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TWO PROOFS OF THE FARKAS-MINKOWSKI
THEOREM BY A TANDEMMETHOD AND BY
USE OF AN ORTHOGONAL COMPLEMENT

Takao Fujimoto1, B.B.Upeksha P. Perera and Giorgio Giorgi
University of Kelaniya, Sri Lanka and University of Pavia, Italy

ABSTRACT

This note presents two proofs of the Farkas-Minkowski theorem. The first one is analyti-
cal, and this does not presuppose the closedness of a finitely generated cone. We do not
employ separation theorems either. Even the concept of linear independence or invertibil-
ity of matrices is not necessary. Our new device consists in proving the Farkas-Minkowski
theorem and the closedness of a finitely generated cone at the same time based upon
mathematical induction. We make use of a distance minimization problem with an equal-
ity constraint. The second proof is algebraic, and a mixture of Gale’s and Ben-Israel’s
methods. Our proof based on the orthogonal complement seems easy to understand in
terms of geometrical images.

1. INTRODUCTION

There have already been many proofs of the Farkas-Minkowski theorem or Farkas’s lemma
concerning the existence of a nonnegative solution for a system of linear equations. The
reader is referred to Giorgi (2007). The proofs can be classified into two groups, topological
and algebraic. Many of the former group use one of separation theorems, and the theo-
rem has been extended from finite dimensional Euclidean spaces to infinite dimensional
locally convex topological spaces. See, for example, Hurwicz (1958), Braunschweiger and
Clark (1962), and Ben-Israel and Charnes (1968). More than five decades ago, an inter-
esting proof was provided by Dorfman, Samuelson and Solow (1958), which used a simple
minimization problem on the domain of the nonnegative orthant of the Euclidean space.
Morishima (1969) adopted the same method more explicitly by using differential calculus.

1Takao Fujimoto is grateful to University of Kelaniya and its staff for the hospitality rendered during
his stay as a visiting professor from 2013 to 2014.
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The same norm minimization method was employed in Dax (1997) without assuming,
however, the closedness of a finitely generated cone. A rigorous proof based on this mini-
mization method is explained in Matoušek and Gärtner (2007) together with a proof that
a finitely generated cone is closed. This proof needs the concepts of linear independence
and the invertibility of a matrix.
The second group of algebraic proofs can allow for fields more general than reals over

which a given vector space is defined. Gordan (1873) discussed about the solvability in
integers when he published an algebraic proof of Gordan’s theorem on nonnegative real
solutions. Charnes and Cooper (1958) provided an elementary half-algebraic and half-
geometric proof based upon such basic concepts as linear independence and Cramer’s rule.
In Ben-Israel (1964), he obtained Tucker’s key theorem by use of orthogonal complements.
Within this group, are the proofs based on the Fourier-Motzkin elimination, which might
be made an independent third group of purely algorithmic proofs. The proofs are simple
as well as elementary. The reader is referred to Fourier (1890), Motzkin (1951) and
Matoušek and Gärtner (2007, pp. 100-104).
It seems, however, that many authors as well as teachers concerned with optimization

theory are not fully satisfied with their presentation of the Farkas-Minkowski theorem,
either by their exclusion of a proof concerning the closedness of a finitely generated cone,
or their inclusion of one of its lengthy proofs, or, in the case of algebraic proofs, the lacking
in ‘leading lights’ through their proofs. In a footnote, Dorfman, Samuelson and Solow
(1958) wrote on their omitted proof: “At this point we sweep a technical difficulty under
the rug. How do we know that there is a vector in the cone at minimum distance from
c? The assertion sounds plausible and is also true; but, since the proof is rather detailed,
we leave the statement with an appeal as to its plausibility.” Gill, Murray and Wright
(1991) added about their detailed proof: “The reader who is willing to accept the entire
lemma on faith can simply skip to . . . ” On the other hand, about his algebraic proof,
Gale (1960) noted: “unfortunately, the proof is rather formal and does not make clear
why the theorem ‘works’.” (It is remembered, however, that not all the mathematicians
agree with this view of Gale, as Bartl (2012a) notes Bland’s opinion. Certainly, who gets
what sort of geometrical images from a given proof can vary considerably.) Though recent
algebraic proofs are short enough, they are, however, not so easy to grasp geometrically,
and when teaching in a lecture room without a projector, a memo is indispensable. And
yet most math teachers are too busy to work out their own satisfactory proof.
Borwein (1983) observed the equivalence of the Farkas-Minkowski theorem and the

closedness of a finitely generated cone, implying both can be a pedagogical annoyance as
was remarked in Gill, Murray andWright (1991). On the other hand, Tucker’s theorem on
linear systems in Tucker (1956), which Good (1959) calls the key theorem in the treatment
of linear inequalities, is also known to be equivalent to the Farkas-Minkowski theorem.
One of the authors, Fujimoto (1976) published a simple proof of Tucker’s theorem by
use of a constrained minimization problem. A question is whether it is possible to adapt
Fujimoto’s proof to get the Farkas-Minkowski theorem directly without requiring the
closedness of a finitely generated cone. The answer seems to be in the affirmative, and
this note is to report this as our first new proof, which will show the Farkas-Minkowski
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theorem itself together with the closedness of a finitely generated cone at a stroke. After
all, it is desirable to show, at some time during the course to the students, the closedness
of a finitely generated cone. We depend less on linear algebra dispensing with the use
of linear independence nor matrix invertibility, and more on elementary calculus, i.e.,
Lagrange’s multiplier method with nonnegative constraints, which is a technique familiar
to students of economics, not to mention those of mathematics.
One of the recent short algebraic proofs is in Bartl (2012b), which can deal also with

the vector spaces over the field of rationals, or more general fields as was suggested in a
classical paper by Gordan (1873). (See also Charnes and Cooper (1958), Good (1959),
Conforti, Di Summa and Zambelli (2007), and Bartl (2008, 2012a). Bartl’s proof in Bartl
(2008) was explained in detail by Jácimovíc (2011) for the finite dimensional case, and by
Perng (2012).) Bartl’s method of proof is a restatement of the proof of Tucker’s lemma in
Tucker (1956), and he considered a vector space of an arbitrary dimension over a totally
ordered field with a finite number of linear functions on the vector space. His proofs are
so short that they are almost satisfactory for classroom presentation. Gale’s sigh might,
however, be heard again because Bartl’s feat looks like a remarkable tightrope act as
Gale’s does. Thus, our second proof, which is algebraic, is an adaptation of Gale’s as in
Tucker (1956), and proves Tucker’s key theorem first, using an orthogonal complement
in an explicit way as in Ben-Israel (1964). One important difference from the existing
algebraic proofs such as Gale (1960) or Tucker (1956) is that we consider the orthogonal
complement to a subspace spanned by a set of columns corresponding to positive entries
in a nonnegative nonzero solution. So, our proof might allow for somewhat intuitive
geometric interpretations of what we are doing within.
In the next section we explain our notation, state the Farkas-Minkowski theorem and

two preliminary propositions, then we present an analytic proof in section 3. Section
4 contains an algebraic proof of Tucker’s key theorem, with final section 5 giving some
remarks. In the appendix, we prove in a ‘naive’ way one of the preliminary proposi-
tions which is concerned with the Lagrange’s multiplier method with the nonnegativity
constraints on variables.

2. NOTATION AND PRELIMINARIES

Let m and n be natural numbers, and Rn be the n-dimensional real Euclidean space,
and Rn+ be the nonnegative orthant of Rn. The inner-product of two vectors, v and w
in Rm, is denoted by v0 ·w, and the premultiplication of a vector y ∈ Rm with an m×n
matrix M is written as y0 ·M or simply y0M when avoiding too many dots. The symbol
Sn−1 stands for the (n − 1)-simplex, i.e., Sn−1 ≡ {x | x ∈ Rn+,

Pn

j=1 xj = 1}. In vector
comparison, the inequality symbol inx > y, signifies that a strict inequality holds in each
elementwise comparison. In this note, we define the finitely generated cone by M as the
set {Mx |x ∈ Rn+}.
Let us first write down

Farkas-Minkowski theorem. Let A be a given m×n real matrix, and b ∈ Rm. Then,
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the system of linear equations Ax = b has a solution x∗ ∈ Rn+ if and only if y0 · A ≤ 0
for y ∈ Rm implies y0 · b ≤ 0.
About an economic interpretation of the above theorem, the reader is referred to Fil-

ippini and Filippini (1982) or Fujimoto and Krause (1988).
We make use of the following two propositions. The proof of the first proposition is given

in the text, while that for the second is presented in the appendix, and shows we do not
need the Farkas-Minkowski theorem to get Proposition 2. Proposition 2 is important in
economics, but has seldom been proved in textbooks, although it is stated and explained.
See, e.g., Dixit (1990, pp.24-29). For the mathematically oriented, Proposition 2 is a
corollary of the Karush-Kuhn-Tucker theorem, thus comes out logically after the Farkas-
Minkowski theorem, with some struggle through the constraint qualifications. See Mas-
Colell, Whinston and Green (1995, p.959-961)
Proposition 1. The Farkas-Minkowski theorem implies the closedness of a finitely gen-
erated cone.
Proof. Let the finitely generated cone by A be denoted by C, and choose a b ∈ Rm \C.
Then, by the Farkas-Minkowski Theorem, there exists a y ∈ Rm such that y0A ≤ 0 and
y0b > 0. Hence the open halfspace G ≡ {w ∈ Rm | y0w > 1

2
y0b} does not intersect the

cone C. The set G is open and b ∈ G. This proves that the complement Rm \C of the
cone C is an open set, so that the cone C is closed. ¤
Proposition 1 is the easier half of the equivalence result in Borwein (1983).

Proposition 2. (Lagrange’s multiplier method with nonnegative constraints) Let f(x)
be a quadratic function with x ∈ Rn. Consider the minimization problem:

min f(x) subject to x ∈ Rn+, and
rX

j=1

xj = 1, with 1 ≤ r ≤ n.

If the minimum is attained at x∗, then there exists a real number λ such that

∂f(x)

∂xj

¯̄
¯̄
x=x∗

≥ λ, for j = 1, . . . , r,

∂f(x)

∂xj

¯̄
¯̄
x=x∗

· x∗j = λ · x
∗
j , for j = 1, . . . , r,

∂f(x)

∂xj

¯̄
¯̄
x=x∗

≥ 0, for j = r + 1, . . . , n,

∂f(x)

∂xj

¯̄
¯̄
x=x∗

· x∗j = 0, for j = r + 1, . . . , n.

3. A NEW ANALYTIC PROOF

Our method of proof is a sort of ‘tandem riding’ with the Farkas-Minkowski theorem and
the closedness of a finitely generated cone reached at the same time, and is constructed
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using mathematical induction.
Theorem. The Farkas-Minkowski theorem and the closedness of a finitely generated cone
both hold good.
Proof. We employ mathematical induction on n, the number of columns of a given matrix
A. When n = 1, the Farkas-Minkowski theorem hence the closedness (by Proposition 1)
is obvious.
Now we suppose these two for the case of the number of columns less than or equal to

n− 1. We prove the Farkas-Minkowski theorem for the case n. Since the ‘only if’ part is
evident, we prove the ‘if’ part. Define an m× (n+ 1) matrix B and a vector u as

B ≡ (A − b),

u ≡
µ
x
z

¶
, x ∈ Rn+, z ∈ R+,

and let us consider the equation

Bu = (A − b)
µ
x
z

¶
= Ax− bz = 0.

If this equation has a solution u ≥ 0 with z 6= 0, then we have A(x/z) = b. Next,
suppose that this equation has a solution u ≥ 0 with z = 0, but x > 0. In this case the
set {Aw | w ∈ Rn+} is equal to the subspace {Aw | w ∈ Rn}, thus closed. If this subspace
includes the vector b, again we have Aw = b. When the subspace does not contain b, we
obtain a contradiction to the hypothesis, which is clear by the existence of a normal vector
from the vector b to the subspace. That is, from the given condition, the inner-product
between this normal vector and b should be zero, while it cannot be zero unless b is in
the subspace. So, the remaining case is where we cannot find any solution vector u ≥ 0
such that x > 0 with z = 0. In this case, there exists a nonnegative solution vector
x to Ax = 0 with the minimum number of zeros among possible solutions. Let this
minimum number be denoted as r ≥ 1. It may happen r = n, implying the zero is the
only nonnegative solution to Ax = 0. Without loss of generality, we assume the first r
elements of x are zero. We now consider the following minimization problem:

min
1

2
u0B0Bu subject to

rX

j=1

xj + z = 1, u ≥ 0.

The set D ≡ {Bu |
Pr

j=1 xj + z = 1, u ≥ 0} is closed, because this is actually the
Minkowski sum of the compact set (Ar, −b)ur, ur ∈ Sr(because the continuous image of
the compact set Sr is compact), and the closed set A(r)x(r), x(r) ∈ Rn−r+ , where Ar is the
m × r matrix consisting of the first r columns of A, and A(r) the m× (n− r) matrix
made from A by deleting the first r columns, with xr and x(r) defined in a similar
way. The closedness of the latter set A(r)x(r), x(r) ∈ Rn−r+ , follows from the inductive
hypothesis that a finitely generated cone is closed when the number of columns of A is
less than or equal to (n− 1) because r ≥ 1. Therefore the above minimization problem
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has the minimum at a vector u∗ ≡ (x∗, z∗)0, because we can consider only those vectors in
the compact set D∩{y | kyk ≤ kyk , y ∈ Rm} for an arbitrarily chosen y ∈ D. Applying
Proposition 2 we have

u∗0B0A ≥ λer, (1)

u∗0B0Ax∗ = λerx
∗, (2)

u∗0B0(−b) ≥ λ, (3)

u∗0B0(−b)z∗ = λz∗, (4)

where er ≡ (1, . . . , 1, 0, . . . , 0) ∈ Rn, i.e., the first r entries are unity with the remaining
elements being zero. It follows from eqs. (2) and (4) above that the minimum u∗0B0Bu∗ =
λ ≥ 0.
First suppose λ > 0. Then from (1) we get y0 · A ≥ 0, while we have y0 · b < 0 from

(3), by putting y ≡ Bu∗, i.e., y0 = u∗0B0. A contradiction to the ‘if’ part supposition.
Hence λ = 0. When z∗ 6= 0, the system reduces again to the very first case because
λ = 0 means Bu∗ = 0. On the other hand, when z∗ = 0, we have

Pr

j=1 x
∗
j = 1. The sum

x◦ ≡ x+ x∗ has a less number of zeros than x while satisfying Ax◦ = 0, a contradiction.
This means that the case with λ = 0 and z∗ = 0 cannot take place, which ends the proof
of the Farkas-Minkowski theorem for the case n.
Once we get the Farkas-Minkowski theorem for the case n, the closedness of a finitely

generated cone for this case follows from Proposition 1. Hence we have shown what to be
proved. ¤

4. AN ALGEBRAIC PROOF

Now we present an algebraic proof of Tucker’s key theorem by use of mathematical induc-
tion and a method in Ben-Israel (1964), i.e., employing the orthogonal complement. Gale
(1960), Tucker (1956), and Bartl (2008, 2012a) have used the orthogonal complement
implicitly, and this complement is constructed against the subspace spanned by a single
vector whose existence is guaranteed by the inductive hypothesis. Their way of use of
orthogonal complement has made the proof a little difficult to grasp geometrically, albeit
with a marvellous effect that the proof does not require the inner-product. In our proof,
we consider the complement to the subspace spanned by those column vectors of A whose
positive combination can form the zero vector, actually the columns which correspond the
positive entries of x, i.e., those columns in A(r), with the minimum number of zeros in
the proof of the preceding section. We use the same symbols as in our analytic proof
above, and continue to employ the field of real numbers.
We now prove

Tucker’s key theorem. Let A be a given m × n matrix of reals. Then, the system
of linear equations Ax = 0 for x ∈ Rn+, and the system of inequalities y0 · A ≥ 0 for
y ∈ Rm have a pair of solutions x∗ and y∗ such that x∗+A0y∗ > 0.
Proof. We use mathematical induction on n, the number of columns of A. When n = 1,
it is obvious. Suppose the theorem is true up to n−1, and let us prove the case when the
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number of columns is n. First, when there exists a strictly positive solution, x∗ > 0, to
Ax = 0, then we can choose y∗ = 0. Next, as in the analytic proof above, we consider a
nonnegative vector x such that Ax = 0, and x has the minimum number of zeros among
the solutions to the equation. Let us suppose the minimum number of zeros is r, r ≥ 1,
and the first r elements of x are zeros, with the remaining elements being all positive.
We consider the subspace W of dimension k spanned by the last (n− r) columns, i.e.,
the columns of A(r), the same symbol as in our analytic proof. It is to be noted that the
subspace W can be written as W ≡ {A(r)x(r) |x(r) ∈ Rn−r+ } = {A(r)x(r) |x(r) ∈ Rn−r}.
We deal with the two cases separately; the first one in which r < n, and the second case
where r = n.
In the first case, we can suppose that k ≥ 1, because k = 0 implies the the last (n−r)

columns are all zero vectors, and the case reduces to the r case. Now let us build up the
orthogonal complement W⊥ of dimension (m−k) to the subspace W . We know that the
space Rm is represented by a direct sum, that is, Rm = W +W⊥ and W ∩W⊥ = {0}.
Each of the column vectors in Ar is then decomposed into the two parts in W and
W⊥ respectively, and we pick up the components belonging to the latter, forming a new
m× r matrix A⊥

r . Now there should be no nonzero nonnegative solution to the equation
A⊥
r ·xr = 0. (Otherwise, we could get Arx

∗
r = 0+w, where x

∗
r is a supposed solution and

w is a certain vector in W . That is, Arx
∗
r + (−w) = 0 for a (−w) ∈ W , which in turn

implies the existence of a nonnegative vector ex such that Aex = 0 and ex has at least
one positive element in the first r entries. We create a vector ex + x, which would be a
solution to Ax = 0 and have a less number of zeros than x, a contradiction.) Hence, by
the inductive hypothesis (actually its special case corresponding to Gordan’s theorem),
there exists a y ∈ Rm which satisfies y0 · A⊥

r > 0. Decompose this y to the two parts in
W and W⊥ respectively, i.e., y = yW +yW⊥. It is evident that we still have y0

W⊥ ·Ar > 0,
and that y0

W⊥ ·A(r) = 0, thus yielding x+A
0yW⊥ > 0.

It remains for us to discuss the second case r = n, that is, when there is no nonzero
nonnegative solution to Ax = 0. In such a case, there should be no zero vector among the
columns of A, because r = n. We consider again two cases; (i) when at least one column
i of A is represented as ai =

P
j 6=i ajcj, where cj ≥ 0, and (ii) when there is no such

column. In case (i), at least one cj is nonzero, and thanks to the inductive hypothesis for
the matrix A(i), i.e., the m× (n− 1) matrix obtained from A by deleting i-th column,
there exists a y∗ ∈ Rm such that y∗0 · A > 0. We can then put x∗ = 0. In case (ii), we
form the subspace W spanned by the n-th column of A, an, and its negative −an. If
there is a nonzero nonnegative solution x∗r to A

⊥
r · xr = 0, then Arx

∗
r = 0 + w for some

w ∈W . Since we are in case (ii), we have w = −ancn for some cn ≥ 0. (This is because,
if w = ancn for cn > 0, this should have been in case (i).). Then, x∗ ≡ (x∗r, cn)

0 is a
nonzero nonnegative solution to Ax = 0, a contradiction. Thus, there exists no nonzero
nonnegative solution to the equation A⊥

r · xr = 0, where r = n − 1. By the inductive
hypothesis we can find yW⊥ such that y0

W⊥ · Ar > 0 and y
0
W⊥ · an = 0. By considering

y∗ ≡ c · yW⊥+ an, we have y
∗0 ·A > 0 for a sufficiently large positive number c. ¤

It is easy enough to obtain the Farkas-Minkowski theorem from Tucker’s key theorem
by a simple algebraic proof. See, for example, Nikaido (1968: Corollary 1, p.38).
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5. CONCLUDING REMARKS

Let us summarize our method of analytic proof so that it might become useful for easier
proofs of other annoying basic theorems, which have some equivalent propositions. Let
us call two equivalent Propositions, A (here, the Minkowski-Farkas theorem) and B (the
closedness of a finitely generated cone). Suppose these two propositions involve the di-
mension, or the index n. When it is easy to prove B from A for any index n, and it is
possible to prove A with the index n from B with its index n − 1, then we can work
out our tandem method, provided A and B are valid when n = 1. A contrivance may be
required to prove A with n from B with n−1, because here is a kind of ‘fault’. Our ana-
lytic proof is admittedly not very elementary. Proposition 2 is, however, a very basic tool
in economics, and it is stimulating to economics students to show the tool is also useful
in proving a fundamental mathematical theorem. It should be noted that our analytic
proof cannot be extended to a nonlinear generalization of the Farkas-Minkowski theorem
simply because Proposition 1 in Section 3 is an easy one only when a given system is
linear.
The second remark is concerned the comparison between our second proof with the

Gale-Tucker-Bartl algebraic proof. Bartl’s adaptation is remarkable in the fact that it
does not need the inner-product for vector spaces. Thus, Bartl had to consider the
‘orthogonalization’ of given linear functionals against only one special vector found by
the inductive hypothesis. This has made Gale’s and Bartl’s proofs a little difficult to
grasp geometrically. Our algebraic proof, on the other hand, used the orthogonalization
of column vectors against a subspace, and the resulting decomposition of a given vector
space to a direct sum of two subspaces. Though longer than Bartl’s, our proof may be
easier to understand geometrically what we are doing through it.
The final remark is about Stiemke’s contributions to systems of linear equations and

inequalities. Stiemke (1915) includes in fact four theorems, and his third and fourth
have rarely been mentioned in the literature. Tucker (1956) touches upon the first two
theorems only, and Good (1959) does not even cite Stiemke’s paper. It seems to the
present authors, however, that Stiemke’s theorems II (equivalent to Gordan’s theorem)
and III together are really a more precise form of Tucker’s key theorem. That is, in
Tucker’s key theorem, we can assert that x∗i · (A

0y∗)i = 0 for all i. This follows from a
seemingly natural interpretation of Stiemke’s regular variables as those positive entries in
x of Sections 3 and 4, and his singular variables as those correspond to the zero entries in
x. Though Stiemke did not present his proofs for theorems III and IV, we may propose
to rename Tucker’s key theorem the ‘Stiemke-Tucker key theorem’.

APPENDIX

We prove the following proposition which is more general than Proposition 2 in the text.
Proposition. Let f(x) be a function for x ∈ Rn. If the partial derivative exists and
continuous at each x, then the assertions of Proposition 2 hold.
Proof. We use mathematical induction on n. In the case n = 1, we know r = 1, and we
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can put

λ =
∂f(x)

∂x1

¯̄
¯̄
x=x∗

.

We assume the proposition is valid up to the case (n−1) with 1 ≤ r ≤ (n−1), and prove
the case n. Let us suppose without the loss of generality that x∗1 > 0. When r < n, we
fix xn = x

∗
n, and apply the proposition for the case (n− 1), obtaining the desired result

for the first (n− 1) variables. For the last variable xn, we have

f(x∗1, . . . , x
∗
n + t) ≥ f(x∗1, . . . , x∗n) for t > 0,

because f(x∗) is the minimum value. From this it follows

f(x∗1, . . . , x
∗
n + t)− f(x∗1, . . . , x∗n)

t
≥ 0.

By letting t approach to zero, we get

∂f(x)

∂xn

¯̄
¯̄
x=x∗

≥ 0.

When x∗n > 0, we can take a small negative value for t in the top inequality above so
that x∗n + t ≥ 0, thus getting

f(x∗1, . . . , x
∗
n + t) ≥ f(x∗1, . . . , x∗n) for t < 0.

From this,

f(x∗1, . . . , x
∗
n − (−t)))− (f(x∗1, . . . , x∗n)

−t ≥ 0.

Again by letting t approach to zero, we get

− ∂f(x)

∂xn

¯̄
¯̄
x=x∗

≥ 0. That is, ∂f(x)
∂xn

¯̄
¯̄
x=x∗

≤ 0.

Therefore, when x∗n > 0, we should have

∂f(x)

∂xn

¯̄
¯̄
x=x∗

= 0.

Now let us proceed to the case r = n. When we fix xn = x
∗
n, and apply the proposition

for the case (n − 1) to the first (n − 1) variables after suitable transformations of the
variables such that yj ≡ αxj for 1 ≤ j ≤ (n − 1) with α > 0 in order to haveP(n−1)

j=1 yj = 1, we get the desired results for those variables, and we know

∂f(x)

∂x1

¯̄
¯̄
x=x∗

= λ
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for a certain number λ because x∗1 > 0. Since f(x
∗) is the minimum value, we have

f(x∗1 − t, . . . , x∗j , . . . , x∗n + t) ≥ f(x∗1, . . . , x∗j , . . . , x∗n) for x∗1 ≥ t > 0.

From this we have

f(x∗1 − t, . . . , x∗n + t)− f(x∗1, . . . , x∗n + t) + f(x∗1, . . . , x∗n + t)− f(x∗1, . . . , x∗n)
t

≥ 0.

By taking the limit of t, we get

−∂f(x)
∂x1

¯̄
¯̄
x=x∗

+
∂f(x)

∂xn x=x∗
≥ 0, that is, ∂f(x)

∂xn x=x∗
≥ λ.

(Here, we have needed a theorem concerning the convergence of a double sequence (Apos-
tol (1974, p.231)). For any sequence {tj}, tj → 0, with tj > 0,

f(x∗1 − t, . . . , x∗n + t)− f(x∗1, . . . , x∗n + t)
t

produces a double sequence by choosing two indices for the first and n-th variables respec-
tively. We assume the denominator t changes together with the t for the first variable.
While fixing the index for the first variable, say at t, we can consider the limit of the se-
quence created by changing t in the last variable. This sequence converges to a uniformly
continuous function

f(x∗1 − t, . . . , x∗n)− f(x∗1, . . . , x∗n)
t

on a suitably chosen compact domain including x∗ in its interior. The convergence is
uniform because the limit function is a uniformly continuous function. Thus the double
limit coincides with the iterated limit obtained by t→ 0.)
When x∗n > 0, we can choose a sufficiently small negative value for t so that x

∗
n+t ≥ 0.

Through a similar argument to the above, it follows

∂f(x)

∂xn

¯̄
¯̄
x=x∗

≤ λ.

Hence, when x∗n > 0, we should have

∂f(x)

∂xn

¯̄
¯̄
x=x∗

= λ.

This completes the proof. ¤
We note that a quadratic function satisfies the required conditions.
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