

Let α and p′(N + 1) be, respectively, limit points of the said sequences. From (86) and being
QN+1,M−1 compact and included one in the other, we obtain

(α p(0), ..., α (p(N), p′(N + 1))) ∈

∞⋂

M=1

QN+1,M−1 = QN+1,∞ .

Finally, by means of the sets QM,∞ , M = 1, 2, ... , we build a sequence {p(t)}∞t=0 with the
requested properties. Let the choose ((p(0), p(1)) ∈ Q1,∞ . On the basis of what we have seen,
there exist a number λ1 > 0 and a vector p′(2) such that

(λ1 p(0), λ1 (p(1), p
′(2))) ∈ Q2,∞ . (88)

Let us denote p(2) = p′(2)/λ1 . From the definition of Q2,∞ it is easy to see that

p(0)x∗(0) = p(1) x∗(1) = p(2)x∗(2)

and
p(t) x− p (t+ 1) y = 0, for every (x, y) ∈ T, t = 0, 1.

Relation (88) implies the existence of a number λ2 > 0 and a vector p′(3) such that

(λ2 λ1 p(0), λ2 λ1 p(1), λ2 p
′(2), p′(3)) ∈ Q3,∞ . (89)

Let us denote p(3) = p′(3)/λ2 λ1 . Relation (89), together with the construction of vectors p(2)
and p(3), gives

p(0)x∗(0) = p(1)x∗(1) = p(2)x∗(2) = p(3)x∗(3)

and
p(t) x− p (t+ 1) y = 0, for every (x, y) ∈ T, t = 0, 1, 2.
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By iterating this procedure we obtain a sequence of vectors {p(t)}∞t=0 with the desired
properties.

�

Let us consider a trajectory {x(t)}∞t=0 ∈ XT (x
0) and let p ∈ Rn+ be a von Neumann price

vector. As (x(t), x(t+ 1)) ∈ T, it holds α(T ) p x(t)− p x(t+ 1) = 0. Therefore the sequence of
nonnegative numbers {p x(t)/αt(T )}∞t=0 is non-increasing. Therefore the quantity

lim
t→∞

p x(t)

αt(T )

exists and is nonnegative.

Theorem 12. Let us suppose that the technology T satisfies the assumptions (T1), (T2),
(T3) and (T4), that it possesses a von Neumann ray {λx}λ=0 and a von Neumann price vector
p such that x > [0] , p > [0] . Let x0 > [0] . Then, for every intertemporally efficient trajectory
{x(t)}∞t=0 ∈ XT (x

0), it holds

lim
t→∞

p x(t)

αt(T )
> 0.

Proof. The assumptions of Theorem 11 being satisfied, there exists a sequence of prices
{p(t)}∞t=0 ⊂ R

n
+, p(t) ≥ [0] , t = 0, 1, ... , such that

p(0)x(0) = ... = p(t− 1) x(t− 1) = p(t) x(t) = ... (90)

and
p(t) x(t)− p (t+ 1) y = 0, for every (x, y) ∈ T, t = 0, 1, ... . (91)

Without loss of generality, we can suppose p(0) 5 p. Let us consider TD, the dual technology

of T , defined as follows:

TD =
{
(q, p) : (q, p) ∈ Rn+ × R

n
+, qx− py = 0, for every (x, y) ∈ T

}
.

For every q ∈ Rn+ , let us consider the sequence of sets BT (q, t), t = 0, 1, 2, ..., defined as follows:

BTD(q, 1) = {p : (q, p) ∈ TD} ,

BTD(q, t+ 1) = {p : (f, p) ∈ TD , for a given f ∈ BTD(q, t)} .

BTD(q, t) represents the set of the states which, using technology TD, allow to reach q, after t
periods.
We prove that the set

A =
∞⋃

t=1

αt(T )BTD(p, t)
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is bounded.
Let g ∈ A. There exists therefore an index t for which g ∈ αt(T )BTD(p, t). By the definition of
the set BTD(p, t), we deduce the existence of nonnegative vectors q(2), q(3), ..., q(t− 1) so that

(p, q(1)) ∈ TD , (q(1), q(2)) ∈ TD , ...,

(
q(t− 1),

g

αt(T )

)
∈ TD . (92)

On the other hand

(x, α(T ) x) ∈ T ,
(
α(T ) x, α2(T ) x

)
∈ T , ...,

(
αt−1(T ) x, αt(T ) x

)
∈ T . (93)

Relations (92), (93) and the definition of the technology TD , imply

p x = α(T )q(1) x = α2(T )q(2) x = ... = αt−1(T )q(t− 1) x = αt(T )
g x

αt(T )
.

Therefore
p x = g x.

As x > [0] , we have min {hx, ‖h‖ = 1} = n > 0. We obtain

‖g‖ 5
1

n

g x

‖g‖
‖g‖ =

1

n
g x 5

1

n
p x,

so that the set A is bounded. From the assumption p > [0] it results the existence of a number
λ > 0 with the property g 5 λp for every g ∈ A. Relation (91) shows that p(t) ∈ BTD(p(0), t),
t = 1, 2, ... . By Lemma 10, tecnology TD satisfies assumption (T5). The inequality p(0) 5 p

implies the inclusion BTD(p(0), t) ⊂ BTD(p, t), t = 1, 2, ... . It results

p(t) ∈ BTD(p, t), t = 1, 2, ... ,

so that
αt(T )p(t) ∈ A, t = 1, 2, ... .

From this we obtain
αt(T )p(t) 5 λ p, t = 1, 2, ... .

Therefore
p x(t)

αt(T )
= p(t) x(t) = p(0)x(0) > 0, t = 1, 2, ... ,

and finally we obtain

lim
t→∞

p x(t)

αt(T )
> 0.

�
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The assumptions made since now on technology T are not sufficient to assure the existence
of an intertemporally efficient trajectory. They are not even sufficient for the opening of an
efficient trajectory to be efficient.
A further assumption which assures the efficiency of each opening of an efficient trajectory

is primitivity (T7). We recall here this assumption with the notations since here introduced.

Assumption (T7). Technology T is primitive, i.e. for each x0 = [0] there exist an index
s = 1 and a trajectory {x(t)}st=0 ∈ XT (x, s) such that x(s) > [0] .

We note that a primitive trajectory satisfies assumption (T3). Moreover, a primitive tec-
nology has the property that, given x ≥ [0], there exists y ≥ [0] for which (x, y) ∈ T .

Lemma 13. Let us consider technology T , where assumptions (T1), (T2) and (T7) hold.
Let {x∗(t)}Nt=0 , N > 1, an efficient technology of XT (x

0, N). Then, for each 1 5 M < N, the
trajectory {x∗(t)}Mt=0 is efficient in XT (x

0,M).

Proof. Let us absurdly suppose that {x∗(t)}Mt=0 is not efficient in XT (x
0,M). Therefore

there exists a trajectory {x(t)}Mt=0 ∈ XT (x
0,M) such that x(M) > x∗(M). Let y(M) = x(M)−

x∗(M). As y(M) ≥ [0] , from assumption (T7) it results the existence of semipositive vectors
y(M + 1), ..., y(N) such that

(y(t), y(t+ 1)) ∈ T, t =M,M + 1, ..., N − 1.

Let us consider the sequence {x(t)}Nt=0 defined as follows

x(t) =

{
x(t), for 0 5 t 5M,
x∗(t) + y(t), for M < t 5 N.

We obtain {x(t)}Nt=0 ∈ XT (x
0, N), x(N) > x∗(N), in contradiction with the assumed efficiency

in XT (x
0, N) of the trajectory {x∗(t)}Nt=0 .

�

In order to assure the existence of intertemporally efficient trajectories, we shall use as
variant of assumption (T7), i.e. the following more restrictive assumption.

Assumption (T7)’. For every x ≥ [0] the exists a vector y > [0] such that (x, y) ∈ T .

Theorem 13. If technology T satisfies assumptions (T1), (T2) and (T7)’, then for any
x0 ∈ Rn+ , XT (x

0) contains an intertemporally efficient trajectory.

Proof. We denote by S the space of sequences of elements of Rn+ equipped with the metric

ρ(x, y) =
∞∑

t=0

‖x(t)− y(t)‖

1 + ‖x(t)− y(t)‖
·
1

2t+1
,
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where x = {x(t)}∞t=0 , y = {y(t)}∞t=0 . For each set Q ⊂ S and each index τ = 0, 1, ... , we
denote

Qτ = {x(τ) : {x(t)}
∞
t=0 ∈ Q} .

The set Q is compact in S if and only if is closed and every set Qτ , τ = 0, 1, ... , is bounded in
R
n . For N = 1, 2, ... , we define the following subsets of the set XT (x

0):

Y (N) =
{
{x(t)}∞t=0 : {x(t)}

∞
t=0 ∈ XT (x

0), {x(t)}Nt=0 is efficient in XT (x
0, N)

}
.

On the ground of Lemma 11 these sets are nonempty, whereas by Lemma 13 we have the
inclusion

Y (N) ⊂ Y (N − 1), N = 1, 2, ... .

On the other hand, from Lemma 5 it results that the sets Yτ (N), τ = 0, 1, ... , are bounded.
Let Y (N) denote the closure in S of Y (N). We now prove the inclusion

Y (N) ⊂ Y (N − 1). (94)

Let {x(t)}∞t=0 ⊂ Y (N). Therefore there exists a sequence {x
n(t)}∞t=0 ∈ Y (N), n = 1, 2, ... , such

that
lim
t→∞

xn(t) = x(t), t = 1, 2, ... .

Let us absurdly suppose that {x(t)}∞t=0 /∈ Y (N−1). There exists therefore a trajectory {x(t)}
N−1
t=0

such that x(N − 1) > x(N − 1). By assumption (T7)’ it results the existence of an element
x(N), with (x(N − 1), x(N)) ∈ T and

x(N) > x(N). (95)

As
lim
n→∞

xn(N) = x(N),

inequality (95) shows that for n sufficiently large we get x(N) > xn(N), which, together with
the relation {x(t)}Nt=0 ∈ XT (x

0, N), contradicts the assumption {xn(t)}∞t=0 ⊂ Y (N). Therefore
{x(t)}∞t=0 ⊂ Y (N − 1) and (94) is satisfied. The sets Y (N) are compact and included, the one
into the other. Their intersection will be therefore nonempty. Relation (94) says that every
element of the said intersection is an intertemporally efficient trajectory of XT (x

0).

�

7. Turnpike Theorems
The class of results named “Turnpike Theorems” puts into evidence a remarkable prop-

erty of an optimal growth trajectory in relation to final states: under certain conditions all best
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growth trajectories must be “close” to the von Neumann ray of balanced growth, except possi-
bly for a finite number of periods, number independent of the length of the trajectory. Since the
von Neumann ray is characterized as a trajectory maximizing the speed of growth of the econ-
omy, the above result may be nicknamed, following Dorfman, Samuelson and Solow (1958),
“Turnpike Theorem”, the “turnpike” in this case being the von Neumann ray. A historical
description of the studies of this subject may be given as follows. Dorfman, Samuelson and
Solow (1958) first presented three models of capital accumulation formulated in terms of linear
programming, difference equations and calculus of variations respectively. Except for the linear
programming model, the authors linearized the systems by expanding them in Taylor’s series.
Unfortunately they made some careless but fatal errors; for their difference equation model a
correct proof of the Turnpike Theorem has been given by McKenzie (1963b). After the publi-
cation of the book by Dorfman, Samuelson and Solow, several Turnpike Theorems have been
established by various authors, e.g. for a Leontief-von Neumann model, by Morishima (1961)
and McKenzie (1963a), for Gale - von Neumann model, by Radner (1961), Morishima (1964),
Inada (1964), Nikaido (1964), Winter (1967) and others.
For good surveys of the various Turnpike Theorems presented in the literature, see McKenzie

(1976, 1986), McKenzie and Yano (1980), Turnovsky (1970), Wan (1971).
For multisectoral optimal growth with consumptions, and related Turnpike Theory, one may

see, e.g., the papers of Rader (1975, 1976) and Tsukui (1967).
We shall be concerned only with trajectories of finite length and with two types of Turnpike

Theorems:

1) The weak Turnpike Theorem, or Radner’s Turnpike Theorem, which proves that, for any
thin neighbouring cone of the von Neumann ray, any optimal trajectory starting at a common
initial position, stay within the cone except for a finite number of periods, but without precising
the position of these periods of exception.

2) The strong Turnpike Theorem or Nikaido’s Turnpike Theorem which assures the turnpike
property by precising also the number of periods of exception, initial and final. The strong
Turnpike Theorem has been independently proved also by Inada (1964).

We first assume that technology T satisfies assumptions (T1) and (T2). Moreover, we assume
that the following set of conditions is satisfied:

Assumptions (I). There exist a vector x̂ ≥ [0] , a price vector p̂ ≥ [0] and a number α > 0
such that:

a) (x̂, αx̂) ∈ T, p̂x̂ > 0;

b) p̂y − αp̂x 5 0, for any (x, y) ∈ T ;

c) p̂y − αp̂x < 0, for all (x, y) ∈ T that are not proportional to (x̂, αx̂) .

40



It is easy to see that from Assumptions (I) it results α = α(T ), {λx̂}λ=0 is the unique von
Neumann ray of the technology and p̂ is a von Neumann price vector.
On the ground of Theorem 5, the set of Assumptions (I) is satisfied if technology T satisfies,

besides (T1) and (T2), also (T3) and (T8), i.e. the technology is strictly convex.
Let N be the length of the planning period; we shall study the behavior of the p-optimal

trajectories. As already previously seen, this class of trajectories includes the efficient trajecto-
ries. Following Radner (1961), we define an “angular distance” between two vectors x, y ∈ Rn,
x 6= [0] , y 6= [0] , as follows:

d(x, y) =

∥∥∥∥
x

‖x‖
−

y

‖y‖

∥∥∥∥ ,

i.e. the angular distance between two nonzero vectors is the euclidean distance between the
two normalized vectors. Without loss of generality, we consider ‖x̂‖ = 1, so that the angular
distance between a vector x 6= [0] and the von Neumann ray is

∥∥∥∥
x

‖x‖
− x̂

∥∥∥∥ .

In order to prove Radner’s Turnpike Theorem we need the following lemma, due to Radner.

Lemma 14. Assume that technology T satisfies assumptions (T1) and (T2). If also Assump-
tions (I) are satisfied , then for every ε > 0 there exists δε ∈ (0, 1) such that p̂y 5 (1− δε) p̂x,

for every (x, y) ∈ T with

∥∥∥∥
x

‖x‖
− x̂

∥∥∥∥ = ε.

Proof. As T is a cone, it is sufficient to prove the lemma for processes (x, y) ∈ T with
‖x‖ = 1. Consider the set

Vε =

{
(x, y) : (x, y) ∈ T, ‖x‖ = 1,

∥∥∥∥
x

‖x‖
− x̂

∥∥∥∥ = ε
}
.

We must show that if this set is nonempty, then there exists a number δε ∈ (0, 1) with the
properties described in the lemma (if Vε is empty, any δε ∈ (0, 1) will do). From Lemma 5 it
results the compactness of set Vε . We note that for (x, y) ∈ Vε , x is not proportional to x̂.
Assumptions (I) imply

p̂y < αp̂x, for every (x, y) ∈ Vε . (96)

Therefore p̂x > 0 for (x, y) ∈ Vε , so that the function f(x, y) = py/px is a well-defined
continuous function on Vε .
Let τ ε be the maximum of this function on the set Vε . From (96) it results τ ε < α. By

choosing 0 < δε <
τ ε
α
, we obtain the desired result of the lemma.

�
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Definition 23. Let be given x0 ∈ Rn+ and the trajectory {x(t)}
∞
t=0 ∈ XT (x

0). We say that
this trajectory grows at the average rate α− 1 if

lim
t→∞

p̂ x(t)

αt
> 0.

Remark 11. Let us suppose that starting from the point x0 we can reach the turnpike in
a given number of periods. In other words, there exists an integer N0 > 0 and a trajectory
{x̃(t)}∞t=0 ∈ XT (x

0, N) such that x̃(N0) = λx̂, λ > 0. Then the trajectory {x(t)}
∞
t=0 ∈ XT (x

0),

defined as follows

x(t) =

{
x̃(t), for 0 5 t 5 N0,

λαt−N0x̂, for t > N0,

grows with average rate α− 1. Indeed, it is easy to verify that

lim
t→∞

p̂ x(t)

αt
= lim

t→∞

λαt−N0 p̂x̂

αt
=
λp̂x̂

αN0
> 0.

Now we prove Radner’s Turnpike Theorem or weak Turnpike Theorem.

Theorem 14. Consider a technology T where (T1) and (T2) are satisfied. Let x0 ∈ Rn+,
p ∈ Rn+. Under Assumptions (I), if:

a) there exists a trajectory {x(t)}∞t=0 ∈ XT (x
0) which grows at an average rate α− 1;

b) there exist numbers k′ = k′′ > 0 such that k′′p̂ 5 p 5 k′p̂,

then, for every ε > 0 there exists a positive integer kε such that for every N and every trajectory
{x(t)}Nt=0 ∈ XT (x

0, N), p-optimal, the number of periods in which
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = ε

cannot exceed kε . (The number kε is independent of the length of the planning period N).

Proof. Let ε > 0. For every t for which
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = ε

from Lemma 14 it results
p̂ x(t+ 1) 5 (1− δε)αp̂ x(t). (97)

On the other hand, for every t from Assumptions (I) we have that the following inequality
holds:

p̂ x(t+ 1) 5 αp̂ x(t). (98)
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Let us suppose that ∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = ε

for a number S of periods. From (97) and (98) we obtain

p̂ x(N) 5 (1− δε)
S αN p̂ x0. (99)

We have seen that the sequence
{
p̂ x(t)

αt

}∞

t=0

is nonincreasing.

Condition a) implies

lim
t→∞

p̂ x(t)

αt
= ζ > 0. (100)

By condition b), the p-optimality of the trajectory {x(t)}Nt=0 and relation (100), we obtain

p̂ x(N)

αN
=
p x(N)

k′αN
=
p x(N)

k′αN
=
k′′p̂ x(N)

k′αN
=
k′′

k′
ζ. (101)

Putting together relations (99) and (101) we get

k′′

k′
ζ 5 (1− δε)

S p̂ x0.

From this we obtain

S 5

ln

(
k′′ζ

k′p̂x0

)

ln(1− δε)
.

We remark that condition a) implies p̂x0 > 0. The proof ends, by choosing kε equal to the
integer part of the number ln (k′′ζ/k′p̂x0) · [ln(1− δε)]

−1 . We remark that the number kε is
independent of the length N of the planning period.

�

We note that condition a) is verified, as already remarked, if starting from x0 it is possible
to reach the turnpike in a given number of periods. This surely occurs, for example, when
technology T satisfies assumption (T5) and if x0 > [0] . Indeed, in this case there exists a
number σ > 0 such that σx̂ 5 x0. As (σx̂, ασx̂) ∈ T, assumption (T5) implies (x0, ασx̂) ∈ T. It
is easy to verify that condition b) is verified if and only if supp(p) = supp(p̂), where supp(x) is
the support of the semipositive vector x, i.e.

supp(x) = {i : xi > 0} .

Radner’s theorem has been criticized because of one dubious point left untouched: an
optimal path may several times enter and leave the neighbouring cone at intermediate periods
which are far from both the initial and the terminal period.
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This kind of behavior is excluded under additional assumptions, in order to state the strong
Turnpike Theorem or Nikaido’s Turnpike Theorem. (Nikaido (1964, 1968)).
We assume that technology T satisfies assumptions (T1), (T2) and (T5). Assumptions (I)

are completed with the requirement that x̂ is a positive vector: x̂ > [0] . Therefore we assume
the following set of conditions:

Assumptions (I)’. There exist a vector x̂ > [0] , a price vector p̂ ≥ [0] and a number α > 0
such that (x̂, αx̂) ∈ T,

a) p̂ y − αp̂ x 5 0, for every (x, y) ∈ T,

b) p̂ y − αp̂ x < 0, for every (x, y) ∈ T, such that x is not proporzional to x̂.

Assumptions (I)’, together with (T5), imply p̂ ≥ [0] . Indeed, if a given component of p̂
would be zero, then there exists a vector x ≥ [0] such that p̂ x = 0. From (T5) it results the
existence of a vector y = [0] such that (x, y) ∈ T. We have 0 5 p̂ y = p̂ (y − αx) 5 0. Therefore
p̂ (y − αx) = 0. This equality implies x proportional to x̂ and we obtain the contradiction
p̂x̂ = 0.

We now prove the strong Turnpike Theorem of Nikaido.

Theorem 15. Consider a technology T with assumptions (T1), (T2) and (T5) satisfied. Let
x0 ∈ Rn+ , p ∈ R

n
+ . Under Assumptions (I)’, if:

a) there exists a trajectory {x(t)}∞t=0 ∈ XT (x
0), with average growth rate α− 1;

b) there exist numbers k′ = k′′ > 0 such that k′′p̂ 5 p 5 k′p̂,

then for any number ε > 0 there exists a positive integer kε such that, for any N > 2kε and
any trajectory {x(t)}Nt=0 , p-optimal in XT (x

0, N), the inequality
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ < ε

is satisfied for all periods t, with kε 5 t 5 N − kε .

This theorem means that any optimal trajectory lies entirely in the neighbouring cone of
the balanced growth trajectory in all periods extending from kε to N − kε . Without loss of
generality we assume that

p̂x̂ = 1.

It is known that any vector x ∈ Rn can be uniquely decomposed to a sum of its orthogonal pro-
jection θ(x)x̂ on the von Neumann ray {λx̂}λ=0 and its orthogonal complement e(x). Explicitly,
we have

x = θ(x)x̂+ e(x).

Therefore x̂e(x) = 0, θ(x) = x̂x. We shall use the notation

c = min
i
x̂i > 0, (102)
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d = min
i
p̂i > 0. (103)

In order to prove Theorem 15 we need the following lemmas.

Lemma 15. Let x 6= [0] . If ∥∥∥∥
x

‖x‖
− x̂

∥∥∥∥ < β

for a given β > 0, then ‖e(x)‖ < β ‖x‖ .

Proof. We have

x

‖x‖
= θ

(
x

‖x‖

)
x̂+ e

(
x

‖x‖

)
, x̂e

(
x

‖x‖

)
= 0.

So, we get

β2 >

∥∥∥∥
x

‖x‖
− x̂

∥∥∥∥
2

=

∥∥∥∥
(
θ

(
x

‖x‖

)
− 1

)
x̂

∥∥∥∥
2

+ e

∥∥∥∥
(
x

‖x‖

)∥∥∥∥
2

=

∥∥∥∥e
(
x

‖x‖

)∥∥∥∥
2

=
‖e (x)‖2

‖x‖2
.

�

Lemma 16.

1) There is a number ∆ > 0 such that the inequality
∥∥∥∥
x(t)

αt

∥∥∥∥ 5 ∆, t = 0, 1, ..., N

holds uniformly for all trajectories {x(t)}Nt=0 ∈ XT (x
0, N), for every N .

2) There is a number Γ > 0 such that the inequality

p̂ x(N)

αN
= Γ

holds for all trajectories p-optimal in XT (x
0, N).

Proof.

1) We have
p̂ x(t)

αt
5 p̂ x0.

Form this we obtain

d

∥∥∥∥
x(t)

αt

∥∥∥∥ 5
d

n∑
i=1

xi(t)

αt
5

n∑
i=1

p̂i xi(t)

αt
=
p̂ x(t)

αt
5 p̂ x0.
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By choosing the notation

∆ =
p̂ x0

d

we obtain the desired inequality.

2) Let {x(t)}Nt=0 ∈ XT (x
0, N) be a p-optimal trajectory. We compare this trajectory with the

trajectory {x(t)}∞t=0 ∈ XT (x
0), whose existence is assured by condition a) of Theorem 15. The

optimality of trajectory {x(t)}Nt=0 implies p x(N) = p x(N). By condition b) of Theorem 15 we
get

p̂ x(N) =
p x(N)

k′
=
p x(N)

k′
=
k′′

k′
p̂ x(N). (104)

As the trajectory {x(t)}∞t=0 grows at an average rate α− 1, we have

p̂ x(N)

αN
= ζ > 0. (105)

From (104) and (105), by denoting

Γ =
k′′ξ

k′
,

we obtain
p̂ x(N)

αN
= Γ.

�

Lemma 17. Let be {x(t)}Nt=0 ∈ XT (x
0, N). If x(t) 6= [0] and

∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ < β,

then ∥∥∥∥e
(
x(t)

αt

)∥∥∥∥ 5 β∆.

Proof. From Lemma 15 we obtain ‖e (x(t))‖ < β ‖x(t)‖ . By dividing both members of this
inequality by αt and taking inequality 1) of lemma 16 into account, we get the thesis.

�

Lemma 18 Let {x(t)}Nt=0 be a p-optimal trajectory of XT (x
0, N). If, for some η > 0 we have

∥∥∥∥e
(
x(r)

αr

)∥∥∥∥ < η and
∥∥∥∥e
(
x(s)

αs

)∥∥∥∥ < η, 0 5 r < s,

then

θ

(
x(r)

αr

)
− θ

(
x(s)

αs

)
<
2η

c
.
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Proof. We put

ω = θ

(
x(r)

αr

)
− θ

(
x(s)

αs

)
.

Let us absurdly suppose that ω =
2η

c
. Let

ω̂ =
1

2

[
θ

(
x(r)

αr

)
+ θ

(
x(s)

αs

)]
.

We obtain
ω

2
x̂i = η >

∥∥∥∥e
(
x(r)

αr

)∥∥∥∥ = −ei
(
x(r)

αr

)
,

ω

2
x̂i = η >

∥∥∥∥e
(
x(s)

αs

)∥∥∥∥ = −ei
(
x(s)

αs

)
.

From this we have

x(r)

αr
= θ

(
x(r)

αr

)
x̂+ e

(
x(r)

αr

)
>

(
θ

(
x(r)

αr

)
−
ω

2

)
x̂ = ω̂,

x(s)

αs
= θ

(
x(s)

αs

)
x̂+ e

(
x(s)

αs

)
<

(
θ

(
x(s)

αs

)
+
ω

2

)
x̂ = ω̂.

Clearly (ω̂, αω̂) ∈ T. Therefore, (x(r)/αr) > ω̂ implies, by assumption (T5), that
(
x(r)

αr
, αω̂

)
∈

T. Hence, (x(r), αr+1ω̂) ∈ T. On the other hand, from the inequality
x(s)

αs
< ω̂, it results that

we can choose a positive vector v̂, proportional to x̂, such that

αsω̂ > x(s) + αsv̂.

But, as (αs−1ω̂, αsω̂) ∈ T, assumption (T5) implies that (αs−1ω̂, x(s) + αsv̂) ∈ T. These results
mean that the sequence x0, ..., x(r), αr+1ω̂, αr+2ω̂, ..., αs−1ω̂, x(s)+αsv̂, ..., x(N)+αN v̂ is a tra-
jectory of XT (x

0, N). The inequality x(N) + αN v̂ > x(N) implies p
(
x(N) + αN v̂

)
> px(N),

which contradicts the p-optimality of the trajectory {x(t)}Nt=0 .

�

Lemma 19. Under the same assumption, of Lemma 18, we have

0 5 p̂
x(t)

αt
− p̂

x(t+ 1)

αt+1
< 4ηmax

(
‖p‖ ,

1

c

)

for any t such that r 5 t 5 s− 1.
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Proof. For any r < s, as p̂x̂ = 1, on the ground of Lemma 17, we have

p̂
x(r)

αr
− p̂

x(s)

αs
= θ

(
x(r)

αr

)
− θ

(
x(s)

αs

)
+ p̂

[
e

(
x(r)

αr

)
− e

(
x(s)

αs

)]
<

< 2
η

c
+ 2η ‖p̂‖ 5 4ηmax

(
‖p‖ ,

1

c

)
.

From this relation, for r 5 t 5 s− 1, we obtain

0 5 p̂
x(t)

αt
− p̂

x(t+ 1)

αt+1
5 p̂

x(r)

αr
− p̂

x(s)

αs
< 4ηmax

(
‖p‖ ,

1

c

)
.

�

Proof of Theorem 15. On the ground of lemma 14, for any ε > 0 there exists a number
δε ∈ (0, 1) such that p̂y 5 (1− δε)αp̂x for every (x, y) ∈ T with

∥∥∥∥
x

‖x‖
− x̂

∥∥∥∥ = ε.

Now choose ηε > 0 and βε > 0 such that

4ηεmax

(
‖p‖ ,

1

c

)
< δεΓ (106)

βε ∆ < ηε , (107)

βε 5 ε , (108)

where Γ and ∆ are the constants considered in Lemma 16.
As the assumptions of Theorem 14 are verified, there exists a positive number kε such that

the inequality ∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ < βε (109)

is satisfied, except possibly for at most kε periods. From the inequality 2) of Lemma 16, it
results x(t) 6= [0] for all indices t. Let us suppose N > kε and let rε be, respectively, the first
and the last period in which inequality (109) is satisfied. Then,

∥∥∥∥
x(rε)

‖x(rε)‖
− x̂

∥∥∥∥ < βε and
∥∥∥∥
x(sε)

‖x(sε)‖
− x̂

∥∥∥∥ < βε .

Accordingly, in view of (106), (107) and Lemmas 17 and 19, we have, for rε 5 t 5 sε

0 5 p̂
x(t)

αt
− p̂

x(t+ 1)

αt+1
5 δεΓ. (110)
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Suppose that for some index t between rε and sε − 1 we would have
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = ε.

Then, p̂ x(t+ 1) 5 (1− δε )α p̂ x(t), which, together with inequality 2) of lemma 16, gives

p̂
x(t)

αt
− p̂

x(t+ 1)

αt+1
= δε

p̂ x(t)

αt
= δε

p̂ x(N)

αN
= δεΓ.

But this contradicts (110). Taking (108) into account, we have thereby shown that
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ < ε (111)

for rε 5 t 5 sε .
From Theorem 14, we remark that surely we have rε+(N−sε) 5 kε . Therefore, if N = 2kε ,

a fortiori from (111) it results
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ < ε, for kε 5 t 5 N − kε .

Moreover the numbers rε , sε and kε are independent of the length N of the planning period.

�

We now present some results concerning the asymptotic behavior of infinite trajectories.

Theorem 16. If the technology T satisfies, besides assumptions (T1) and (T2), also assump-
tions (I), then for every trajectory {x(t)}∞t=0 ∈ XT (x

0) which grows at an average rate α− 1, it
holds

lim
t→∞

∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = 0.

Proof. We begin to evaluate in Rn+ × R
n
+ the distance between

(x(t), x(t+ 1))

‖x(t)‖
and the ray

{λ(x̂, αx̂)}λ=0 :

d

(
(x(t), x(t+ 1))

‖x(t)‖
, {λ(x̂, αx̂)}λ=0

)
= inf

λ=0

∥∥∥∥
(x(t), x(t+ 1))

‖x(t)‖
− λ(x̂, αx̂)

∥∥∥∥ . (112)

We note that vector (αp̂,−p̂) is orthogonal to the ray {λ(x̂, αx̂)}λ=0 . Therefore the distance

which does not interest will be precisely the norm of the projection of
(x(t), x(t+ 1))

‖x(t)‖
on

(αp̂,−p̂).
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We obtain

inf
λ=0

∥∥∥∥
(x(t), x(t+ 1))

‖x(t)‖
− λ(x̂, αx̂)

∥∥∥∥ =

(x(t), x(t+ 1))

‖x(t)‖
(αp̂,−p̂)

‖(αp̂,−p̂)‖
=
αp̂ x(t)− p̂ x(t+ 1)

‖x(t)‖ · ‖(αp̂,−p̂)‖
. (113)

Let F be the cone generated by the unitary vectors of the coordinates corresponding to the
positive components of vector p̂.
Define on Rn the norm ‖·‖1 by the relation

‖x‖1 = ‖p̂x‖+ d(x, F ). (114)

As F ⊂ Rn+ , each vector x ∈ R
n
+ can be uniquely written as

x = x̃+ ˜̃x,

where x̃ ∈ F is obtained from x, by putting equal to zero those components which correspond
to a zero component of p̂, and ˜̃x is obtained from x, by putting equal to zero the remaining
components. Obviously x̃˜̃x = 0. From this, for x ∈ Rn+ we obtain:

‖x1‖ = p̂
(
x̃+ ˜̃x

)
+ d

(
x̃+ ˜̃x, F

)
= p̂x̃+ d

(
˜̃x, F

)
= p̂x̃+

∥∥∥˜̃x
∥∥∥ = ‖x̃‖1 +

∥∥∥˜̃x
∥∥∥
1
. (115)

Taking (115) into account, we have

0 5
αp̂ x(t)− p̂ x(t+ 1)

‖x(t)‖1
=

(
α−

p̂ x(t+ 1)

p̂ x(t)

)
 ‖x̃(t)‖1

‖x̃(t)‖1 +
∥∥∥˜̃x(t)

∥∥∥
1


 5 α−

p̂ x(t+ 1)

p̂ x(t)
. (116)

As the trajectory {x(t)}∞t=0 grows at the average rate α− 1 we have

lim
t→∞

(
α−

p̂ x(t+ 1)

p̂ x(t)

)
= 0,

so that, from (113) and (116) we deduce

lim
t→∞

inf
λ=0

∥∥∥∥
(x(t), x(t+ 1))

‖x(t)‖
− λ(x̂, αx̂)

∥∥∥∥ = 0. (117)

For all indices t the following relation is verified:

inf
λ=0

∥∥∥∥
(x(t), x(t+ 1))

‖x(t)‖
− λ(x̂, αx̂)

∥∥∥∥ = inf
λ=0

∥∥∥∥
(
x(t)

‖x(t)‖
− λx̂,

x(t+ 1)

‖x(t)‖
− λαx̂)

)∥∥∥∥ = inf
λ=0

∥∥∥∥
x(t)

‖x(t)‖
− λx̂

∥∥∥∥ ,
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and there exists a number λ(t) = 0 such that

inf
λ=0

∥∥∥∥
x(t)

‖x(t)‖
− λx̂

∥∥∥∥ =
∥∥∥∥
x(t)

‖x(t)‖
− λ(t) x̂

∥∥∥∥ .

It results

lim
t→∞

∥∥∥∥
x(t)

‖x(t)‖
− λ(t) x̂

∥∥∥∥ = 0. (118)

In conclusion, the following inequalities
∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ =

∥∥∥∥
x(t)

‖x(t)‖
− λ(t) x̂− (1− λ(t)) x̂

∥∥∥∥ 5
∥∥∥∥
x(t)

‖x(t)‖
− λ(t) x̂

∥∥∥∥+ |1− λ(t)| =

=

∥∥∥∥
x(t)

‖x(t)‖
− λ(t) x̂

∥∥∥∥+

∣∣∣∣∣∣

∥∥∥∥
x(t)

‖x(t)‖

∥∥∥∥− λ(t) ‖x(t)‖

∣∣∣∣∣∣
5 2

∥∥∥∥
x(t)

‖x(t)‖
− λ(t) x̂

∥∥∥∥ ,

together with (118), give

lim
t→∞

∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = 0.

�

Theorem 17. If the technology T satisfies assumption (T1), (T2) and (I) and if p̂ > [0],
then for every trajectory {x(t)}∞t=0 ∈ XT (x

0) there exists a number ξ = 0 such that

lim
t→∞

x(t)

αt
= ξ x̂. (119)

Proof. As p̂ > [0], we have F = Rn+ and therefore ‖x‖1 = p̂x for x ∈ R
n
+ . If the trajectory

{x(t)}∞t=0 does not grow at an average rate α− 1, then

lim
t→∞

‖x(t)‖1
αt

= lim
t→∞

p̂ x(t)

αt
= 0

and (119) is verified with ξ = 0.
If the trajectory {x(t)}∞t=0 grows at an average rate α− 1, then, by Theorem 16:

lim
t→∞

x(t)

‖x(t)‖1
= x̂. (120)

Relation (120) can be rewritten as

lim
t→∞

x(t)

p̂ x(t)
= x̂. (121)

Denoting

lim
t→∞

p̂ x(t)

αt
= ξ > 0,
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from (121) we have

lim
t→∞

x(t)

αt
= ξ x̂.

�

Theorem 18. Let the technology T satisfy assumptions (T1), (T2), (T3), (T4) and (I)’. Let
x0 > [0] . If {x(t)}∞t=0 ∈ XT (x

0) is an intertemporally efficient trajectory, then

lim
t→∞

∥∥∥∥
x(t)

‖x(t)‖
− x̂

∥∥∥∥ = 0.

Proof. Under the assumptions of the theorem, from Theorem 12 it follows that the trajectory
{x(t)}∞t=0 grows at the average rate α− 1. Then, by Theorem 16 we obtain the thesis.

�

Remark 12. The Radner-Nikaido analysis on turnpike properties, as Radner (1961) explic-
itly recognized (due to the assumption that p̂(y − αx) < 0 for all (x, y) ∈ T such that x is not
proportional to x̂), does not apply to the production set which is a polyhedral cone, i. e. to
the original von Neumann model.
Morishima (1964) presents a generalization of the Radner-Nikaido theorem that does not

suffer from this limitation (obviously the assumptions of Morishima differ in part from the ones
of Radner and Nikaido). Turnpikes theorems specifically built for the original (polyhedral) von
Neumann model are presented, e. g., by McKenzie (1967), Morishima (1969) and Ashmanov
(1983). The latter author considers a matrix pair (A,B), with matrices A and B not necessarily
nonnegative, whereas McKenzie (1967) proves his turnpike results by means of the concept of
von Neumann facet. In general, let the technology T satisfy assumption (T1), (T2), (T3) and
(T4). Let P be the set of the von Neumann price vectors of the technology. For every p ∈ P
we denote

Hp = {(x, y) : (x, y) ∈ T, α(T )px = py} .

The set F ∗ = ∩
p∈P
Hp is called von Neumann facet of the technology T . It can be shown that

F ∗ is a closed convex cone and that for every p ∈ relint(P), it holds F ∗ = Hp .
See also McKenzie (1963a). Under the said assumptions, and for a general Gale - von Neu-

mann model, it is possible to prove the following result (McKenzie (1963a, 1967) uses the
so-called “absolute norm” of a vector z ∈ Rn : ‖z‖a =

∑
|zi| , the sum of the absolute values

of its components, so that the angular distance between two nonzero vectors z and w becomes
d(z, ω) =

∑
|zi / ‖z‖a − ωi / ‖ω‖a| . The angular distance of a vector z and a set of vectors C

is defined by d(z, C) = inf d(z, ω) for all ω ∈ C).

Let p̂ ∈ relint(P), x0 ∈ Rn+ , p ∈ R
n
+ . If

a) There exists a trajectory {x(t)}∞t=0 ∈ XT (x
0) which grows at the average rate α(T )− 1;
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b) There exist numbers K
′

= k
′′

> 0 such that k
′′

p̂ 5 p 5 k
′

p̂ ;

then for every ε > 0 there exists a positive integer kε such that for every N and for every
p-optimal trajectory {x(t)}Nt=0 ∈ XT (x

0, N), the number of processes (x(t), x(t+ 1)) such that

d

(
(x(t), x(t+ 1))

‖x(t)‖
, F ∗

)
= ε

cannot exceed kε .
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