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Abstract. Propensity score matching (PSM) has become a popular approach to
estimate causal treatment effects. It is widely applied when evaluating labour
market policies, but empirical examples can be found in very diverse fields of
study. Once the researcher has decided to use PSM, he is confronted with a lot of
questions regarding its implementation. To begin with, a first decision has to be
made concerning the estimation of the propensity score. Following that one has to
decide which matching algorithm to choose and determine the region of common
support. Subsequently, the matching quality has to be assessed and treatment
effects and their standard errors have to be estimated. Furthermore, questions like
‘what to do if there is choice-based sampling?’ or ‘when to measure effects?’
can be important in empirical studies. Finally, one might also want to test the
sensitivity of estimated treatment effects with respect to unobserved heterogeneity
or failure of the common support condition. Each implementation step involves a
lot of decisions and different approaches can be thought of. The aim of this paper
is to discuss these implementation issues and give some guidance to researchers
who want to use PSM for evaluation purposes.
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1. Introduction

Matching has become a popular approach to estimate causal treatment effects. It is
widely applied when evaluating labour market policies (see e.g., Heckman et al.,
1997a; Dehejia and Wahba, 1999), but empirical examples can be found in very
diverse fields of study. It applies for all situations where one has a treatment, a
group of treated individuals and a group of untreated individuals. The nature of
treatment may be very diverse. For example, Perkins et al. (2000) discuss the usage of
matching in pharmacoepidemiologic research. Hitt and Frei (2002) analyse the effect
of online banking on the profitability of customers. Davies and Kim (2003) compare
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the effect on the percentage bid–ask spread of Canadian firms being interlisted on a
US Exchange, whereas Brand and Halaby (2006) analyse the effect of elite college
attendance on career outcomes. Ham et al. (2004) study the effect of a migration
decision on the wage growth of young men and Bryson (2002) analyses the effect
of union membership on wages of employees. Every microeconometric evaluation
study has to overcome the fundamental evaluation problem and address the possible
occurrence of selection bias. The first problem arises because we would like to know
the difference between the participants’ outcome with and without treatment. Clearly,
we cannot observe both outcomes for the same individual at the same time. Taking
the mean outcome of nonparticipants as an approximation is not advisable, since
participants and nonparticipants usually differ even in the absence of treatment.
This problem is known as selection bias and a good example is the case where
high-skilled individuals have a higher probability of entering a training programme
and also have a higher probability of finding a job. The matching approach is one
possible solution to the selection problem. It originated from the statistical literature
and shows a close link to the experimental context.1 Its basic idea is to find in a
large group of nonparticipants those individuals who are similar to the participants in
all relevant pretreatment characteristics X. That being done, differences in outcomes
of this well selected and thus adequate control group and of participants can be
attributed to the programme. The underlying identifying assumption is known as
unconfoundedness, selection on observables or conditional independence. It should
be clear that matching is no ‘magic bullet’ that will solve the evaluation problem
in any case. It should only be applied if the underlying identifying assumption can
be credibly invoked based on the informational richness of the data and a detailed
understanding of the institutional set-up by which selection into treatment takes
place (see for example the discussion in Blundell et al., 2005). For the rest of the
paper we will assume that this assumption holds.

Since conditioning on all relevant covariates is limited in the case of a high
dimensional vector X (‘curse of dimensionality’), Rosenbaum and Rubin (1983b)
suggest the use of so-called balancing scores b(X), i.e. functions of the relevant
observed covariates X such that the conditional distribution of X given b(X) is
independent of assignment into treatment. One possible balancing score is the
propensity score, i.e. the probability of participating in a programme given observed
characteristics X. Matching procedures based on this balancing score are known
as propensity score matching (PSM) and will be the focus of this paper. Once the
researcher has decided to use PSM, he is confronted with a lot of questions regarding
its implementation. Figure 1 summarizes the necessary steps when implementing
PSM.2

The aim of this paper is to discuss these issues and give some practical guidance
to researchers who want to use PSM for evaluation purposes. The paper is organized
as follows. In Section 2, we will describe the basic evaluation framework and
possible treatment effects of interest. Furthermore we show how PSM solves the
evaluation problem and highlight the implicit identifying assumptions. In Section
3, we will focus on implementation steps of PSM estimators. To begin with, a
first decision has to be made concerning the estimation of the propensity score
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Figure 1. PSM – Implementation Steps.

(see Section 3.1). One has not only to decide about the probability model to
be used for estimation, but also about variables which should be included in
this model. In Section 3.2, we briefly evaluate the (dis-)advantages of different
matching algorithms. Following that we discuss how to check the overlap between
treatment and comparison group and how to implement the common support
requirement in Section 3.3. In Section 3.4 we will show how to assess the matching
quality. Subsequently we present the problem of choice-based sampling and discuss
the question ‘when to measure programme effects?’ in Sections 3.5 and 3.6.
Estimating standard errors for treatment effects will be discussed in Section 3.7
before we show in 3.8 how PSM can be combined with other evaluation methods. The
following Section 3.9 is concerned with sensitivity issues, where we first describe
approaches that allow researchers to determine the sensitivity of estimated effects
with respect to a failure of the underlying unconfoundedness assumption. After
that we introduce an approach that incorporates information from those individuals
who failed the common support restriction, to calculate bounds of the parameter
of interest, if all individuals from the sample at hand would have been included.
Section 3.10 will briefly discuss the issues of programme heterogeneity, dynamic
selection problems, and the choice of an appropriate control group and includes also
a brief review of the available software to implement matching. Finally, Section 4
reviews all steps and concludes.

2. Evaluation Framework and Matching Basics

Roy–Rubin Model

Inference about the impact of a treatment on the outcome of an individual involves
speculation about how this individual would have performed had (s)he not received
the treatment. The standard framework in evaluation analysis to formalize this
problem is the potential outcome approach or Roy–Rubin model (Roy, 1951; Rubin,
1974). The main pillars of this model are individuals, treatment and potential
outcomes. In the case of a binary treatment the treatment indicator Di equals one if
individual i receives treatment and zero otherwise. The potential outcomes are then
defined as Yi(Di) for each individual i, where i = 1, . . . , N and N denotes the total
population. The treatment effect for an individual i can be written as

τi = Yi (1) − Yi (0) (1)
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The fundamental evaluation problem arises because only one of the potential
outcomes is observed for each individual i. The unobserved outcome is called the
counterfactual outcome. Hence, estimating the individual treatment effect τ i is not
possible and one has to concentrate on (population) average treatment effects.3

Parameter of Interest and Selection Bias

Two parameters are most frequently estimated in the literature. The first one is the
population average treatment effect (ATE), which is simply the difference of the
expected outcomes after participation and nonparticipation:

τATE = E(τ ) = E[Y (1) − Y (0)] (2)

This parameter answers the question: ‘What is the expected effect on the outcome if
individuals in the population were randomly assigned to treatment?’ Heckman (1997)
notes that this estimate might not be of relevance to policy makers because it includes
the effect on persons for whom the programme was never intended. For example,
if a programme is specifically targeted at individuals with low family income, there
is little interest in the effect of such a programme for a millionaire. Therefore, the
most prominent evaluation parameter is the so-called average treatment effect on
the treated (ATT), which focuses explicitly on the effects on those for whom the
programme is actually intended. It is given by

τATT = E(τ |D = 1) = E[Y (1)|D = 1] − E[Y (0)|D = 1] (3)

The expected value of ATT is defined as the difference between expected outcome
values with and without treatment for those who actually participated in treatment.
In the sense that this parameter focuses directly on actual treatment participants, it
determines the realized gross gain from the programme and can be compared with its
costs, helping to decide whether the programme is successful or not (Heckman et al.,
1999). The most interesting parameter to estimate depends on the specific evaluation
context and the specific question asked. Heckman et al. (1999) discuss further
parameters, like the proportion of participants who benefit from the programme
or the distribution of gains at selected base state values. For most evaluation studies,
however, the focus lies on ATT and therefore we will focus on this parameter,
too.4 As the counterfactual mean for those being treated – E[Y (0)|D = 1] – is not
observed, one has to choose a proper substitute for it in order to estimate ATT. Using
the mean outcome of untreated individuals E[Y (0)|D = 0] is in nonexperimental
studies usually not a good idea, because it is most likely that components which
determine the treatment decision also determine the outcome variable of interest.
Thus, the outcomes of individuals from the treatment and comparison groups would
differ even in the absence of treatment leading to a ‘selection bias’. For ATT it can
be noted as

E[Y (1)|D = 1] − E[Y (0)|D = 0] = τAT T + E[Y (0)|D = 1] − E[Y (0)|D = 0] (4)
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The difference between the left-hand side of equation (4) and τ ATT is the so-called
‘selection bias’. The true parameter τ ATT is only identified if

E[Y (0)|D = 1] − E[Y (0)|D = 0] = 0 (5)

In social experiments where assignment to treatment is random this is ensured and
the treatment effect is identified.5 In nonexperimental studies one has to invoke some
identifying assumptions to solve the selection problem stated in equation (4).

Unconfoundedness and Common Support

One major strand of evaluation literature focuses on the estimation of treatment
effects under the assumption that the treatment satisfies some form of exogene-
ity. Different versions of this assumption are referred to as unconfoundedness
(Rosenbaum and Rubin, 1983b), selection on observables (Heckman and Robb,
1985) or conditional independence assumption (CIA) (Lechner, 1999). We will
use these terms throughout the paper interchangeably. This assumption implies that
systematic differences in outcomes between treated and comparison individuals with
the same values for covariates are attributable to treatment. Imbens (2004) gives an
extensive overview of estimating ATEs under unconfoundedness. The identifying
assumption can be written as

Assumption 1. Unconfoundedness: Y (0), Y (1) � D | X

where � denotes independence, i.e. given a set of observable covariates X which
are not affected by treatment, potential outcomes are independent of treatment
assignment. This implies that all variables that influence treatment assignment and
potential outcomes simultaneously have to be observed by the researcher. Clearly,
this is a strong assumption and has to be justified by the data quality at hand. For
the rest of the paper we will assume that this condition holds. If the researcher
believes that the available data are not rich enough to justify this assumption, he
has to rely on different identification strategies which explicitly allow selection
on unobservables, too. Prominent examples are difference-in-differences (DID) and
instrumental variables estimators.6 We will show in Section 3.8 how propensity score
matching can be combined with some of these methods.

A further requirement besides independence is the common support or overlap
condition. It rules out the phenomenon of perfect predictability of D given X.

Assumption 2. Overlap: 0 < P(D = 1|X ) < 1.

It ensures that persons with the same X values have a positive probability of being
both participants and nonparticipants (Heckman et al., 1999). Rosenbaum and Rubin
(1983b) call Assumptions 1 and 2 together ‘strong ignorability’. Under ‘strong
ignorability’ ATE in (2) and ATT in (3) can be defined for all values of X. Heckman
et al. (1998b) demonstrate that the ignorability or unconfoundedness conditions are
overly strong. All that is needed for estimation of (2) and (3) is mean independence.
However, Lechner (2002) argues that Assumption 1 has the virtue of identifying
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mean effects for all transformations of the outcome variables. The reason is that
the weaker assumption of mean independence is intrinsically tied to functional form
assumptions, making an identification of average effects on transformations of the
original outcome impossible (Imbens, 2004). Furthermore, it will be difficult to argue
why conditional mean independence should hold and Assumption 1 might still be
violated in empirical studies.

If we are interested in estimating the ATT only, we can weaken the unconfound-
edness assumption in a different direction. In that case one needs only to assume

Assumption 3. Unconfoundedness for controls: Y (0) � D | X

and the weaker overlap assumption

Assumption 4. Weak overlap: P(D = 1 | X ) < 1.

These assumptions are sufficient for identification of (3), because the moments of
the distribution of Y (1) for the treated are directly estimable.

Unconfoundedness given the Propensity Score

It should also be clear that conditioning on all relevant covariates is limited in
the case of a high dimensional vector X. For instance if X contains s covariates
which are all dichotomous, the number of possible matches will be 2s . To deal
with this dimensionality problem, Rosenbaum and Rubin (1983b) suggest using
so-called balancing scores. They show that if potential outcomes are independent
of treatment conditional on covariates X, they are also independent of treatment
conditional on a balancing score b(X). The propensity score P(D = 1 | X ) =
P(X ), i.e. the probability for an individual to participate in a treatment given his
observed covariates X, is one possible balancing score. Hence, if Assumption 1
holds, all biases due to observable components can be removed by conditioning on
the propensity score (Imbens, 2004).

Corollary 1. Unconfoundedness given the propensity score: Y (0), Y (1)�D | P(X ).7

Estimation Strategy

Given that CIA holds and assuming additionally that there is overlap between both
groups, the PSM estimator for ATT can be written in general as

τ P SM
AT T = EP(X )|D=1{E[Y (1)|D = 1, P(X )] − E[Y (0)|D = 0, P(X )]} (6)

To put it in words, the PSM estimator is simply the mean difference in
outcomes over the common support, appropriately weighted by the propensity score
distribution of participants. Based on this brief outline of the matching estimator in
the general evaluation framework, we are now going to discuss the implementation
of PSM in detail.
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3. Implementation of Propensity Score Matching

3.1 Estimating the Propensity Score

When estimating the propensity score, two choices have to be made. The first one
concerns the model to be used for the estimation, and the second one the variables
to be included in this model. We will start with the model choice before we discuss
which variables to include in the model.

Model Choice – Binary Treatment

Little advice is available regarding which functional form to use (see for example
the discussion in Smith, 1997). In principle any discrete choice model can be used.
Preference for logit or probit models (compared to linear probability models) derives
from the well-known shortcomings of the linear probability model, especially the
unlikeliness of the functional form when the response variable is highly skewed and
predictions that are outside the [0, 1] bounds of probabilities. However, when the
purpose of a model is classification rather than estimation of structural coefficients,
it is less clear that these criticisms apply (Smith, 1997). For the binary treatment
case, where we estimate the probability of participation versus nonparticipation, logit
and probit models usually yield similar results. Hence, the choice is not too critical,
even though the logit distribution has more density mass in the bounds.

Model Choice – Multiple Treatments

However, when leaving the binary treatment case, the choice of the model becomes
more important. The multiple treatment case (as discussed in Imbens (2000) and
Lechner (2001a)) consists of more than two alternatives, for example when an
individual is faced with the choice to participate in job-creation schemes, vocational
training or wage subsidy programmes or to not participate at all (we will describe
this approach in more detail in Section 3.10). For that case it is well known that
the multinomial logit is based on stronger assumptions than the multinomial probit
model, making the latter the preferable option.8 However, since the multinomial
probit is computationally more burdensome, a practical alternative is to estimate a
series of binomial models as suggested by Lechner (2001a). Bryson et al. (2002)
note that there are two shortcomings regarding this approach. First, as the number of
options increases, the number of models to be estimated increases disproportionately
(for L options we need 0.5(L(L − 1)) models). Second, in each model only two
options at a time are considered and consequently the choice is conditional on being
in one of the two selected groups. On the other hand, Lechner (2001a) compares the
performance of the multinomial probit approach and series estimation and finds little
difference in their relative performance. He suggests that the latter approach may be
more robust since a mis-specification in one of the series will not compromise all
others as would be the case in the multinomial probit model.
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Variable Choice:

More advice is available regarding the inclusion (or exclusion) of covariates in
the propensity score model. The matching strategy builds on the CIA, requiring
that the outcome variable(s) must be independent of treatment conditional on the
propensity score. Hence, implementing matching requires choosing a set of variables
X that credibly satisfy this condition. Heckman et al. (1997a) and Dehejia and Wahba
(1999) show that omitting important variables can seriously increase bias in resulting
estimates. Only variables that influence simultaneously the participation decision
and the outcome variable should be included. Hence, economic theory, a sound
knowledge of previous research and also information about the institutional settings
should guide the researcher in building up the model (see e.g., Sianesi, 2004; Smith
and Todd, 2005). It should also be clear that only variables that are unaffected by
participation (or the anticipation of it) should be included in the model. To ensure
this, variables should either be fixed over time or measured before participation. In
the latter case, it must be guaranteed that the variable has not been influenced by
the anticipation of participation. Heckman et al. (1999) also point out that the data
for participants and nonparticipants should stem from the same sources (e.g. the
same questionnaire). The better and more informative the data are, the easier it is
to credibly justify the CIA and the matching procedure. However, it should also be
clear that ‘too good’ data is not helpful either. If P(X ) = 0 or P(X ) = 1 for some
values of X, then we cannot use matching conditional on those X values to estimate
a treatment effect, because persons with such characteristics either always or never
receive treatment. Hence, the common support condition as stated in Assumption 2
fails and matches cannot be performed. Some randomness is needed that guarantees
that persons with identical characteristics can be observed in both states (Heckman
et al., 1998b).

In cases of uncertainty of the proper specification, sometimes the question may
arise whether it is better to include too many rather than too few variables. Bryson
et al. (2002) note that there are two reasons why over-parameterized models should
be avoided. First, it may be the case that including extraneous variables in the
participation model exacerbates the support problem. Second, although the inclusion
of nonsignificant variables in the propensity score specification will not bias the
propensity score estimates or make them inconsistent, it can increase their variance.

The results from Augurzky and Schmidt (2001) point in the same direction.
They run a simulation study to investigate PSM when selection into treatment is
remarkably strong, and treated and untreated individuals differ considerably in their
observable characteristics. In their set-up, explanatory variables in the selection
equation are partitioned into three sets. The first set (set 1) includes covariates
which strongly influence the treatment decision but weakly influence the outcome
variable. Furthermore, they include covariates which are relevant to the outcome
but irrelevant to the treatment decision (set 2) and covariates which influence both
(set 3). Including the full set of covariates in the propensity score specification (full
model including all three sets of covariates) might cause problems in small samples
in terms of higher variance, since either some treated have to be discarded from the
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analysis or control units have to be used more than once. They show that matching
on an inconsistent estimate of the propensity score (i.e. partial model including only
set 3 or both sets 1 and 3) produces better estimation results of the ATE.

On the other hand, Rubin and Thomas (1996) recommend against ‘trimming’
models in the name of parsimony. They argue that a variable should only be excluded
from analysis if there is consensus that the variable is either unrelated to the outcome
or not a proper covariate. If there are doubts about these two points, they explicitly
advise to include the relevant variables in the propensity score estimation.

By these criteria, there are both reasons for and against including all of the
reasonable covariates available. Basically, the points made so far imply that the
choice of variables should be based on economic theory and previous empirical
findings. But clearly, there are also some formal (statistical) tests which can be
used. Heckman et al. (1998a), Heckman and Smith (1999) and Black and Smith
(2004) discuss three strategies for the selection of variables to be used in estimating
the propensity score.

Hit or Miss Method

The first one is the ‘hit or miss’ method or prediction rate metric, where variables
are chosen to maximize the within-sample correct prediction rates. This method
classifies an observation as ‘1’ if the estimated propensity score is larger than
the sample proportion of persons taking treatment, i.e. P̂(X ) > P . If P̂(X ) ≤ P
observations are classified as ‘0’. This method maximizes the overall classification
rate for the sample assuming that the costs for the misclassification are equal for
the two groups (Heckman et al., 1997a).9 But clearly, it has to be kept in mind that
the main purpose of the propensity score estimation is not to predict selection into
treatment as well as possible but to balance all covariates (Augurzky and Schmidt,
2001).

Statistical Significance

The second approach relies on statistical significance and is very common in
textbook econometrics. To do so, one starts with a parsimonious specification of
the model, e.g. a constant, the age and some regional information, and then ‘tests
up’ by iteratively adding variables to the specification. A new variable is kept if
it is statistically significant at conventional levels. If combined with the ‘hit or
miss’ method, variables are kept if they are statistically significant and increase the
prediction rates by a substantial amount (Heckman et al., 1998a).

Leave-One-Out Cross-Validation

Leave-one-out cross-validation can also be used to choose the set of variables
to be included in the propensity score. Black and Smith (2004) implement their
model selection procedure by starting with a ‘minimal’ model containing only two
variables. They subsequently add blocks of additional variables and compare the
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resulting mean squared errors. As a note of caution, they stress that this amounts
to choosing the propensity score model based on goodness-of-fit considerations,
rather than based on theory and evidence about the set of variables related to the
participation decision and the outcomes (Black and Smith, 2004). They also point
out an interesting trade-off in finite samples between the plausibility of the CIA and
the variance of the estimates. When using the full specification, bias arises from
selecting a wide bandwidth in response to the weakness of the common support.
In contrast to that, when matching on the minimal specification, common support
is not a problem but the plausibility of the CIA is. This trade-off also affects the
estimated standard errors, which are smaller for the minimal specification where the
common support condition poses no problem.

Finally, checking the matching quality can also help to determine the propensity
score specification and we will discuss this point later in Section 3.4.

Overweighting some Variables

Let us assume for the moment that we have found a satisfactory specification
of the model. It may sometimes be felt that some variables play a specifically
important role in determining participation and outcome (Bryson et al., 2002). As
an example, one can think of the influence of gender and region in determining
the wage of individuals. Let us take as given for the moment that men earn more
than women and the wage level is higher in region A compared to region B. If we
add dummy variables for gender and region in the propensity score estimation, it is
still possible that women in region B are matched with men in region A, since the
gender and region dummies are only a subset of all available variables. There are
basically two ways to put greater emphasis on specific variables. One can either find
variables in the comparison group who are identical with respect to these variables,
or carry out matching on subpopulations. The study from Lechner (2002) is a good
example for the first approach. He evaluates the effects of active labour market
policies in Switzerland and uses the propensity score as a ‘partial’ balancing score
which is complemented by an exact matching on sex, duration of unemployment
and native language. Heckman et al. (1997a, 1998a) use the second strategy and
implement matching separately for four demographic groups. That implies that the
complete matching procedure (estimating the propensity score, checking the common
support, etc.) has to be implemented separately for each group. This is analogous to
insisting on a perfect match, e.g. in terms of gender and region, and then carrying
out propensity score matching. This procedure is especially recommendable if one
expects the effects to be heterogeneous between certain groups.

Alternatives to the Propensity Score

Finally, it should also be noted that it is possible to match on a measure other
than the propensity score, namely the underlying index of the score estimation.
The advantage of this is that the index differentiates more between observations
in the extremes of the distribution of the propensity score (Lechner, 2000). This is
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Figure 2. Different Matching Algorithms.

useful if there is some concentration of observations in the tails of the distribution.
Additionally, in some recent papers the propensity score is estimated by duration
models. This is of particular interest if the ‘timing of events’ plays a crucial role
(see e.g. Brodaty et al., 2001; Sianesi, 2004).

3.2 Choosing a Matching Algorithm

The PSM estimator in its general form was stated in equation (6). All matching
estimators contrast the outcome of a treated individual with outcomes of comparison
group members. PSM estimators differ not only in the way the neighbourhood for
each treated individual is defined and the common support problem is handled,
but also with respect to the weights assigned to these neighbours. Figure 2 depicts
different PSM estimators and the inherent choices to be made when they are used.
We will not discuss the technical details of each estimator here at depth but rather
present the general ideas and the involved trade-offs with each algorithm.10

Nearest Neighbour Matching

The most straightforward matching estimator is nearest neighbour (NN) matching.
The individual from the comparison group is chosen as a matching partner for a
treated individual that is closest in terms of the propensity score. Several variants
of NN matching are proposed, e.g. NN matching ‘with replacement’ and ‘without
replacement’. In the former case, an untreated individual can be used more than
once as a match, whereas in the latter case it is considered only once. Matching with
replacement involves a trade-off between bias and variance. If we allow replacement,
the average quality of matching will increase and the bias will decrease. This is of
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particular interest with data where the propensity score distribution is very different
in the treatment and the control group. For example, if we have a lot of treated
individuals with high propensity scores but only few comparison individuals with
high propensity scores, we get bad matches as some of the high-score participants
will get matched to low-score nonparticipants. This can be overcome by allowing
replacement, which in turn reduces the number of distinct nonparticipants used
to construct the counterfactual outcome and thereby increases the variance of the
estimator (Smith and Todd, 2005). A problem which is related to NN matching
without replacement is that estimates depend on the order in which observations
get matched. Hence, when using this approach it should be ensured that ordering is
randomly done.11

It is also suggested to use more than one NN (‘oversampling’). This form of
matching involves a trade-off between variance and bias, too. It trades reduced
variance, resulting from using more information to construct the counterfactual for
each participant, with increased bias that results from on average poorer matches
(see e.g. Smith, 1997). When using oversampling, one has to decide how many
matching partners should be chosen for each treated individual and which weight
(e.g. uniform or triangular weight) should be assigned to them.

Caliper and Radius Matching

NN matching faces the risk of bad matches if the closest neighbour is far away. This
can be avoided by imposing a tolerance level on the maximum propensity score
distance (caliper). Hence, caliper matching is one form of imposing a common
support condition (we will come back to this point in Section 3.3). Bad matches are
avoided and the matching quality rises. However, if fewer matches can be performed,
the variance of the estimates increases.12 Applying caliper matching means that an
individual from the comparison group is chosen as a matching partner for a treated
individual that lies within the caliper (‘propensity range’) and is closest in terms of
propensity score. As Smith and Todd (2005) note, a possible drawback of caliper
matching is that it is difficult to know a priori what choice for the tolerance level
is reasonable.

Dehejia and Wahba (2002) suggest a variant of caliper matching which is called
radius matching. The basic idea of this variant is to use not only the NN within
each caliper but all of the comparison members within the caliper. A benefit of this
approach is that it uses only as many comparison units as are available within the
caliper and therefore allows for usage of extra (fewer) units when good matches are
(not) available. Hence, it shares the attractive feature of oversampling mentioned
above, but avoids the risk of bad matches.

Stratification and Interval Matching

The idea of stratification matching is to partition the common support of the
propensity score into a set of intervals (strata) and to calculate the impact within
each interval by taking the mean difference in outcomes between treated and
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control observations. This method is also known as interval matching, blocking
and subclassification (Rosenbaum and Rubin, 1984). Clearly, one question to
be answered is how many strata should be used in empirical analysis. Cochran
(1968) shows that five subclasses are often enough to remove 95% of the bias
associated with one single covariate. Since, as Imbens (2004) notes, all bias under
unconfoundedness is associated with the propensity score, this suggests that under
normality the use of five strata removes most of the bias associated with all
covariates. One way to justify the choice of the number of strata is to check the
balance of the propensity score (or the covariates) within each stratum (see e.g.
Aakvik, 2001). Most of the algorithms can be described in the following way.
First, check if within a stratum the propensity score is balanced. If not, strata
are too large and need to be split. If, conditional on the propensity score being
balanced, the covariates are unbalanced, the specification of the propensity score
is not adequate and has to be respecified, e.g. through the addition of higher-order
terms or interactions (see Dehejia and Wahba, 1999; Dehejia, 2005).

Kernel and Local Linear Matching

The matching algorithms discussed so far have in common that only a few
observations from the comparison group are used to construct the counterfactual
outcome of a treated individual. Kernel matching (KM) and local linear matching
(LLM) are nonparametric matching estimators that use weighted averages of (nearly)
all – depending on the choice of the kernel function – individuals in the control
group to construct the counterfactual outcome. Thus, one major advantage of these
approaches is the lower variance which is achieved because more information is
used. A drawback of these methods is that possibly observations are used that are
bad matches. Hence, the proper imposition of the common support condition is of
major importance for KM and LLM. Heckman et al. (1998b) derive the asymptotic
distribution of these estimators and Heckman et al. (1997a) present an application.
As Smith and Todd (2005) note, KM can be seen as a weighted regression of the
counterfactual outcome on an intercept with weights given by the kernel weights.
Weights depend on the distance between each individual from the control group
and the participant observation for which the counterfactual is estimated. It is worth
noting that if weights from a symmetric, nonnegative, unimodal kernel are used, then
the average places higher weight on persons close in terms of the propensity score
of a treated individual and lower weight on more distant observations. The estimated
intercept provides an estimate of the counterfactual mean. The difference between
KM and LLM is that the latter includes in addition to the intercept a linear term in the
propensity score of a treated individual. This is an advantage whenever comparison
group observations are distributed asymmetrically around the treated observation,
e.g. at boundary points, or when there are gaps in the propensity score distribution.
When applying KM one has to choose the kernel function and the bandwidth
parameter. The first point appears to be relatively unimportant in practice (DiNardo
and Tobias, 2001). What is seen as more important (see e.g. Silverman, 1986;
Pagan and Ullah, 1999) is the choice of the bandwidth parameter with the following
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Table 1. Trade-offs in Terms of Bias and Efficiency.

Decision Bias Variance

Nearest neighbour matching:
multiple neighbours/single neighbour (+)/(−) (−)/(+)
with caliper/without caliper (−)/(+) (+)/(−)

Use of control individuals:
with replacement/without replacement (−)/(+) (+)/(−)

Choosing method:
NN matching/Radius matching (−)/(+) (+)/(−)
KM or LLM/NN methods (+)/(−) (−)/(+)

Bandwidth choice with KM:
small/large (−)/(+) (+)/(−)

Polynomial order with LPM:
small/large (+)/(−) (−)/(+)

KM, kernel matching, LLM; local linear matching; LPM, local polynomial matching NN, nearest
neighbour; increase; (+); decrease (−).

trade-off arising. High bandwidth values yield a smoother estimated density function,
therefore leading to a better fit and a decreasing variance between the estimated and
the true underlying density function. On the other hand, underlying features may be
smoothed away by a large bandwidth leading to a biased estimate. The bandwidth
choice is therefore a compromise between a small variance and an unbiased estimate
of the true density function. It should be noted that LLM is a special case of local
polynomial matching (LPM). LPM includes in addition to an intercept a term of
polynomial order p in the propensity score, e.g. p = 1 for LLM, p = 2 for local
quadratic matching or p = 3 for local cubic matching. Generally, the larger the
polynomial order p is the smaller will be the asymptotic bias but the larger will be
the asymptotic variance. To our knowledge Ham et al. (2004) is the only application
of local cubic matching so far, and hence practical experiences with LPM estimators
with p ≥ 2 are rather limited.

Trade-offs in Terms of Bias and Efficiency

Having presented the different possibilities, the question remains of how one should
select a specific matching algorithm. Clearly, asymptotically all PSM estimators
should yield the same results, because with growing sample size they all become
closer to comparing only exact matches (Smith, 2000). However, in small samples the
choice of the matching algorithm can be important (Heckman et al., 1997a), where
usually a trade-off between bias and variance arises (see Table 1). So what advice
can be given to researchers facing the problem of choosing a matching estimator? It
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should be clear that there is no ‘winner’ for all situations and that the choice of the
estimator crucially depends on the situation at hand. The performance of different
matching estimators varies case-by-case and depends largely on the data structure at
hand (Zhao, 2000). To give an example, if there are only a few control observations,
it makes no sense to match without replacement. On the other hand, if there are a
lot of comparable untreated individuals it might be worth using more than one NN
(either by oversampling or KM) to gain more precision in estimates. Pragmatically,
it seems sensible to try a number of approaches. Should they give similar results,
the choice may be unimportant. Should results differ, further investigation may be
needed in order to reveal more about the source of the disparity (Bryson et al.,
2002).

3.3 Overlap and Common Support

Our discussion in Section 2 has shown that ATT and ATE are only defined in the
region of common support. Heckman et al. (1997a) point out that a violation of the
common support condition is a major source of evaluation bias as conventionally
measured. Comparing the incomparable must be avoided, i.e. only the subset of the
comparison group that is comparable to the treatment group should be used in the
analysis (Dehejia and Wahba, 1999). Hence, an important step is to check the overlap
and the region of common support between treatment and comparison group. Several
ways are suggested in the literature, where the most straightforward one is a visual
analysis of the density distribution of the propensity score in both groups. Lechner
(2001b) argues that given that the support problem can be spotted by inspecting the
propensity score distribution, there is no need to implement a complicated estimator.
However, some guidelines might help the researcher to determine the region of
common support more precisely. We will present two methods, where the first
one is essentially based on comparing the minima and maxima of the propensity
score in both groups and the second one is based on estimating the density
distribution in both groups. Implementing the common support condition ensures
that any combination of characteristics observed in the treatment group can also be
observed among the control group (Bryson et al., 2002). For ATT it is sufficient to
ensure the existence of potential matches in the control group, whereas for ATE it
is additionally required that the combinations of characteristics in the comparison
group may also be observed in the treatment group (Bryson et al., 2002).

Minima and Maxima Comparison

The basic criterion of this approach is to delete all observations whose propensity
score is smaller than the minimum and larger than the maximum in the opposite
group. To give an example let us assume for a moment that the propensity score
lies within the interval [0.07, 0.94] in the treatment group and within [0.04, 0.89]
in the control group. Hence, with the ‘minima and maxima criterion’, the common
support is given by [0.07, 0.89]. Observations which lie outside this region are
discarded from analysis. Clearly a two-sided test is only necessary if the parameter
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of interest is ATE; for ATT it is sufficient to ensure that for each participant
a close nonparticipant can be found. It should also be clear that the common
support condition is in some ways more important for the implementation of KM
than it is for the implementation of NN matching, because with KM all untreated
observations are used to estimate the missing counterfactual outcome, whereas with
NN matching only the closest neighbour is used. Hence, NN matching (with the
additional imposition of a maximum allowed caliper) handles the common support
problem pretty well. There are some problems associated with the ‘minima and
maxima comparison’, e.g. if there are observations at the bounds which are discarded
even though they are very close to the bounds. Another problem arises if there are
areas within the common support interval where there is only limited overlap between
both groups, e.g. if in the region [0.51, 0.55] only treated observations can be found.
Additionally problems arise if the density in the tails of the distribution is very thin,
for example when there is a substantial distance from the smallest maximum to the
second smallest element. Therefore, Lechner (2002) suggests to check the sensitivity
of the results when the minima and maxima are replaced by the tenth smallest and
tenth largest observation.

Trimming to Determine the Common Support

A different way to overcome these possible problems is described by Smith and
Todd (2005).13 They use a trimming procedure to determine the common support
region and define the region of common support as those values of P that have
positive density within both the D = 1 and D = 0 distributions, i.e.

ŜP = {P : f̂ (P|D = 1) > 0 and f̂ (P|D = 0) > 0} (7)

where f̂ (P|D = 1) > 0 and f̂ (P|D = 0) > 0 are nonparametric density estimators.
Any P points for which the estimated density is exactly zero are excluded.
Additionally – to ensure that the densities are strictly positive – they require that
the densities exceed zero by a threshold amount q. So not only the P points for
which the estimated density is exactly zero, but also an additional q percent of the
remaining P points for which the estimated density is positive but very low are
excluded:14

ŜPq = {Pq : f̂ (P|D = 1) > q and f̂ (P|D = 0) > q} (8)

Figure 3 gives a hypothetical example and clarifies the differences between the
two approaches. In the first example the propensity score distribution is highly
skewed to the left (right) for participants (nonparticipants). Even though this is an
extreme example, researchers are confronted with similar distributions in practice,
too. With the ‘minima and maxima comparison’ we would exclude any observations
lying outside the region of common support given by [0.2, 0.8]. Depending on the
chosen trimming level q, we would maybe also exclude control observations in
the interval [0.7, 0.8] and treated observations in the interval [0.2, 0.3] with the
trimming approach since the densities are relatively low there. However, no large
differences between the two approaches would emerge. In the second example we

Journal of Economic Surveys (2008) Vol. 22, No. 1, pp. 31–72
C© 2008 The Authors. Journal compilation C© 2008 Blackwell Publishing Ltd



IMPLEMENTATION OF PROPENSITY SCORE MATCHING 47

Figure 3. The Common Support Problem.

do not find any control individuals in the region [0.4, 0.7]. The ‘minima and maxima
comparison’ fails in that situation, since minima and maxima in both groups are equal
at 0.01 and 0.99. Hence, no observations would be excluded based on this criterion
making the estimation of treatment effects in the region [0.4, 0.7] questionable. The
trimming method on the other hand would explicitly exclude treated observations
in that propensity score range and would therefore deliver more reliable results.15

Hence, the choice of the method depends on the data situation at hand and before
making any decisions a visual analysis is recommended.

Failure of the Common Support

Once one has defined the region of common support, individuals that fall outside this
region have to be disregarded and for these individuals the treatment effect cannot
be estimated. Bryson et al. (2002) note that when the proportion of lost individuals
is small, this poses few problems. However, if the number is too large, there may be
concerns whether the estimated effect on the remaining individuals can be viewed
as representative. It may be instructive to inspect the characteristics of discarded
individuals since those can provide important clues when interpreting the estimated
treatment effects. Lechner (2001b) notes that both ignoring the support problem and
estimating treatment effects only within the common support (subgroup effects) may
be misleading. He develops an approach that can be used to derive bounds for the
true treatment effect and we describe this approach in detail in Section 3.9.

3.4 Assessing the Matching Quality

Since we do not condition on all covariates but on the propensity score, it has to be
checked if the matching procedure is able to balance the distribution of the relevant
variables in both the control and treatment group. Several procedures to do so will be
discussed in this section. These procedures can also, as already mentioned, help in
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determining which interactions and higher-order terms to include in the propensity
score specification for a given set of covariates X. The basic idea of all approaches
is to compare the situation before and after matching and check if there remain
any differences after conditioning on the propensity score. If there are differences,
matching on the score was not (completely) successful and remedial measures have
to be done, e.g. by including interaction terms in the estimation of the propensity
score. A helpful theorem in this context is suggested by Rosenbaum and Rubin
(1983b) and states that

X � D|P(D = 1|X ) (9)

This means that after conditioning on P(D = 1|X ), additional conditioning on X
should not provide new information about the treatment decision. Hence, if after
conditioning on the propensity score there is still dependence on X, this suggests
either mis-specification in the model used to estimate P(D = 1|X ) (see Smith
and Todd, 2005) or a fundamental lack of comparability between the two groups
(Blundell et al., 2005).16

Standardized Bias

One suitable indicator to assess the distance in marginal distributions of the X
variables is the standardized bias (SB) suggested by Rosenbaum and Rubin (1985).
For each covariate X it is defined as the difference of sample means in the treated
and matched control subsamples as a percentage of the square root of the average
of sample variances in both groups. The SB before matching is given by

SBbefore = 100 · X1 − X0√
0.5 · (V1(X ) + V0(X ))

(10)

The SB after matching is given by

SBafter = 100 · X1M − X0M√
0.5 · (V1M (X ) + V0M (X ))

(11)

where X 1 (V 1) is the mean (variance) in the treatment group before matching and
X 0 (V 0) the analogue for the control group. X 1M (V 1M ) and X 0M (V 0M ) are the
corresponding values for the matched samples. This is a common approach used in
many evaluation studies, e.g. by Lechner (1999), Sianesi (2004) and Caliendo et al.
(2007). One possible problem with the SB approach is that one does not have a clear
indication for the success of the matching procedure, even though in most empirical
studies an SB below 3% or 5% after matching is seen as sufficient.

t-Test

A similar approach uses a two-sample t-test to check if there are significant
differences in covariate means for both groups (Rosenbaum and Rubin, 1985).
Before matching differences are expected, but after matching the covariates should
be balanced in both groups and hence no significant differences should be found. The
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t-test might be preferred if the evaluator is concerned with the statistical significance
of the results. The shortcoming here is that the bias reduction before and after
matching is not clearly visible.

Joint Significance and Pseudo-R2

Additionally, Sianesi (2004) suggests to reestimate the propensity score on the
matched sample, i.e. only on participants and matched nonparticipants, and compare
the pseudo-R2s before and after matching. The pseudo-R2 indicates how well the
regressors X explain the participation probability. After matching there should be
no systematic differences in the distribution of covariates between both groups and
therefore the pseudo-R2 should be fairly low. Furthermore, one can also perform
a likelihood ratio test on the joint significance of all regressors in the probit or
logit model. The test should not be rejected before, and should be rejected after,
matching.

Stratification Test

Finally, Dehejia and Wahba (1999, 2002) divide observations into strata based
on the estimated propensity score, such that no statistically significant difference
between the mean of the estimated propensity score in both treatment and control
group remain. Then they use t-tests within each strata to test if the distribution of
X variables is the same between both groups (for the first and second moments). If
there are remaining differences, they add higher-order and interaction terms in the
propensity score specification, until such differences no longer emerge.

This makes clear that an assessment of matching quality can also be used
to determine the propensity score specification. If the quality indicators are not
satisfactory, one reason might be mis-specification of the propensity score model
and hence it may be worth taking a step back, including for example interaction
or higher-order terms in the score estimation and testing the quality once again. If
after respecification the quality indicators are still not satisfactory, it may indicate
a fundamental lack of comparability of the two groups being examined. Since this
is a precondition for a successful application of the matching strategy, alternative
evaluation approaches should be considered (see for example the discussion in
Blundell et al., 2005).

It should also be noted that different matching estimators balance the covariates
to different degrees. Hence, for a given estimation of the propensity score, how
the different matching methods balance the covariates can be used as a criterion to
choose among them (leaving efficiency considerations aside).

3.5 Choice-Based Sampling

An additional problem arising in evaluation studies is that samples used are
often choice-based (Smith and Todd, 2005). This is a situation where programme
participants are oversampled relative to their frequency in the population of eligible
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persons. This type of sampling design is frequently chosen in evaluation studies to
reduce the costs of data collection and to get a larger number of treated individuals
(Heckman and Todd, 2004). We discuss this point briefly and suggest one correction
mechanism introduced by Heckman and Todd (2004). First of all, note that under
choice-based sampling weights are required to consistently estimate the probability
of programme participation. Since population weights are not known in most choice-
based datasets used in evaluation analysis the propensity score cannot be consistently
estimated (Heckman and Todd, 2004). However, Heckman and Todd (2004) show
that even with population weights unknown, matching methods can still be applied.
This is the case because the odds ratio estimated using the incorrect weights (those
that ignore the fact of choice-based samples) is a scalar multiple of the true odds ratio,
which is itself a monotonic transformation of propensity scores. Hence, matching
can be done on the (misweighted) estimate of the odds ratio (or of the log odds
ratio). Clearly, with single NN matching it does not matter whether matching is
performed on the odds ratio or the estimated propensity score (with wrong weights),
since ranking of the observations is identical and therefore the same neighbours
will be selected. However, for methods that take account of the absolute distance
between observations, e.g. KM, it does matter (Smith and Todd, 2005).

3.6 When to Compare and Locking-in Effects

An important decision which has to be made in the empirical analysis is when to
measure the effects. The major goal is to ensure that participants and nonparticipants
are compared in the same economic environment and the same individual lifecycle
position. For example, when evaluating labour market policies one possible problem
which has to be taken into account is the occurrence of locking-in effects. The
literature is dominated by two approaches, comparing the individuals either from
the beginning of the programme or after the end of the programme. To give an
example let us assume that a programme starts in January and ends in June. The
latter of the two alternatives implies that the outcome of participants who reenter the
labour market in July is compared with matched nonparticipants in July. There are
two shortcomings to this approach. First, if the exits of participants are spread over
a longer time period, it might be the case that very different economic situations
are compared. Second, a further problem which arises with this approach is that it
entails an endogeneity problem (Gerfin and Lechner, 2002), since the abortion of
the programme may be caused by several factors which are usually not observed by
the researcher.17

The above mentioned second approach is predominant in the recent evaluation
literature (see e.g. Gerfin and Lechner, 2002; Sianesi, 2004) and measures the effects
from the beginning of the programme. One major argument to do so concerns the
policy relevance. In the above example the policy maker is faced with the decision
to put an individual in January in a programme or not. He will be interested in the
effect of his decision on the outcome of the participating individual in contrast with
the situation if the individual would not have participated. Therefore comparing
both outcomes from the beginning of the programme is a reasonable approach.
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What should be kept in mind, however, is the possible occurrence of locking-in
effects for the group of participants. Since they are involved in the programme,
they do not have the same time to search for a new job as nonparticipants. The
net effect of a programme consists of two opposite effects. First, the increased
employment probability through the programme, and second, the reduced search
intensity.18 Since the two effects cannot be disentangled, we only observe the net
effect and have to take this into account when interpreting the results. As to the
fall in the search intensity, we should expect an initial negative effect from any
kind of participation in a programme. However, a successful programme should
overcompensate for this initial fall. So, if we are able to observe the outcome of
the individuals for a reasonable time after the beginning/end of the programme, the
occurrence of locking-in effects poses fewer problems but nevertheless has to be
taken into account in the interpretation.

3.7 Estimating the Variance of Treatment Effects

Testing the statistical significance of treatment effects and computing their standard
errors is not a straightforward thing to do. The problem is that the estimated variance
of the treatment effect should also include the variance due to the estimation of
the propensity score, the imputation of the common support and in the case of
matching without replacement also the order in which the treated individuals are
matched. These estimation steps add variation beyond the normal sampling variation
(see the discussion in Heckman et al., 1998b). For example, in the case of NN
matching with one NN, treating the matched observations as given will understate the
standard errors (Smith, 2000). Things get more complicated, since a much discussed
topic in the recent evaluation literature centres around efficiency bounds of the
different approaches and how to reach them. The aim of this section is to provide
a brief overview of this ongoing discussion and more importantly to describe three
approaches for the estimation of standard errors which are frequently used in the
empirical literature.

Efficiency and Large Sample Properties of Matching Estimators

The asymptotic properties of matching and weighting estimators have been studied
by for example Hahn (1998), Heckman et al. (1998b) and Abadie and Imbens
(2006a). The results from Hahn (1998) are a good starting point for the efficiency
discussion. He derives the semi-parametric efficiency bounds for ATE and ATT under
various assumptions. He especially takes into account cases where the propensity
score is known and where it has to be estimated.19 Under the unconfoundedness
assumption the asymptotic variance bounds for ATE and ATT are given by

VarAT E = E

[
σ2

1 (X )

P(X )
+ σ2

0 (X )

1 − P(X )
+ (E(Y (1)|X ) − E(Y (0)|X ) − τAT E )2

]
(12)
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and

VarP Sunknown
AT T = E

[
P(X )σ2

1 (X )

E[P(X )]2
+ P(X )2σ2

0 (X )

E[P(X )]2(1 − P(X ))

+ (E(Y (1)|X ) − E(Y (0)|X ) − τAT T )2 P(X )

E[P(X )]2

]
(13)

where σ2
D(X ) are the conditional outcome variances for treated (D = 1) and

untreated (D = 0) observations.
There is an ongoing discussion in the literature on how the efficiency bounds

are achieved and if the propensity score should be used for estimation of ATT
and ATE or not. In the above cited paper Hahn (1998) shows that when using
nonparametric series regression, adjusting for all covariates can achieve the efficiency
bound, whereas adjusting for the propensity score does not. Hirano et al. (2003)
show that weighting with the inverse of a nonparametric estimate of the propensity
score can achieve the efficiency bound, too. Angrist and Hahn (2004) use the results
from Hahn (1998) as a starting point for their analysis and note that conventional
asymptotic arguments would appear to offer no justification for anything other
than full control for covariates in estimation of ATEs. However, they argue that
conventional asymptotic results can be misleading and provide poor guidance for
researchers who face a finite sample. They develop an alternative theory and
propose a panel-style estimator which can provide finite-sample efficiency gains
over covariate and propensity score matching.

Heckman et al. (1998b) analyse large sample properties of LPM estimators for
the estimation of ATT. They show that these estimators are

√
n-consistent and

asymptotically normally distributed. This holds true when matching with respect
to X, the known propensity score or the estimated propensity score. They conclude
that none of the approaches dominates the others per se. In the case of matching
on the known propensity score, the asymptotic variance of VarATT is not necessarily
smaller than that when matching on X.20

Abadie and Imbens (2006a) analyse the asymptotic efficiency of n nearest
neighbour matching when n is fixed, i.e. when the number of neighbours does
not grow with increasing sample size. They show that simple matching estimators
include a conditional bias term of order O(N−1/k), where k is the number of
continuous covariates. The bias does not disappear if k equals 2 and will dominate
the large sample variance if k is at least 3. Hence, these estimators do not reach
the variance bounds in (12) and (13) and are inefficient. They also describe a bias
correction that removes the conditional bias asymptotically, making estimators

√
n-

consistent. Additionally, they suggest a new estimator for the variance that does not
require consistent nonparametric estimation of unknown functions (we will present
that approach further below). Imbens (2004) highlights some caveats of these results.
First, it is important to make clear that only continuous covariates should be counted
in dimension k, since with discrete covariates the matching will be exact in large
samples. Second, if only treated individuals are matched and the number of potential
controls is much larger than the number of treated individuals, it can be justified
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to ignore the bias by appealing to an asymptotic sequence where the number of
potential controls increases faster than the number of treated individuals.

Three Approaches for the Variance Estimation

There are a number of ways to estimate the variance of average treatment effects as
displayed in equations (12) and (13). One is by ‘brute force’ (Imbens, 2004), i.e. by
estimating the five components of the variance σ2

0(X ), σ2
1(X ), E(Y (1)|X ), E(Y (0)|X )

and P(X) using kernel methods or series. Even though this is consistently possible
and hence the asymptotic variance will be consistent, too, Imbens (2004) notes that
this might be an additional computational burden. Hence, practical alternatives are
called for and we are going to present three of them. Two of them, bootstrapping and
the variance approximation by Lechner (2001a), are very common in the applied
literature. Additionally, we are going to present a new method from Abadie and
Imbens (2006a) that is based on the distinction between average treatment effects
and sample average treatment effects.

Bootstrapping

One way to deal with this problem is to use bootstrapping as suggested for example
by Lechner (2002). This method is a popular way to estimate standard errors in
case analytical estimates are biased or unavailable.21 Even though Imbens (2004)
notes that there is little formal evidence to justify bootstrapping and Abadie and
Imbens (2006b) even show that the standard bootstrap fails for the case of NN
matching with replacement on a continuous covariate it is widely applied. An early
example of use can be found in Heckman et al. (1997a) who report bootstrap standard
errors for LLM estimators. Other application examples for bootstrapping are for
example Black and Smith (2004) for NN and KM estimators or Sianesi (2004) in
the context of caliper matching. Each bootstrap draw includes the reestimation of
the results, including the first steps of the estimation (propensity score, common
support, etc.). Repeating the bootstrapping R times leads to R bootstrap samples and
R estimated average treatment effects. The distribution of these means approximates
the sampling distribution (and thus the standard error) of the population mean.
Clearly, one practical problem arises because bootstrapping is very time consuming
and might therefore not be feasible in some cases.

Variance Approximation by Lechner:

An alternative is suggested by Lechner (2001a). For the estimated ATT obtained via
NN matching the following formula applies:

Var(τ̂AT T ) = 1

N1

Var(Y (1) | D = 1) + � j∈{D=0}(w j )
2

(N1)2
· Var(Y (0) | D = 0)

(14)

where N1 is the number of matched treated individuals and w j is the number of
times individual j from the control group has been used, i.e. this takes into account
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that matching is performed with replacement. If no unit is matched more than once,
the formula coincides with the ‘usual’ variance formula. By using this formula
to estimate the variance of the treatment effect at time t, we assume independent
observations and fixed weights. Furthermore we assume homoscedasticity of the
variances of the outcome variables within treatment and control group and that the
outcome variances do not depend on the estimated propensity score. This approach
can be justified by simulation results from Lechner (2002) who finds little difference
between bootstrapped variances and the variances calculated according to equation
(14).

Variance Estimators by Abadie and Imbens

To introduce this variance estimator, some additional notation is needed. Abadie and
Imbens (2006a) explicitly distinguish average treatment effects given in Section 2
from sample average treatment effects. The latter estimators focus on the average
treatment effects in the specific sample rather than in the population at large. Hence,
the sample average treatment effect for the treated (SATT) is given by

τS AT T = 1

N1

∑
i∈{D=1}

[Yi (1) − Yi (0)] (15)

Abadie and Imbens (2006a) derived a matching variance estimator that does not
require additional nonparametric estimation. The basic idea is that even though
the asymptotic variance depends on the conditional variances σ2

1(X ) and σ2
0(X ), one

actually need not estimate these variances consistently at all values of the covariates.
Instead only the average of this variance over the distribution weighted by the inverse
of P(X) and 1 − P(X ) is needed. The variance of SATT can then be estimated by

VarS AT T = 1

N1

N∑
i=1

(
Di − (1 − Di ) · KM (i)

M

)2

σ̂2
Di

(Xi ) (16)

where M is the number of matches and KM(i) is the number of times unit i is used
as a match.

It should be noted that the estimation of the conditional variances requires
estimation of conditional outcome variances σ2

D(Xi). Abadie and Imbens (2006a)
offer two options. With the first option one assumes that the treatment effect is
constant for all individuals i and that σ2

D(Xi) does not vary with X or D. This is the
assumption of homoscedasticity, whereas heteroscedasticity is allowed in the second
option, where it is explicitly allowed that σ2

D(Xi) differ in D and X.22

3.8 Combined and Other Propensity Score Methods

What we have discussed so far is the estimation of treatment effects under
unconfoundedness with (propensity score) matching estimators. Imbens (2004) notes
that one evaluation method alone is often sufficient to obtain consistent or even
efficient estimates. However, combining evaluation methods is a straightforward
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way to improve their performance by eliminating remaining bias and/or improving
precision. In this section we address three combined methods.

First, we introduce an estimator which combines matching with the DID approach.
By doing so, a possible bias due to time-invariant unobservables is eliminated.
Second, we present a regression-adjusted matching estimator that combines matching
with regression. This can be useful because matching does not address the
relation between covariates and outcome. Additionally, if covariates appear seriously
imbalanced after propensity score matching (inexact or imperfect matching) a bias-
correction procedure after matching may help to improve estimates. Third, we
present how weighting on the propensity score can be used to obtain a balanced
sample of treated and untreated individuals.23

Conditional DID or DID Matching Estimator

The matching estimator described so far assumes that after conditioning on a set of
observable characteristics, (mean) outcomes are independent of programme partici-
pation. The conditional DID or DID matching estimator relaxes this assumption and
allows for unobservable but temporally invariant differences in outcomes between
participants and nonparticipants. This is done by comparing the conditional before–
after outcome of participants with those of nonparticipants. DID matching was first
suggested by Heckman et al. (1998a). It extends the conventional DID estimator
by defining outcomes conditional on the propensity score and using semiparametric
methods to construct the differences. Therefore it is superior to DID as it does not
impose linear functional form restrictions in estimating the conditional expectation of
the outcome variable and it reweights the observations according to the weighting
function of the matching estimator (Smith and Todd, 2005). If the parameter of
interest is ATT, the DID propensity score matching estimator is based on the
following identifying assumption:

E[Yt (0) − Yt ′(0)|P(X ), D = 1] = E[Yt (0) − Yt ′(0)|P(X ), D = 0] (17)

where (t) is the post- and (t′) is the pretreatment period. It also requires the common
support condition to hold. If panel data on participants and nonparticipants are
available, it can be easily implemented by constructing propensity score matching
estimates in both periods and calculating the difference between them.24 Smith and
Todd (2005) find that such estimators are more robust than traditional cross-section
matching estimators.

Regression-Adjusted and Bias-Corrected Matching Estimators

The regression-adjusted matching estimator (developed by Heckman et al., 1997a,
1998a) combines LLM on the propensity score with regression adjustment on
covariates. By utilizing information on the functional form of outcome equations and
by incorporating exclusion restrictions across outcome and participation equation, it
extends classical matching methods. Heckman et al. (1998b) present a proof of
consistency and asymptotic normality of this estimator. Navarro-Lozano (2002)
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provides a nice example for an application by evaluating a popular training
programme in Mexico.

In cases where (substantial) differences in covariates between matched pairs
remain after matching, additional regression adjustments may be helpful to reduce
such differences. If matching is not exact, there will be some discrepancies that
lead to a potential bias. The basic idea of the bias-correction estimators is to use
the difference in the covariates to reduce the bias of the matching estimator. Rubin
(1973, 1979) first proposed several matched sample regression adjustments in the
context of Mahalanobis metric matching and they have been more recently discussed
by Abadie and Imbens (2006a) and Imbens (2004).

Weighting on the Propensity Score

Imbens (2004) notes that propensity scores can also be used as weights to obtain
a balanced sample of treated and untreated individuals.25 Such estimators can be
written as the difference between a weighted average of the outcomes for the
treated and untreated individuals, where units are weighted by the reciprocal of
the probability of receiving treatment.26 An unattractive feature of such estimators
is that the weights do not necessarily add up to one. One approach to improve the
propensity score weighting estimator is to normalize the weights to unity. If the
propensity score is known, the estimator can directly by implemented. But, even
in randomized settings where the propensity score is known, Hirano et al. (2003)
show that it could be advantageous in terms of efficiency considerations to use the
estimated rather than the ‘true’ propensity score. However, as Zhao (2004) notes,
the way propensity scores are estimated is crucial when implementing weighting
estimators and mis-specification of the propensity score may lead to substantial
bias.27

3.9 Sensitivity Analysis

Checking the sensitivity of the estimated results becomes an increasingly important
topic in the applied evaluation literature. We will address two possible topics for
a sensitivity analysis in this section. First, we are going to discuss approaches that
allow the researcher to assess the sensitivity of the results with respect to deviations
from the identifying assumption. Second, we show how to incorporate information
from those individuals who failed the common support restriction to calculate bounds
of the parameter of interest (if all individuals from the sample at hand would have
been included).

Deviations from Unconfoundedness or Unobserved Heterogeneity

We have outlined in Section 2 that the estimation of treatment effects with matching
estimators is based on the unconfoundedness or selection on observables assumption.
However, if there are unobserved variables which affect assignment into treatment
and the outcome variable simultaneously, a ‘hidden bias’ might arise (Rosenbaum,
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2002). It should be clear that matching estimators are not robust against this
‘hidden bias’. Researchers become increasingly aware that it is important to test
the robustness of results to departures from the identifying assumption. Since it is
not possible to estimate the magnitude of selection bias with nonexperimental data,
the problem can be addressed by sensitivity analysis. Even though the idea for such
analyses reaches far back in the literature only a few applied studies take them into
account. However, it seems that this topic has come back into the mind of applied
researchers and will become more important in the next few years. The aim of this
section is to give a brief overview of some of the suggested methods.28

One of the earliest examples for sensitivity analysis in the evaluation context can
be found in Rosenbaum and Rubin (1983a). They propose to assess the sensitivity
of ATE with respect to assumptions about an unobserved binary covariate that is
associated both with the treatment and the response. The basic idea is that treatment
is not unconfounded given the set of observable characteristics X but would be
unconfounded given X and an unobservable covariate U. Based on different sets of
assumptions about the distribution of U and its association with D and the outcomes
Y (0) and Y (1) it is then possible to check the sensitivity of the results with respect
to variations in these assumptions.

Imbens (2003) builds on this approach but does not formulate the sensitivity in
terms of coefficients on the unobserved covariate and rather presents the sensitivity
results in terms of partial R2s. This eases the interpretation and additionally allows
a comparison of the partial R2s of the unobserved covariates to those for the
observed covariates in order to facilitate judgements regarding the plausibility of
values necessary to substantially change results obtained under exogeneity. Both
approaches use a parametric model as the basis for estimating ATEs. Parametrization
is not needed, however, in the following two approaches.

The first approach was proposed by Rosenbaum (2002) and has been recently
applied in Aakvik (2001), DiPrete and Gangl (2004) and Caliendo et al. (2007).
The basic question to be answered here is whether inference about treatment effects
may be altered by unobserved factors. In other words, one wants to determine how
strongly an unmeasured variable must influence the selection process in order to
undermine the implications of matching analysis. To do so it is assumed that the
participation probability π i is not only determined by observable factors (xi) but
also by an unobservable component (ui): π i = Pr(Di = 1 | xi) = F(βxi + γui). γ
is the effect of ui on the participation decision. Clearly, if the study is free of hidden
bias, γ will be zero and the participation probability will solely be determined by xi.
However, if there is hidden bias, two individuals with the same observed covariates
x have differing chances of receiving treatment. Varying the value of γ allows the
researcher to assess the sensitivity of the results with respect to ‘hidden bias’. Based
on that, bounds for significance levels and confidence intervals can be derived.
(For details see Rosenbaum (2002) and Aakvik (2001). Becker and Caliendo (2007)
provide an implementation in Stata).

A different approach was recently proposed by Ichino et al. (2006). It additionally
allows assessment of the sensitivity of point estimates and specifically the sensitivity
of ATT matching estimates. They derive point estimates of the ATT under different
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possible scenarios of deviation from unconfoundedness. To do so they impose values
of the parameters that characterize the distribution of U. Given these parameters, the
value of the confounding factor for each treated and control subject is predicted and
the ATT is reestimated now including the influence of the simulated U in the set of
matching variables. By changing the assumptions about the distribution of U, they
can assess the robustness of the ATT with respect to different hypotheses on the
nature of the confounding factor. Their approach also allows one to verify whether
there exists a set of plausible assumptions on U under which the estimated ATT
would be driven to zero by the inclusion of U in the matching set. By modelling the
nature of U based on already existing variables in the data, it is possible to assess
the robustness of the estimates with respect to deviations from unconfoundedness
that would occur if observed factors were omitted from the matching set.

A somewhat different strategy is to focus on estimating the causal effect of a
treatment that is known to have a zero effect, e.g. by relying on the presence of
multiple control groups (see the discussion in Imbens (2004) for details). If one
has a group of eligible and ineligible nonparticipants, the ‘treatment effect’ which
is known to be zero can be estimated using only the two control groups (where
the ‘treatment’ indicator then has to be a dummy for belonging in one of the two
groups). Any nonzero effect implies that at least one of the control groups is invalid.
However, as Imbens (2004) points out, not rejecting the test does not imply that the
unconfoundedness assumption is valid, but makes it more plausible that it holds. A
good example of such a comparison can be found in Heckman et al. (1997a).

Overall, it should be noted that none of the tests can directly justify the
unconfoundedness assumption. However, they provide some scope for making the
estimates more credible if the results are not sensitive to different assumptions
about unobservables factors. Clearly, if the results turn out to be very sensitive the
researcher might have to think about the validity of his/her identifying assumption
and consider alternative strategies. In any case, these tests should be applied more
frequently.

Failure of Common Support

In Section 3.3 we have presented possible approaches to implement the common
support restriction. Those individuals that fall outside the region of common support
have to be disregarded. But, deleting such observations yields an estimate that is only
consistent for the subpopulation within the common support. However, information
from those outside the common support could be useful and informative especially
if treatment effects are heterogeneous.

Lechner (2001b) describes an approach to check the robustness of estimated
treatment effects due to failure of common support. He incorporates information
from those individuals who failed the common support restriction to calculate
nonparametric bounds of the parameter of interest, if all individuals from the sample
at hand would have been included. To introduce his approach some additional
notation is needed. Define the population of interest with � which is some subset
from the space defined by treatment status (D = 1 or D = 0) and a set of covariates

Journal of Economic Surveys (2008) Vol. 22, No. 1, pp. 31–72
C© 2008 The Authors. Journal compilation C© 2008 Blackwell Publishing Ltd



IMPLEMENTATION OF PROPENSITY SCORE MATCHING 59

X . �ATT is defined by {(D = 1) × X} and WATT is a binary variable which equals
one if an observation belongs to �ATT . Identification of the effect is desired for
τ ATT (�ATT ). Due to missing common support the effect can only be estimated for
τ ATT (�ATT∗). This is the effect ignoring individuals from the treatment group without
a comparable match. Observations within common support are denoted by the binary
variable W ATT∗ equal to one. The subset for whom such effect is not identified is
�̃AT T .

Let Pr(W ATT∗ = 1|WATT = 1) denote the share of participants within common
support relative to the total number of participants and λ1

0 be the mean of Y(1) for
individuals from the treatment group outside common support. Assume that the share
of participants within common support relative to the total number of participants as
well as ATT for those within the common support and λ1

0 are identified. Additionally,
assume that the potential outcome Y(0) is bounded: Pr(Y ≤ Y (0) ≤ Y |W AT T ∗ =
0, W AT T = 1) = 1.29 Given these assumptions, the bounds for ATT τAT T (�AT T ) ∈
[τ AT T (�AT T ), τ AT T (�AT T )] can be written as

τ AT T (�AT T ) = τAT T (�AT T ∗)Pr(W AT T ∗ = 1|W AT T = 1)

+ (
λ1

0 − Y
)
[1 − Pr(W AT T ∗ = 1|W AT T = 1)] (18)

τ AT T (�AT T ) = τAT T (�AT T ∗)Pr(W AT T ∗ = 1|W AT T = 1)

+ (
λ1

0 − Y
)
[1 − Pr(W AT T ∗ = 1|W AT T = 1)] (19)

Lechner (2001b) states that either ignoring the common support problem or
estimating ATT only for the subpopulation within the common support can both be
misleading. He recommends to routinely compute bounds analysis in order to assess
the sensitivity of estimated treatment effects with respect to the common support
problem and its impact on the inference drawn from subgroup estimates.

3.10 More Practical Issues and Recent Developments

Before we conclude the paper in the next section, we will point out some additional
topics which might be of relevance in applied research. What we have discussed
so far is basically a static and binary evaluation framework where an individual
can participate in one programme (or not). However, in most realistic evaluation
settings this framework might not be appropriate, e.g. when evaluating the effects
of labour market policies. First of all, researchers are usually not confronted with
only one, but a different set of programmes (programme heterogeneity). Second, an
unemployed can successively enter into different programmes as long as (s)he is
unemployed. Finally, choosing the right control group and the problem of random
programme starts is a recently much discussed topic in the evaluation literature,
too. These issues as well as a short listing of available software tools to implement
matching are discussed in this section.
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Programme Heterogeneity

The standard evaluation framework as presented in Section 2 considers only two
possible states for each individual, i.e. participation and nonparticipation. To account
for programme heterogeneity, this approach has been extended by Imbens (2000)
and Lechner (2001a) to the multiple treatment framework which considers the case
of L + 1 mutually different and exclusive treatments. For every individual only
one component of the L + 1 different outcomes {Y (0), Y (1), . . . , Y (L)} can be
observed, leaving L as counterfactuals. Participation in treatment l is indicated by
D ∈ {0, 1, . . . , L}. The interest lies in the causal effect of one treatment relative
to another treatment on an outcome variable. Even though Lechner (2001a) defines
several parameters of interest, we will focus once again on the ATT. In the multiple
treatment notation, that effect is defined as a pairwise comparison of the effects
of the treatments m and l for an individual randomly drawn from the group of
participants in m only:

τml
AT T = E[Y (m) − Y (l) | D = m] = E[Y (m) | D = m] − E[Y (l) | D = m] (20)

As discussed in Section 2, the causal treatment effect in the presented framework
is not identified. To overcome the counterfactual situation, the unconfoundedness
assumption has to be adapted to the multiple treatment framework:

Y (0), Y (1), . . . , Y (L) � D | X (21)

This assumption can be weakened when one is interested in pairwise programme
comparisons only. If we further assume that those receiving treatment m have
a counterpart in the comparison group, i.e. if there is common support, the
counterfactual mean can be constructed as E[Y (l) | D = m, X ]. Lechner (2001a)
also shows that the generalization of the balancing property holds for the case of
multiple treatments as well. To estimate τml

ATT matching can be done by using the
conditional choice probability of treatment m given either treatment m or l and
covariates X as a balancing score:

P(D = m | X , D ∈ {m, l}) = P(D = m | X )

P(D = m | X ) + P(D = l | X )
(22)

If the conditional choice probability is modelled directly, no information from
subsamples other than those containing participants in m and l is needed and one
is basically back in the binary treatment framework. Since the choice probabilities
will not be known a priori, they have to be replaced by an estimate, e.g. a probit
model. If all values of m and l are of interest, the whole sample is needed for
identification. In that case either the binary conditional probabilities can be estimated
or a structural approach can be used where a complete choice problem is formulated
in one model and estimated on the full sample, e.g. with a multinomial probit model.
We have discussed the (dis-)advantages of the multinomial modelling in comparison
to discrete estimation of binomial models already in Section 3.1.
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Sequential Matching Estimators

Extending the standard evaluation framework for the case where individuals can
participate in subsequent treatments has been recently proposed by Lechner and
Miquel (2005).30 These ‘programme careers’ cannot be addressed properly in
the basic framework. Problems occur because the assignment into a subsequent
programme is not independent of the assignment into previous programmes.
Additionally, outcomes in subsequent periods will be influenced by previous
participation decisions. Hence, a dynamic selection problem arises. Most empirical
work about dynamic selection problems ignores intermediate outcomes and treats
the sequence participation as being determined from the start. Mainly, problems are
circumvented by either estimating the effect of the first programme only (see e.g.
Gerfin and Lechner, 2002) or applying the static framework subsequently (see e.g.
Bergemann et al., 2001). The sequential matching framework is a powerful tool
and is applicable for situations where individuals can participate more than once
in a programme and where it is possible to identify treatment sequences. It allows
intermediate outcomes to play a role in the participation decision for sequential
participation and thus allows estimation in a dynamic context. To our knowledge
Lechner (2004) is the only application so far and hence practical experiences with
sequential matching estimators are rather limited.

Choosing the Right Control Group – Random Programme Starts

Another important topic in applied evaluation research is to choose an appropriate
control group. In the ‘usual’ evaluation set-up for matching estimators, we have
a group of participants and a group of nonparticipants. Both groups are usually
observed from a certain starting point t to an end point T . The researcher does not
have any information outside this limited time interval. Controls are defined as those
individuals who did not participate in any programme in [t , T ], whereas participants
are those individuals who took part in a programme for a certain interval τ in [t , T ].

In a series of papers, Sianesi (2001, 2004) casts doubt if this standard approach is
appropriate. She suggests a solution which is based on a redefinition of the control
group. Instead of defining controls as those who never participate, she defines
controls as those who did not participate until a certain time period. Hence, the
corresponding parameter of interest in this setting is then defined as the effect of
joining a programme now in contrast to waiting longer. Fredriksson and Johansson
(2004) formalize her approach and argue that the standard way of defining a control
group might lead to biased results, because the unconfoundedness assumption might
be violated. The reason for this is that in the standard approach the treatment
indicator itself is defined conditional on future outcomes. In fact, in the context
of labour market policies it can be argued that an unemployed individual will join a
programme at some time, provided his unemployment spell is long enough (Sianesi,
2004). Hence, if the reason for nonparticipation is that the individual has found a
job before a participation in the programme was offered or considered, it leads to
negatively biased effects.
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Available Software to Implement Matching

The bulk of software tools to implement matching and estimate treatment effects is
growing and allows researchers to choose the appropriate tool for their purposes. The
most commonly used platform for these tools is Stata and we will present the three
most distributed ones here. Becker and Ichino (2002) provide a programme for PSM
estimators (pscore, attnd, attnw, attr, atts, attk) which includes estimation routines for
NN, kernel, radius, and stratification matching. To obtain standard errors the user can
choose between bootstrapping and the variance approximation proposed by Lechner
(2001a). Additionally the authors offer balancing tests (blocking, stratification) as
discussed in Section 3.4.

Leuven and Sianesi (2003) provide the programme psmatch2 for implementing
different kinds of matching estimators including covariate and propensity score
matching. It includes NN and caliper matching (with and without replacement), KM,
radius matching, LLM and Mahalanobis metric (covariate) matching. Furthermore,
this programme includes routines for common support graphing (psgraph) and
covariate imbalance testing (pstest). Standard errors are obtained using bootstrapping
methods.

Finally, Abadie et al. (2004) offer the programme nnmatch for implementing
covariate matching, where the user can choose between several different distance
metrics. Variance approximations as proposed by Abadie and Imbens (2006a) are
implemented to obtain standard errors of treatment effects.

4. Conclusion

The aim of this paper was to give some guidance for the implementation of
propensity score matching. Basically five implementation steps have to be considered
when using PSM (as depicted in Figure 1). The discussion has made clear that a
researcher faces a lot of decisions during implementation and that it is not always
an easy task to give recommendations for a certain approach. Table 2 summarizes
the main findings of this paper and also highlights sections where information for
each implementation step can be found.

The first step of implementation is the estimation of the propensity score. We
have shown that the choice of the underlying model is relatively unproblematic in
the binary case whereas for the multiple treatment case one should either use a
multinomial probit model or a series of binary probits (logits). After having decided
about which model to be used, the next question concerns the variables to be included
in the model. We have argued that the decision should be based on economic theory,
a sound knowledge of previous research and also information about the institutional
settings. We have also presented several statistical strategies which may help to
determine the choice. If it is felt that some variables play a specifically important
role in determining participation and outcomes, one can use an ‘overweighting’
strategy, for example by carrying out matching on subpopulations.

The second implementation step is the choice among different matching algo-
rithms. We have argued that there is no algorithm which dominates in all data
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situations and that the choice involves a trade-off between bias and efficiency.
The performance of different matching algorithms varies case-by-case and depends
largely on the data sample. If results among different algorithms differ substantially,
further investigations may be needed to reveal the source of disparity.

The discussion has also emphasized that treatment effects can only be estimated in
the region of common support. To identify this region we recommend to start with a
visual analysis of the propensity score distributions in the treatment and comparison
group. Based on that, different strategies can be applied to implement the common
support condition, e.g. by ‘minima and maxima comparison’ or ‘trimming’, where
the latter approach has some advantages when observations are close to the ‘minima
and maxima’ bounds and if the density in the tails of the distribution is very thin.

Since we do not condition on all covariates but on the propensity score we have to
check in the next step if the matching procedure is able to balance the distribution of
these covariates in the treatment and comparison group. We have presented several
procedures to do so, including SB, t-test, stratification test, joint significance and
pseudo-R2. If the quality indicators are not satisfactory, one should go back to step
1 of the implementation procedure and include higher-order or interaction terms of
the existing covariates or choose different covariates (if available). If, after that, the
matching quality is still not acceptable, this may indicate a lack of comparability
of the two groups being examined. Since this is a precondition for a successful
application of the matching estimator, one has to consider alternative evaluation
approaches.

However, if the matching quality is satisfactory one can move on to estimate the
treatment effects. The estimation of standard errors is a much discussed topic in the
recent evaluation literature. We have briefly discussed (some) efficiency and large
sample properties of matching estimators and highlighted that the discussion in this
direction is not final yet. Keeping that in mind, we have introduced three approaches
for the estimation of variances of treatment effects which are used, i.e. bootstrapping
methods, the variance approximation proposed in Lechner (2001a) and the variance
estimators proposed by Abadie and Imbens (2006a). Another important decision is
‘when to measure the effects?’ where we argue that it is preferable to measure the
effects from the beginning of the treatment. Clearly, what has to be kept in mind
for the interpretation is the possible occurrence of locking-in effects.

Finally, a last step of matching analysis is to test the sensitivity of results with
respect to deviations from the identifying assumption, e.g. when there are unobserved
variables which affect assignment into treatment and the outcome variable leading to
a ‘hidden bias’. We have pointed out that matching estimators are not robust against
this bias and that researchers become increasingly aware that it is important to test the
sensitivity of their results. If the results are sensitive and if the researcher has doubts
about the validity of the unconfoundedness assumption he should either consider
using alternative identifying assumptions or combine PSM with other evaluation
approaches.

We have introduced some possible combinations in Section 3.8 where we
presented the DID matching estimator, which eliminates a possible bias due to time-
invariant unobservables, as well as regression-adjusted and bias-corrected matching
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estimators. All approaches aim to improve the performance of the estimates by
eliminating remaining bias and/or improving precision. Last, in Section 3.10 we
discussed some additional topics which might be of relevance in applied research,
e.g. programme heterogeneity, sequential matching estimators and the choice of the
right control group.

To conclude, we have discussed several issues surrounding the implementation of
PSM. We hope to give some guidance for researchers who believe that their data are
strong enough to credibly justify the unconfoundedness assumption and who want
to use PSM.
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Notes

1. See e.g. Rubin (1974), Rosenbaum and Rubin (1983, 1985a) or Lechner (1998).
2. The decision whether to apply PSM or covariate matching (CVM) as well as to

include the propensity score as an additional covariate into Mahalanobis metric
matching will not be discussed in this paper. With CVM distance measures like the
Mahalanobis distance are used to calculate similarity of two individuals in terms of
covariate values and the matching is done on these distances. The interested reader
is referred to Imbens (2004) or Abadie and Imbens (2006a) who develop covariate
and bias-adjusted matching estimators and Zhao (2004) who discusses the basic
differences between PSM and CVM.

3. Note that the stable unit treatment value assumption (SUTVA) has to be made (see
Rubin (1980) or Holland (1986) for a further discussion of this concept). It requires
in particular that an individual’s potential outcomes depend on his own participation
only and not on the treatment status of other individuals in the population. Peer-
effects and general equilibrium effects are ruled out by this assumption (Sianesi,
2004).

4. For distributions of programme impacts, the interested reader is referred to Heckman
et al. (1997b). Another parameter one might think of is the average treatment effect
on the untreated (ATU): τ ATU = E(τ | D = 0) = E[Y (1) | D = 0] − E[Y (0) |
D = 0]. The treatment effect for those individuals who actually did not participate
in the programme is typically an interesting measure for decisions about extending
some treatment to a group that was formerly excluded from treatment.

5. See Smith (2000) for a discussion about advantages and disadvantages of social
experiments.

6. See Heckman and Robb (1985), Heckman et al. (1999), Blundell and Costa Dias
(2002) or Caliendo and Hujer (2006) for a broader overview of evaluation strategies
including situations where selection is also based on unobservable characteristics.

7. Once again, to identify ATT it is sufficient to assume Y (0) � D | P(X ).
8. Especially the ‘independence from irrelevant alternatives’ assumption (IIA) is

critical. It basically states that the odds ratio between two alternatives is independent
of other alternatives. This assumption is convenient for estimation but not appealing
from an economic or behavioural point of view (for details see e.g. Greene, 2003).
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9. See e.g. Breiman et al. (1984) for a theoretical discussion and Heckman et al. (1998a)
or Smith and Todd (2005) for applications.

10. See Smith and Todd (2005) or Imbens (2004) for more technical details.
11. This shortcoming is circumvented by an optimal full matching estimator which

works backwards and rearranges already matched treated individuals if some specific
treated individual turns out to be a better (closer) match for an untreated previously
matched individual (see Gu and Rosenbaum (1993) or Augurzky and Kluve (2007)
for detailed descriptions).

12. It should be noted that the increase in the variance is due to the imposition of the
common support and hence variance comparisons between matching estimators with
and without caliper are not obvious.

13. The trimming method was first suggested by Heckman et al. (1997a, 1998a).
14. For details on how to estimate the cut-off trimming level see Smith and Todd (2005).

Galdo (2004) notes that the determination of the smoothing parameter is critical here.
If the distribution is skewed to the right for participants and skewed to the left for
nonparticipants, assuming a normal distribution may be very misleading.

15. In a most recent paper Crump et al. (2005) point out that both methods presented
here are somewhat informal in the sense that they rely on arbitrary choices regarding
thresholds for discarding observations. They develop formal methods for addressing
lack of support and especially provide new estimators based on a redefinition of the
estimand.

16. Smith and Todd (2005) note that this theorem holds for any X, including those that
do not satisfy the CIA required to justify matching. As such, the theorem is not
informative about which set of variables to include in X.

17. It may be the case for example that a participant receives a job offer and refuses
to participate because he thinks the programme is not enhancing his employment
prospects or because lack of motivation. As long as the reasons for abortion are not
identified, an endogeneity problem arises.

18. These ideas data back to Becker (1964) who makes the point that human capital
investments are composed of an investment period, in which one incurs the
opportunity cost of not working, and a payoff period, in which ones employment
and/or wage are higher than they would have been without the investment.

19. Hahn (1998) shows that the propensity score does not play a role for the estimation
of ATE, but knowledge of the propensity score matters for the estimation of ATT.

20. Whereas matching on X involves k-dimensional nonparametric regression function
estimation (where k = 1, . . . , K are the number of covariates), matching on P(X)
only involves one-dimensional nonparametric regression function estimation. Thus
from the perspective of bias, matching on P(X) is preferable, since it allows

√
n-

consistent estimation of τ ATT for a wider class of models (Heckman et al., 1998b).
21. See Brownstone and Valletta (2001) for a discussion of bootstrapping methods.
22. See Abadie and Imbens (2006a) and Abadie et al. (2004) for details about the

derivation of the relevant formulas and some easy implementable examples.
23. Due to space constraints we cannot address all possible combinations. For a

combination of propensity score methods with an instrumental variable approach
the interested reader is referred to Abadie (2003), and how to combine DID
with weighting on the propensity score has been recently proposed by Abadie
(2005).

24. Smith and Todd (2005) present a variant of this estimator when repeated cross-
section data are used instead of panel data. With repeated cross-section data the
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identity of future participants and nonparticipants may not be known in t′, Blundell
and Costa Dias (2000) suggest a solution for that case.

25. See e.g. Imbens (2004) or Wooldridge (2004), Section 18.3.2, for a formal
description of weighting on propensity score estimators.

26. See Imbens (2004) for a formal proof that this weighting estimator removes the
bias due to different distributions of the covariates between treated and untreated
individuals.

27. In the recent methodological literature several estimators have been proposed that
combine weighting on propensity score estimators with other methods. Due to space
limitations we cannot address these topics. The interested reader is referred to for
example Hirano and Imbens (2002) who apply a combined weighting on propensity
score and regression adjustment estimator in their analysis or Abadie (2005) who
combines DID and weighting estimators.

28. See Ichino et al. (2006) or Imbens (2004) for a more detailed discussion of these
topics.

29. For example, if the outcome variable of interest is a dummy variable, Y (0) is bounded
in [0, 1].

30. See Lechner and Miquel (2005) and Lechner (2004) for a sequential (three-periods,
two-treatments) matching framework.
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