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Abstract

Little work has been done on directly estimating differences in pay gaps. Studies that

estimate pay differentials generally compare them across different sub-samples or rely on

decompositions that are based on the assumption of independent errors across samples.

Both methods contain serious drawbacks that we overcome by proposing an extension of the

Oaxaca-Blinder decomposition. Our proposed method overcomes both the index number

and the indeterminacy problem of standard Oaxaca-Blinder decompositions. In addition,

like the standard decomposition, our proposed approach can be extended beyond the mean

by using linear unconditional quantile regressions and can be decomposed in detail. We

present two empirical applications to illustrate the methodology.
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1 Introduction

Gender gaps in the labour market have obtained attention from both policymakers and re-

searchers, leading to the implementation of equal pay legislation and the promotion of equal

opportunities. Diverse policies (anti-discrimination laws, board quotas for women, and family-

friendly policies) have been implemented to counter gender-based pay differences, but these

differences persist (see for example Godin, 2014; Blau and Kahn, 2017).

Gender-related wage gaps are found across sectors occupations, and countries, as well as over

time. According to Eurostat, the average Gender Pay Gap (GPG) in the European Union lay

at 16 percent in 2016, but this percentage differs widely across countries. Italy and Portugal

have average GPGs well below 10 percent, while the gap in Germany, Great Britain, Estonia

and Slovakia is above 20 percent (Eurostat, 2015).

In this paper, we propose an extension of the Oaxaca-Blinder (OB) decomposition (Blinder,

1973; Oaxaca, 1973) for estimating wage gaps. Our approach draws inferences directly from

the changes in wage gaps between groups across sub-samples and compares the estimated com-

ponents between groups and across sub-samples. Therefore, it can test whether a significant

change has occurred in the explained or unexplained parts of the decomposition of interest, such

as whether the components of the GPG have changed statistically significantly over time. Even

though most applications of the OB decomposition are found in the labour market and discrimi-

nation literature (see Stanley and Jarrell (1998) and Weichselbaumer and Winter-Ebmer (2005)

for meta studies), our method, like the standard OB decomposition, can be employed to study

(the evolution of) group differences in any (continuous and unbounded) outcome variable. Also

like the standard decomposition, our proposed approach can be extended beyond the mean by

using linear unconditional quantile regressions and can be decomposed in detail.

We illustrate our method by presenting two empirical applications, one regarding the evo-

lution of the GPG in Italy from 2005 to 2016 and one involving the private-public sector wage

gap (PPWG) between women and men in 2016 in Italy. For each application, we compare the

standard OB decomposition to our proposed approach. For the first case, our findings reveal

differences in results when our proposed estimation methodology is applied compared to when
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the standard approach is applied.1 Our proposed methodology reveals that human capital and

individual characteristics are the only statistically significant force driving the convergence of

the GPG at the bottom and middle of the wage distribution in the last decade in Italy, while at

the top is a statistically significant reduction in the unexplained part. In contrast, comparing

the components of the GPGs using the standard OB decomposition reveals differences in ob-

servable wage characteristics and that the unexplained part of the gap played a role in closing

the gap over the last decade in Italy at all points of the wage distribution. For the second case,

we can explain the difference in the PPWG between men and women only using our detailed

decomposition. The results obtained again differ from the conclusions drawn using the standard

approach.

In general, studies that examine changes in the GPG over time or between groups and sectors

use either the Juhn et al. (1991) method (Blau and Kahn, 1997, 2006) or the double OB de-

composition (Smith and Welch, 1989). Both methods rely on estimations obtained on different

sub-samples, but their conclusions about what drives changes in wage gaps between groups may

differ when these drivers are estimated directly or when conclusions are based on comparing

results obtained on different sub-samples. Therefore, in the second case, when estimations are

obtained on different sub-samples, it is not possible to draw inferences about the difference in the

components of interest. By decomposing the wage gap of interest in an explained and an unex-

plained part for different sub-samples, the literature has identified various causes of the GPG (see

Blau and Kahn, 2017, for an overview). GPGs also differ across time; in particular, declining

gaps are observed in recent decades (see Blau and Kahn, 2006; England, 2006) because women

are catching up to men in terms of education and experience in the labour market (Goldin,

2006) and because of technical development (Black and Spitz-Oener, 2010), changes in attitudes

toward women in the labour market, less occupational segregation (Cotter, 2004; England, 2006;

Mandel and Semyonov, 2014), and increasing numbers of anti-discrimination laws (Fortin, 2015).

Most studies have found decreasing differences in the explained part(Godin, 2014) of the GPG,

while the results in the literature have been ambiguous concerning the unexplained part. For

example, (Mandel and Semyonov, 2014) found a reduction in the GPG over time, while (Blau

1That is, the OB decomposition and ex-post comparison of the decomposition results.
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and Kahn, 2017), for example, found that the unexplained component remained comparatively

stable. Differences in pay have also been revealed across sectors, particularly between the pub-

lic and private sectors, as the PPWG differs for men and women (Arulampalam et al., 2007;

Lucifora and Meurs, 2006; Melly, 2005). Women generally prefer the public sector because of

its fairer recruitment, selection criteria, and remuneration schemes and better implementation

of anti-discrimination laws (Gornick and Jacobs, 1998; Grimshaw, 2000; Castagnetti and Gior-

getti, 2018). As a result, the difference in pay by gender is generally smaller in the public sector

compared to the private sector. However, regardless of sector, wages across the sector differ

based on gender (Lucifora and Meurs, 2006).

Despite its popularity, the OB decomposition has several drawbacks,2 the frequently most

cited of which is the so-called index number problem. Solutions in the literature consist of

estimating a pooled wage structure (Neumark, 1988; Oaxaca and Ransom, 1994) and assigning

different weights to the two groups (Reimers, 1983; Cotton, 1988). The intercept-shift approach

(see Fortin, 2008; Elder et al., 2010; Magnani and Zhu, 2012, for examples) generalizes the ap-

proach of Neumark (1988) and Oaxaca and Ransom (1994), which allow for different intercepts

in the pooled sample. Fortin (2008) re-wrote the decomposition of the GPG in terms of ad-

vantages for men and disadvantages for women by including the group indicator and parameter

restrictions, so the decomposition no longer depends on the choice of the non-discriminatory

wage structure.

However, as Lee (2015) stressed, Fortin (2008)’s intercept-shift approach set the reference

parameter for the OB decomposition (i.e. the parameter that would prevail in a world with

no discrimination) based on the variance in the difference among categories and not on the

level of difference. The decomposition should rely on the level of difference (see Lee, 2015,

for further details), as level and variance differences may not go in the same direction. For

example, women may have a larger variance in average labour market experience than men

do, while men may have larger levels of labour market experience than women do. Moreover,

the reference intercept in Fortin (2008) is arbitrary, as the same OB decomposition holds with

different reference intercepts.

2Blinder (1973) and Oaxaca (1973) were together cited more than 15,000 times as of 7 February, 2019, according
to the Google Scholar citation statistics.
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A second problem of the OB decomposition is known as the omitted group problem. In the

case of categorical variables, the decomposition depends on the choice of the omitted group (see

e.g. Jones, 1983; Oaxaca and Ransom, 1994), but this problem can be solved easily by using

deviation contrast transforms of the categorical variables (Gardeazabal and Ugidos, 2004; Yun,

2005).

We show that our decomposition overcomes both the index number problem and the omitted

group problem and does not suffer from arbitrary reference intercepts but relies on the level of

difference. Like the OB approach, our method can provide a detailed decomposition. Further,

using linear unconditional quantile regressions (Firpo et al., 2009), our decomposition can be

extended beyond the mean, so changes in inequality, measured by inter-quantile GPGs, can be

derived easily.

The remainder of the paper is organized as follows. The next section provides an overview

of the literature concerning the methods used to estimate changes in gaps over time. Section 3

outlines our proposed decomposition and Section 5 presents the extension proposed for solv-

ing the index number problem. Section 6 describes the data set, along with some descriptive

statistics. Section 7 presents the empirical results of both the standard OB and our proposed

decomposition. Finally, Section 8 concludes.

2 Changes in the Gender Pay Gap: Methods in Use in the

Literature

The OB decomposition is the workhorse in empirical labour economics when it comes to de-

composition methods (Fortin et al., 2011). The approach allows researchers to study labour

market outcomes between groups (e.g. gender, race) by decomposing differences in log wages

using linear regression models.

Ordinary least squares (OLS) is used in the case of the mean , while linear probability models

are applied (RIF-OLS) to quantiles. The idea is to construct counterfactuals so as to attribute

one part of the gap to an explained part of the gap and one part to an unexplained part. The

OB decomposition estimates Mincer-type wage equations separately for the two groups and then
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decomposes the wage differential into two components: endowments (explained) and coefficients

(unexplained). Using men as the reference category, the decomposition takes the following form:

ȳM − ȳF = x̄
′
M β̂M − x̄

′
F β̂F

= (x̄
′
M − x̄

′
F )β̂M + x̄

′
F (β̂M − β̂F ) (1)

where ȳG is the dependent variable (e.g. the log of hourly wages) of group G = (M,F )

evaluated at the mean and x̄G and β̂G are K×1 vectors of average characteristics and estimated

coefficients for group G, respectively.3 The first term is the effect that is due to differences

in observable characteristics, such as education and work experience. As different observed

characteristics are expected to have different effects on earnings, the difference in observed char-

acteristics is also referred to as the explained component, endowments, or quantity effect. The

second term is the effect that is due to differences in returns on observable wage characteristics.

This component is generally referred to as the unexplained part, coefficients, or price effect of

the GPG. The unexplained part is often used as a measure of discrimination, but it incorporates

the effect of group differences in unobserved predictors.4

The presence and degree of discrimination has been a controversial issue in the literature in

large part because the wage equation cannot include all relevant variables because skills and in-

dividual productivity cannot be observed. Therefore, observationally equivalent people based on

the characteristics in the wage equation may not be truly equivalent (omitted variable problem).

As for omitted controls, the OB decomposition over-estimates the degree of discrimination, as

the price effect is now the sum of discrimination and differences in unobserved characteristics.

To examine changes in wage gaps over time (or between groups/sectors), one may use a

double OB decomposition, as proposed in Smith and Welch (1989):

3Alternative specifications consider different reference groups (e.g. female or pooled coefficient estimates;
Oaxaca, 1973; Oaxaca and Ransom, 1994).

4The unexplained portion of the GPG may include effects of unobserved characteristics like individual pro-
ductivity, motivation, and educational quality (Blau and Kahn, 2006).
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∆(ȳMT − ȳFT ) = [(x̄
′
FT − x̄

′
MT )− (x̄

′
Ft − x̄

′
Mt)]β̂tM

+ (x̄
′
FT − x̄

′
Ft)(β̂tF − β̂tM )

+ (x̄
′
FT − x̄

′
MT )′(β̂TM − β̂tM )

+ x̄
′
FT [(β̂TF − β̂TM )− (β̂tF − β̂tM )] (2)

where the subscripts T and t refer to the ending period (current year) and the starting period

(base year), respectively, and ∆(ȳMT − ȳFT ) = (ȳMT − ȳFT )− (ȳMt − ȳFt).

The first term in (2) measures the predicted change in group (M − F ) wages that occurs

because of differences in observed characteristics over time (T − t) that are valued at base-year

group M parameter values. The second term measures group interactions. If individuals in

group F are paid less than those in group M for a given characteristic, we have (β̂tF − β̂tM ) < 0.

Individuals in group F will lose relative to group M when average sets of endowments increase

over time and based on gender. The third term measures year interactions, and the fourth

term measures group-year interactions. The decomposition in (2) is conducted by comparing

parameter estimates on different samples and periods, as inferences cannot be drawn on the

single components of the decomposition.

Juhn et al. (1991) (JMP) proposed a decomposition equation for changes in wage differentials

that considers the effect of unobserved skills on the GPG. Evaluated at the sample mean, the

wage equation for group G = (M,F ) may be written as:

ȳG = x̄
′
Gβ̂ + σ̂θ̂G (3)

where β̂ is the estimated parameter vector from a pooled wage regression,5 θ̂G is the mean

5The JMP decomposition considers the estimation of only the non-discriminated group, assuming that the
discriminated group is affected by the same economic forces that influence the non-discriminated group’ wage
distribution. Thus, the estimated prices of measured characteristics are assumed to affect both groups in the
same way, and the residuals are decomposed into a portion that reflects the prices of unmeasured skills and a
portion that reflects the quantities of unmeasured skills, with the former affecting both groups similarly (Yun,
2009). Therefore, the JMP decomposition relies on two strong assumptions: that one group’s OLS estimations
are unbiased and the other group’s are biased, and that the level of discrimination is constant over time. Because
of these issues and to address the index number problem, we present the JMP decomposition for the pooled wage
regression.
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standardized residual in group G, and σ̂ is the mean standard error estimate (i.e. the average

percentile rank). β̂ represents an estimate of the vector of observed prices, and σ̂ is an estimate

of wage dispersion (which is often interpreted as an estimate of unobserved prices (see Blau and

Kahn, 1997 and Gupta et al., 2006)), and θ̂G represents some measure of generally (unobserved)

labour market ability. Given (3), the wage differential between group M and F is:

ȳM − ȳF = (x̄
′
M − x̄

′
F )β̂ + (θ̂M − θ̂F )σ̂ (4)

where the first component represents the explained part of the wage gap, the predicted gap,

and the second component represents the residual or unexplained part of the wage gap, the

residual gap. From (4), the change in the wage gap between years T and t is:

∆(ȳMT − ȳFT ) = β̂T∆(x̄
′
MT − x̄

′
FT ) + (x̄

′
MT − x̄

′
FT )∆β̂T +

σ̂T∆(θ̂FT − ˆθMT ) + (θ̂Ft − θ̂Mt)∆σ̂T (5)

where the first term represents the difference in mean endowments, the second term repre-

sents differences in returns to endowments, and the last two terms correspond to the change in

the residual wage gap. In particular, the first term of the residual wage gap, termed the ranking

effect, can be split between the effect of group F’s movements in the wage distribution after

adjusting for changes in human capital characteristics, σ̂T∆(θ̂FT ), and the effect of movements

of group M in the wage distribution at time T after controlling for changes in the characteris-

tics of human capital, the term −σ̂T∆(θ̂MT ). The last term is interpreted as the dispersion or

unobserved prices effect (see Gupta et al. 2006). However, unlike OB-type decompositions of

wage differentials, the JMP method provides coefficients and characteristics effects only at an

aggregate level. Because of this shortcoming, the JMP method cannot be used for a detailed de-

composition of the variation in the GPG over time. More important, as Suen (1997) stressed, the

JMP decomposition of wage residuals into standard deviations (the price of unobserved skills)

and percentile ranks (the level of unobserved skills) is unbiased only when the two measures are

independent. Moreover, Juhn et al. (1991) and Juhn et al. (1993) did not derive the statistical
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distribution of the decomposition components. Inferences about the components can be made

using the approach in Gupta et al. (2006), where the standard errors are derived. However,

the standard errors are derived under two strong assumptions: that the standard deviation and

percentile ranks are independent, and that the covariance between estimators in different time

periods is approximately zero.

3 Proposed Decomposition

The method we propose starts from the OB decomposition Gelbach (2016) proposed, which

divides cross-specification differences in OLS estimates of the female coefficient in a path-

independent way. Following Gelbach (2016), we rely on the omitted variable bias (OVB) formula

to estimate the decomposition consistently, conditional on all covariates. As in the standard OB

framework, sequencing problems do not occur when the OVB formula is used for decompositions6

The Role of the Intercepts

In the decomposition proposed, the intercept terms, (α̂M − α̂F ), play an important role. The

group difference in the intercepts is generally attributed to the second term in (1) and is referred

to as the group difference in starting points. Blinder (1973) called this part the unexplained part

of discrimination, as interpretation of the difference in the intercepts may not be straightfor-

ward. The intercept coefficients are influenced by the reference group(s) used for the indicator

variable(s), and the intercept is influenced by the choice of scale for continuous variables in the

model. According to Jones (1983), the problem is critical, and interpretation of the intercept is

arbitrary, so the intercept term is uninterpretable.

Relying on the OVB formula’s sequential decomposition of the wage gap, we propose a

different interpretation of the difference in the intercepts. Consider the following linear model

for the wage regression on the sample composed of both groups of interest, males and females:

y = ια+ Fα1 +Xβ1 +XFβ2 + ε1 (6)

6When one starts from a base specification and adds regressors sequentially, the order of addition influences
the coefficient estimates.
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where ι is a vector of ones, F is a vector of a dummy variable that equals 1 if the individual

is female and zero otherwise, X is the matrix of regressors, XF is the interaction effect, and ε1 is

the vector of error terms. Using Gelbach (2016)’s terminology, the specification in (6) represents

the full model. The OLS estimate of α̂1 is equal to: β̂F − β̂M where

y = ιβF +Xβ1F + εF for females

and

y = ιβM +Xβ1M + εM for males

are the two wage regressions for the female group and the male group, respectively. The

difference in the average observed y between the two groups (i.e. ȳF − ȳM ) is given by γ̂F in the

following regression:

y = ιγ + FγF + ε2 for the whole sample (7)

where F is a vector of a dummy variable that equals 1 for female and zero otherwise. The

model in (7) represents the base model. The difference between the base and full model reads

as:

γ̂F − α̂1 = αbase1 − αfull1

which represents the part of the gap that is explained by the regressors (X,XF ) and which

can be decomposed as the sum of two components by means of the OVB formula, as shown in

the next section. If αfull1 were equal to zero, the model would explain all of the observed GPG.

αfull1 is the part of the GPG that cannot be explained by the quantity and the price effect, so

instead of attributing the difference in the intercepts to the price component without a clear

interpretation of its source, we focus the analysis on the components that can be attributed to

either part of the decomposition-that is, to differences in endowments (the explained component)

or to part of the differences in remuneration (the unexplained component).
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Changes in Wages over Time

We present the derivation of the method in the case of the GPG over time. Using our proposed

approach, we can (directly) draw inferences about the differences in the GPG across years and

investigate the main contributors to the change in the GPG over time. Using the aggregate

decomposition, we can distinguish between the explained and unexplained component and then

use the detailed approach to attribute the change to gender differences in educational attainment,

labour market presence, and occupational or sectoral sorting. The method proposed can be

applied to various cases of group differences in outcome variables over time, sectors, countries,

and so on. To estimate the wage equation separately by G (gender) and J (year), we use:

yGJ = ιαGJ +XGJβGJ + εGJ (8)

with G = F,M (for F = female and M = male), J = t, T (for t = starting period and

T = ending period), and where yGJ is the N × 1 vector of logarithmic wages of G in year

J , αGJ is the intercept, ι is the N × 1 vector of constants, and X is a N × K matrix of

exogenous regressors. βFJ is the corresponding K × 1 vector of coefficients, and εFJ is a N × 1

vector containing the error terms. The estimation provides four sets of parameter estimates of

the same dimension, given the assumption that the set of regressors is the same for the four

combinations considered. Evaluating the estimation at the mean, given the property that OLS

estimates must go through the mean of the data, equation (8) becomes:

̂̄yGJ = ȳGJ = α̂GJ + x̄
′
GJ β̂GJ (9)

where α̂GJ is the intercept estimate, x̄GJ is theK×1 column vector of sample means of observable

characteristics in X:

x̄
′
GJ =

[
x̄1,GJ , x̄2,GJ , . . . , x̄K,GJ

]
and β̂GJ is the corresponding K × 1 vector of parameter estimates.

To estimate the joint model as in Gelbach (2016), we distinguish between two sets of regres-

11



sors, X1 and X2, where X1, represents the regressors of the base specification, which contains

only a constant, an interaction term between the gender and year dummies, and the group and

time dummies themselves:

X1 =

[
1, FJ, F, J

]
where

F =


1 if female

0 if male

J =


1 if year = t

0 if year = T

The base model is defined as follows:

y = αbase0 + FJαbase1 + Fαbase2 + Jαbase3 + εbase (10)

The second set of regressors, X2, of dimension (N × 4K), contains the matrix of characteristics

X and the interactions of the gender and year dummies with X:

X2 = [X,FX, JX,FJX] (11)

where FX and JX are the interaction variables between the regressors X, that is, the female

dummy F and the starting period dummy J , respectively. Thus, FJX represents the interaction

variable among regressors X. The full model is then defined as follows:

y = αfull0 + FJαfull1 + Fαfull2 + Jαfull3 +Xβ1 + FXβ2 + JXβ3 + FJXβ4 + εfull (12)

The link between the parameters of the full model and the four equations represented in (8)

follows straightforwardly.7

Next, we consider the set of regressors X2 as omitted variables. Using the OVB formula, we

7Appendix A reports the relationship between the two sets of estimation results.
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have:

α̂base = α̂full + (X ′1X1)−1X ′1X2β̂
full (13)

where the vector of parameter estimates from the base model (10) is:

α̂base
′

= (α̂base0 α̂base1 α̂base2 α̂base3 ) (14)

and α̂full is the 4×1 vector that contains the coefficient estimates of X1 from the full model (12):

(X ′1X1)−1X ′1X2 is the linear projection of X2 on X1 and

β̂full
′

= (β̂1 β̂2 β̂3 β̂4) (15)

is the (1 × 4K) vector of coefficients from the full model (12). Model (13) can be decomposed

as follows:

α̂base = α̂full + δ̂ (16)

where δ̂ ≡ α̂base − α̂full = (X ′1X1)−1X ′1X2β̂
full and

δ̂ = δ̂X + δ̂FX + δ̂JX + δ̂FJX (17)

where δ̂S = Γ̂S β̂fullS , with Γ̂S = (X ′1X1)−1X ′1S of dimension (4×K) and S is the portion of the

matrix (11) that corresponds to the set of regressors S, for S = X, . . . , FJX in (11).8

The Decomposition

Our interest relies in the estimation and decomposition of the GPG across two periods, t and

T :

∆T −∆t =

(
ȳMT − ȳFT

)
−
(
ȳMT − ȳFt

)
8Accordingly, δ̂X = Γ̂X β̂fullX , with Γ̂X = (X ′1X1)

−1
X ′1X of dimension (4 ×K) and β̂fullX is the (K × 1) vector

β̂1 in (15).
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with ∆T being the GPG in T . Thus, it is easy to show that:

∆T =

(
ȳMT − ȳFT

)
= −α̂base2

and

∆t =

(
ȳMt − ȳFt

)
= −α̂base1 − α̂base2

Therefore:

∆T −∆t = α̂base1

Therefore, given (14), we are interested in the second row of α̂base, i.e. α̂base1 , in order to

obtain the differences of the respective wage gaps; ∆T −∆t. Following (13) and (16)-(17), we

decompose α̂base1 accordingly. In particular, in decomposing α̂base1 we refer to the second row of

(X ′1X1)−1X ′1X2:

(X ′1X1)−1X ′1X =



/

(x̄′MT − x̄′FT )− (x̄′Mt − x̄′Ft)

/

/



(X ′1X1)−1X ′1FX =



/

(x̄′Ft − x̄′FT )

/

/


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(X ′1X1)−1X ′1JX =



/

(x̄′Ft − x̄′Mt)

/

/


and

(X ′1X1)−1X ′1FJX =



/

x̄′Ft

/

/


Thus, the second row of equation (13) (i.e. the change in the wage gap evaluated at the

mean) is:

α̂1
base = (α̂MT − α̂FT )− (α̂Mt − α̂Ft)︸ ︷︷ ︸

α̂full1

+ [(x̄′MT − x̄′FT )− (x̄′Mt − x̄′Ft)]β̂MT︸︷︷︸
β̂1

+ (x̄′Ft − x̄′FT )(β̂FT − β̂MT )︸ ︷︷ ︸
β̂2

+ (x̄′Ft − x̄′Mt)(β̂Mt − β̂MT )︸ ︷︷ ︸
β̂3

+ x̄′Ft[(β̂MT − β̂FT )− (β̂Mt − β̂Ft)]︸ ︷︷ ︸
β̂4

= ∆T −∆t

or, equivalently:

α̂1
base = α̂1

full + δ̂1 + δ̂2 + δ̂3 + δ̂4
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where:

δ̂1 = (x̄Mt − x̄Ft)β̂Mt − (x̄MT − x̄FT )β̂Mt

δ̂2 = x̄Ft(β̂Mt − β̂Ft) + x̄FT (β̂Ft − β̂Mt)

δ̂3 = (x̄FT − x̄MT )β̂MT − (x̄FT − x̄MT )β̂Mt

δ̂4 = x̄FT (β̂Mt − β̂Ft)− x̄FT (β̂MT − β̂FT )

which can be re-written as a double OB decomposition:

α̂1
base − α̂1

full = (Q̂t +K)︸ ︷︷ ︸
δ̂1

+ (P̂t +W )︸ ︷︷ ︸
δ̂2

+ (−Q̂T −K)︸ ︷︷ ︸
δ̂3

+ (−P̂T −W )︸ ︷︷ ︸
δ̂4

where Q̂t = (x̄Mt − x̄Ft)β̂Mt, is the estimated quantity effect and P̂t = x̄Ft(β̂Mt − β̂Ft), the

estimated price effect in period t, and Q̂T = (x̄MT − x̄FT )β̂MT , and P̂T = x̄FT (β̂MT − β̂FT ), the

estimated quantity and price effect in period T , respectively.

The proposed decomposition approach can be estimated beyond the mean by using the linear

unconditional quantile regression (RIF-OLS) introduced by Firpo et al. (2009). Instead of using

y as a dependent variable, a nonlinear transformation of y, we use the recentered influence

function (RIF) of y at the unconditional quantile Qτ ; RIF (y;Qτ ).9

4 Inference

The asymptotic distribution of
√
N(δ̂ − δ), with δ̂ = (δ̂1, . . . , δ̂4) derived in Gelbach (2016), is

summarized in Appendix B. Given the distribution of the parameters δ̂, the proposed decom-

position allows inferences about the dynamic of the single components of the GPG to be carried

out.

If the interest relies on, for instance, investigating the convergence of the GPG, whether

the convergence can be explained by the convergence of the level of endowments (explained

or quantity components) or by changes in prices (unexplained or price components) can be

determined. The hypothesis that the convergence is driven by changes in observed characteristics

9For additional details on the RIF-OLS approach, see Appendix C.
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can be tested by:

H0 : δ1 + δ3 = 0

, which is equivalent to testing for the H0 that there was no change in endowments between M

and F over time:

H0 : Qt = QT

Changes in the remuneration scheme between men and women can be controlled for by

testing whether the components of the price effects have been stable over time:

H0 : δ2 + δ4 = 0

which is equivalent to testing:

H0 : Pt = PT

where H0 indicates no change in prices between M and F over time. Each δ̂ can be decom-

posed into its single components; for instance, the contribution to the GPG of labour market

experience to the quantity component in period t can be extracted from δ̂1. Each δ̂ is given by

δ̂i =
K∑
k=1

δ̂ik =
K∑
k=1

Γ̂ikβ̂k for i=1, ..., 4 (18)

where K are the regressors considered in the analysis. (18) shows how the detailed decomposition

can be managed.

5 The Index Number Problem

As is well known in the literature, the OB decomposition is not unique, so the choosing a non-

discriminatory wage structure leads to different results (Oaxaca and Ransom, 1994; Cotton, 1988;

Fortin et al., 2011). Several approaches have been proposed to circumvent this problem (Reimers,

1983; Cotton, 1988; Neumark, 1988; Oaxaca and Ransom, 1994; Fortin, 2008).

We propose an extension of our method that provides a wage decomposition that is invariant

to the reference category adopted. Considering the standard case of the GPG, Fortin (2008) in-
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cluded gender intercept shifts along with an identification restriction in the regression of females

and males pooled together:

yi = γ0 + γ0FFi + γ0MMi +Xiγ + εi

subject to:

γ0F + γ0M = 0

where Fi (Mi) is equal to one if the individual is female (male), and zero otherwise. The

identification restriction, γ0F + γ0M = 0, requires that the pooled wage equation represents a

non-discriminatory wage structure, that is, a wage structure in which the advantage of men is

equal to the disadvantage of women. The first component on the RHS, (X̄M − X̄F )γ̂, is the

explained part, while γ̂0M and γ̂0F are the advantage of men and the disadvantage of women,

respectively. In particular:

ȳM − ȳF = (X̄M − X̄F )γ̂ + (γ̂0M − γ̂0F ) (19)

where α̂M , α̂F , β̂M , and β̂F are the estimated coefficients of the wage equations for men and

women, respectively :

yiM = αM +XMβM + εiM (20)

yiF = αF +XFβF + εiF (21)

Solution for Differences in Wages over Time

The extension of the decomposition described above to changes in wage gaps and over time,

sector, country, and so on follows straightforwardly. The set of regressors considered in Section

3 becomes:
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X1 = [1, (F −M)J, (F −M), J ]

X2 = [X, (F −M)X, JX, (F −M)JX]

Then base model reads as:

yi = γbase0 + (Fi −Mi)Jiγ
base
FJ + (Fi −Mi)γ

base
F + Jiγ

base
J + εbasei (22)

while the full model is defined as:

yi = γfull0 + (Fi −Mi)Jiγ
full
FJ + (Fi −Mi)γ

full
F + Jiγ

full
J +

+ Xiγ + (Fi −Mi)XiγXF + JiXiγXJ + (Fi −Mi)JiXiγXJF + εfulli (23)

(γbase0 γbaseFJ γbaseF γbaseJ ) is the vector of coefficients estimates of X1 from the base model (22),

and (γfull0 γfullFJ γfullF γfullJ ) is the vector containing the coefficient estimates of X1 from the full

model (23), while (γ γXF γXJ γXJF ) is the vector of coefficients estimates of X2 from the full

model (23). The linear projection of X with respect to X1 is equal to:

(X
′
1X1)−1X

′
1X =



/

−[(x̄Mt − x̄Ft)− (x̄MT − x̄FT )]/2

/

/


The linear projection of (F −M)X with respect to X1 is equal to:

(X
′
1X1)−1X

′
1(F −M)X =



/

[(x̄Mt + x̄Ft)− (x̄MT + x̄FT )]/2

/

/


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The linear projection of JX with respect to X1 is equal to:

(X
′
1X1)−1X

′
1JX =



/

(x̄Ft − x̄Mt)/2

/

/


and the linear projection of (F −M)JX with respect to X1 is equal to:

(X
′
1X1)−1X

′
1(F −M)JX =



/

(x̄Ft + x̄Mt)/2

/

/


It can be easily shown that:

γ̂baseFJ =

(
ȳMT − ȳFT

)
−
(
ȳMt − ȳFt

)
2

=
∆GPG

2

and

γ̂fullFJ =
(α̂MT − α̂FT )− (α̂Mt − α̂Ft)

2

where, analogously to Section 3, α̂Mt, α̂MT , α̂Ft, α̂FT are the estimated coefficients of the wage

equations for men and women in period t and T , respectively:

yiMt = αMt +XMtβMt + εiMt (24)

yiF t = αFt +XFtβFt + εiF t (25)

yiMT = αMT +XMTβMT + εiMT (26)

yiFT = αFT +XFTβFT + εiFT (27)
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Hence, the relationship:

γ̂baseFJ = γ̂fullFJ + (X
′
1X1)−1X

′
1Xγ̂ + (X

′
1X1)−1X

′
1X(F −M)γ̂XF +

+ (X
′
1X1)−1X

′
1XJγ̂XY + (X

′
1X1)−1X

′
1XJ(F −M)γ̂XJF

can be re-written in terms of the change in the pay gap between M and F over time, ∆GPG

(for the case of the GPG over time), as:

2γ̂baseFJ = ∆GPG =

= [(α̂MT − α̂FT )− (α̂Mt − α̂Ft)] + (∆x̄T −∆x̄t)γ̂ +

+(
∑

x̄t −
∑

x̄T )γ̂XF −∆x̄tγ̂XY +
∑

x̄tγ̂XY F

where ∆x̄Y ear is the difference between the average level of observed characteristics of men and

women in a certain year, with Year = t, T and
∑
x̄Y ear representing the sum of observable

labour market characteristics present for men and women in year=Year . The model can be

re-written in terms of the OVB formula as follows:

2γ̂baseFJ = γ̂fullFJ + δ̂A + δ̂B + δ̂C + δ̂D

P̂ + Q̂ = δ̂A + δ̂B + δ̂C + δ̂D

with P accounting for the price effect and Q for the quantity effect. In particular,

δ̂A = (x̄MT − x̄FT )γ̂︸ ︷︷ ︸
QT

− (x̄Mt − x̄Ft)γ̂︸ ︷︷ ︸
W

δ̂B = x̄MT (β̂MT − γ̂)− x̄FT (β̂FT − γ̂)︸ ︷︷ ︸
PT

+ (x̄Mt + x̄Ft)γ̂XF︸ ︷︷ ︸
K

δ̂C = (x̄Mt − x̄Ft)(γ̂ + γ̂XJF )︸ ︷︷ ︸
Qt

− (x̄Mt − x̄Ft)γ̂︸ ︷︷ ︸
W

δ̂D = −[x̄Mt(β̂Mt − γ̂ − γ̂XJ)− x̄Ft(β̂Ft − γ̂ − γ̂XY )︸ ︷︷ ︸
Pt

]− (x̄Mt + x̄Ft)γ̂XF︸ ︷︷ ︸
K
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The invariant decomposition for the standard case of a wage differential like the GPG is

shown in Appendix D, while a discussion of the intercept-shift and pooled sample approach can

be found in Appendix E. In particular, Appendix E shows that our invariant decomposition for

the variance over time does not suffer from arbitrary intercepts.

6 Data and Descriptive Statistics

We use the 2016 and 2005 results of the survey ISFOL Plus from the Italian Institute for the

Development of Vocational Training for Workers (ISFOL) to analyse the GPG’s evolution over

time (pooling the two cross-sections of 2005 and 2016) and the latest release, the cross-section

of 2016, to analyse the PPWG between men and women. Our analysis focuses on full-time

employees between eighteen and sixty-four years of age who work more than thirty-five hours

per week. The analysis is constrained to earnings from the employee’s job that yields the highest

income. These selection criteria led to a sample size of 9,185 in 2005 and 10,148 in 2016. The

2005 sample contains 3,983 women (43%) and 5,202 men (57%), while the 2016 sample contains

4,359 (43%) women and 5,789 (57%) men. In 2016, 2,084 women (48% of women in the sample)

and 2,033 men (35% of the men in the sample) were employed in the public sector, suggesting

that women favour the public sector, which is in line with results in the literature (see Section 1)

because of its more egalitarian pay schemes.

Table 1 and 2 report the means and standard deviations for the human capital variables

included in the analysis for the two cases under consideration, respectively . Table 1 shows

that men’s average earnings were higher than women’s in both 2005 and 2016, even though

women’s average educational attainment was higher than that of men, a gap that increased

from 2005 to 2016. Men still outperformed women in terms of labour market characteristics like

labour market experience and job market tenure . The difference in the average labour market

characteristics between men and women did not change substantially from 2005 to 2016. The

proportion of married individuals decreased over the decade for both men and women. The

geographic controls are largely stable across both gender and time.

Table 2 shows that average wages are highest for public-sector workers and that the GPG in

the public sector is smaller than it is in the private sector. Average educational attainment is
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Table 1: Descriptive Statistics Case 1: Women & Men in 2005 & 2016

(1) (2) (3) (4) (5) (6) (7) (8)
Women 2005 Women 2016 Men 2005 Men 2016

Variable Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Net Log Hourly Wages 1.851 0.368 2.072 0.439 2.003 0.403 2.159 0.459
Schooling (in Years) 12.94 2.693 13.86 2.408 12.22 2.902 13.06 2.642
Experience (in Years) 17.16 11.77 20.89 12.64 21.12 12.86 24.72 13.13
Tenure (in Years) 11.82 10.54 15.42 12.04 14.65 11.76 18.11 12.91
Married (Dummy) 0.563 0.496 0.344 0.475 0.592 0.491 0.358 0.479
North (Dummy) 0.523 0.500 0.530 0.499 0.457 0.498 0.470 0.499
Centre (Dummy) 0.208 0.406 0.215 0.411 0.188 0.390 0.203 0.403

Observations 3,983 4,359 5,202 5,789

higher for women than for men and even higher in the public sector. Experience and job market

tenure is higher for men in both sectors, but the gender difference in these characteristics is

less pronounced in the public sector. Fewer public servants are married than are private-sector

employees, but there are no substantial sector or gender differences in the geographic position

of the employees in the sample.

Table 2: Descriptive Statistics Case 2: Public & Private Sector by Gender

(1) (2) (3) (4) (5) (6) (7) (8)
Private Sector Private Sector Public Sector Public Sector

Men Women Men Women
Variable Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Net Log Hourly Wages 2.086 0.471 1.952 0.461 2.295 0.402 2.203 0.372
Schooling (in Years) 12.70 2.686 13.51 2.553 13.73 2.419 14.25 2.176
Experience (in Years) 22.42 13.63 16.95 12.13 28.97 10.95 25.19 11.75
Tenure (in Years) 15.12 12.68 11.22 10.47 23.64 11.43 20.01 11.98
Married (Dummy) 0.422 0.494 0.454 0.498 0.239 0.426 0.223 0.416
North (Dummy) 0.547 0.498 0.613 0.487 0.327 0.469 0.440 0.497
Centre (Dummy) 0.199 0.400 0.202 0.402 0.211 0.408 0.229 0.421

Observations 3,756 2,275 2,033 2,084
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7 Empirical Results

This section presents two empirical applications of our proposed decomposition that are robust

to variances with respect to categorical variables and the choice of the reference category. The

first empirical application shows the convergence of the GPG during the last decade (2005-

2016) in Italy, while the second estimates the difference in the PPWG between men and women

directly. In both cases, we compare the results and implications from the standard approach

with those of our decomposition approach.

In addition to looking at the average change in the pay gaps over time and by sector, we

extend our proposed decomposition throughout the wage distribution using unconditional quan-

tile regression (RIF-OLS). Apart from the aggregate decomposition, we also show the detailed

decompositions for both cases using our proposed approach.

Empirical Results Case 1: The Gender Pay Gap between 2016 and 2005

Figure 1 shows the estimates of the GPG in 2005 and 2016, as well as our decomposition approach

along the wage distribution. The convergence of the GPG was particularly pronounced at the

top and bottom (except the first to fifth percentile) of the distribution. Apart from the very

bottom of the distribution, the GPG was always lower in 2005 than it was in 2016, and the

reduction in the GPG was always statistically significant.

Figure 2 shows that the most pronounced changes were in the explained (Qt and QT ) com-

ponents, while the unexplained components (Pt and PT ) changed relatively more . Moreover,

the unexplained component in the ending period (PT ), 2016, was much more volatile across the

wage distribution than in 2005. In 2005, the unexplained part, Pt, was positively increasing

toward the top, but in 2016 (PT ), it turned negative at the upper part of the distribution.

Table 3 shows the standard OB decomposition in the male-reference category (Panel A) and

Fortin’s regression-compatible decomposition (Panel B). In line with the literature that considers

GPGs along the wage distribution, we find substantial differences in the gap at various points

of the distribution. The 2016 GPG is lower than the 2005 GPG, yet the results suggest that

the reduction was not evenly distributed across the distribution. The reduction was especially

pronounced at the bottom of the distribution (from 11.8% to 2.9%). The explained component
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Figure 1: Gender Pay Gap in 2005 & 2016 and Convergence over Time along the Wage Distri-
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Figure 2: Our Decomposition Approach, Components of the Gender Pay Gap in 2005 & 2016
along the Wage Distribution

in 2005 was never statistically significant, while it became statistically significant at all points

(except the 10th percentile) in 2016, when the explained component became not only significant

but even negative. This result suggests that women outperform men in general human capital

and labour market characteristics, although both the reduction and the unexplained component
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itself are relatively small. Therefore, one may conclude that there was no significant change in

the explained component over the decade in Italy.

On the other hand, the unexplained component, although it was the main driver of the gap

in both 2005 and 2016, was substantially smaller in 2016 than it was in 2006, suggesting a

more pronounced decrease in the unexplained component over time. The results of the detailed

decompositions that use the standard OB and regression-compatible approach are presented in

Table E.1 in Appendix F.

Table 3: Decomposition of the Gender Pay Gap between 2016-2005 (Case 1) at the Mean &
Selected Percentiles, Standard Approach

(1) (2) (3) (4) (5) (6) (7) (8)
2005 2016 2005 2016 2005 2016 2005 2016

Percentile Mean Mean 10. 10. 50. 50. 90. 90.

Panel A: Decomposition with Male-Reference Category
GPG 0.152*** 0.087*** 0.118*** 0.029** 0.121*** 0.072*** 0.252*** 0.133***

(0.008) (0.009) (0.013) (0.013) (0.009) (0.007) (0.017) (0.013)

Explained 0.006 -0.012* 0.012 -0.009 0.009 -0.015*** -0.008 -0.038***
(0.006) (0.007) (0.007) (0.009) (0.006) (0.005) (0.015) (0.010)

Unexplained 0.146*** 0.100*** 0.106*** 0.038*** 0.112*** 0.086*** 0.261*** 0.171***
(0.008) (0.009) (0.014) (0.015) (0.009) (0.007) (0.020) (0.015)

Panel B: Regression-Compatible Decomposition
GPG 0.152*** 0.087*** 0.118*** 0.029** 0.121*** 0.072*** 0.252*** 0.133***

(0.008) (0.009) (0.013) (0.013) (0.009) (0.007) (0.017) (0.013)

Explained -0.001 -0.014** -0.002 -0.015** 0.004 -0.017*** 0.006 -0.021***
(0.006) (0.006) (0.007) (0.007) (0.006) (0.004) (0.011) (0.008)

Unexplained 0.152*** 0.101*** 0.120*** 0.044*** 0.117*** 0.089*** 0.246*** 0.154***
(0.007) (0.009) (0.013) (0.014) (0.008) (0.006) (0.018) (0.014)

9,185 observations in 2005 & 10,148 observations in 2016. Robust standard errors in parentheses. ∗ ∗ ∗p < 0.01,
∗ ∗ p < 0.05, ∗p < 0.1.

Table 4 shows the results of our proposed decomposition. The coefficient estimate of αbase
1 is

negative and statistically significant, suggesting that the GPG significantly decreased between

2016-2005 in Italy. The convergence amounts to —6.8— log points at the mean and is relatively

more pronounced at the bottom and top of the wage distribution. This result is in line with

what we expected from the standard estimation technique (Table 3), but now we can also

conclude that the reduction in the GPG was statistically significant along the wage distribution.
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We find no statistically significant coefficient estimate α̂full1 throughout the wage distribution,

so our (full) model can completely explain the convergence. The decomposition shows that

the only significant component was gender differences in human capital characteristics in 2016,

which is again in line with the results from the standard decomposition. However, the t-test

on the coefficient estimates of the explained components in both periods suggests a statistically

significant difference at the 5% significance level. The unexplained component is statistically

significant only in 2016 at the top of the wage distribution. In addition, we do not reject the

H0 that the price component was stable over the decade in Italy, so the observed convergence

of 6.8 log points at the mean may have been due only to changes in the explained component,

while the unexplained part did not change significantly.

However, we find substantial differences in the component that drove the convergence across

the wage distribution. Only at the bottom and the mean of the distribution was the convergence

due to the explained component, while at the top it was due to a statistically significant change

in the price component. To explain what drove the change in the explained and unexplained

part, we decompose the change in the GPG over time in some detail. Table 5 shows that the

convergence of the GPG is due only to women’s catching up in education and labour market

characteristics and narrowing the gap in demographic characteristics and occupational/sectoral

sorting at the median of the wage distribution.10

At the bottom and top of the distribution only changes in observable labour market charac-

teristics contributed statistically significantly to reducing the GPG from 2005 to 2016 in Italy.

The mean of the distribution suggests that changes in the occupational/sectoral sorting of women

and men over time significantly affected the convergence of the gap. Remuneration between men

and women narrowed significantly based on educational attainment only at the median of the

the distribution. Returns t o demographic characteristics narrowed in the middle and top of

the wage distribution, and gender differences in returns to labour market characteristics like

experience and job tenure were equalized only at the top.

10The detailed decomposition of the standard approach is shown in Table E.1.
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Table 4: Proposed Regression-Compatible Decomposition of the Gender Pay Gap between 2016-
2005 (Case 1) at the Mean & Selected Percentiles

(1) (2) (3) (4)
Percentile Mean 10. 50. 90.

∆GPG = 2 ∗ γbase
FJ -0.068*** -0.091*** -0.052*** -0.126***

(0.006) (0.009) (0.005) (0.011)
∆GPG = 2 ∗ γfull

FJ 0.061 -0.075 -0.095 0.057
(0.044) (0.083) (0.037) (0.062)

Explained: QT (X) -0.009*** -0.007** -0.006** -0.011***
(0.003) (0.004) (0.002) (0.004)

Explained Qt (XY) 0.002 0.002 -0.004 -0.004
(0.003) (0.005) (0.003) (0.006)

H0 : QT = Qt
(χ2-Statistic, P-value) (4.98,0.026) (2.84,0.09) (1.07,0.30) (1.58,0.21)

Unexplained: PT (fmX) 0.003 -0.003 -0.005 0.029***
(0.003) (0.006) (0.003) (0.007)

Unexplained: Pt (fmXY) -0.060 0.00 0.036 -0.106
(0.040) (0.066) (0.035) (0.078)

H0 : PT = Pt (2.64,0.104) (1.37,0.24) (2.39,0.12) (3.99,0.05)

Observations: 19,333. Bootstrapped standard errors in parentheses (500 replications). X represents the set of
observable characteristics included in the regression, XY is the interaction of the set of covariates used with
the time indicator. fmX and fmXY are the corresponding interactions with the (F − M) gender dummy.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 5: Proposed Regression-Compatible Detailed Decomposition of the Gender Pay Gap be-
tween 2016-2005 (Case 1) at the Mean & Selected Percentiles

(1) (2) (3) (4)
Percentile Mean 10. 50. 90.

∆GPG = 2 ∗ γbase
FJ -0.068*** -0.091*** -0.052*** -0.126***

(0.006) (0.009) (0.005) (0.011)

∆GPG = 2 ∗ γfull
FJ 0.061 -0.075 -0.095 0.057

(0.044) (0.083) (0.037) (0.062)
Explained: QT (X)
X HC -0.001 -0.001 -0.001 -0.002

(0.001) (0.001) (0.001) (0.002)
X LM -0.003 -0.005** -0.002 -0.001

(0.002) (0.003) (0.001) (0.002)
X Demo 0.001 0.000 0.001 0.001

(0.001) (0.001) (0.001) (0.001)
X OccInd -0.005*** -0.002 -0.004*** -0.009***

(0.001) (0.002) (0.001) (0.003)
Explained: Qt (XY)
XY HC 0.000 -0.001 0.002*** 0.003

(0.001) (0.002) (0.001) (0.002)
XY LM -0.001 0.004 -0.006*** -0.006**

(0.001) (0.002) (0.001) (0.003)
XY Demo -0.000 -0.001 -0.003*** 0.002

(0.001) (0.001) (0.001) (0.001)
XY OccInd 0.003 -0.000 0.002 -0.002

(0.003) (0.005) (0.003) (0.006)
H0 : QT HC = Qt HC

(χ2-Statistic, P-value) (1.03,0.31) (1.28,0.26) (9.92,0.002) (4.98,0.023)
H0 : QT LM = Qt LM (0.75,0.39) (6.41,0.01) (8.02,0.005) (3.38,0.07)
H0 : QT Demo = Qt Demo (0.77,0.38) (1.82,0.18) (8.05,0.005) (1.47,0.23)
H0 : QT OccInd = Qt OccInd (4.42,0.04) (1.43,0.23) (4.67,0.03) (1.3,0.26)
Unexplained: PT (fmX)
fmX HC -0.004** -0.008*** -0.004*** 0.007**

(0.002) (0.003) (0.001) (0.003)
fmX LM 0.002 -0.003 0.000 0.004

(0.001) (0.002) (0.001) (0.003)
fmX Demo 0.004 0.004 0.004** 0.008*

(0.002) (0.004) (0.002) (0.004)
fmX OccInd 0.002 0.004 -0.006*** 0.011**

(0.002) (0.004) (0.002) (0.005)
Unexplained: Pt (fmXY)
fmXY HC -0.032 0.034 0.050* -0.058

(0.033) (0.054) (0.029) (0.064)
fmXY LM -0.019 -0.021 0.001 -0.036

(0.016) (0.027) (0.014) (0.032)
fmXY Demo -0.003* -0.002 -0.006*** -0.003

(0.002) (0.003) (0.001) (0.003)
fmXY OccInd -0.006 -0.010 -0.009 -0.008

(0.012) (0.020) (0.011) (0.024)

H0 : PT HC = Pt HC

(χ2-Statistic, P-value) (0.81,0.37) (1.9,0.17) (4.81,0.03) (1.88,0.17)
H0 : PT LM = Pt LM (1.72,0.19) (1.89,0.17) (1.11,0.29) (2.75,0.098)
H0 : PT Demo = Pt Demo (3.46,0.06) (2.04,0.15) (10.28,0.001) (3.24,0.072)
H0 : PT OccInd = Pt OccInd (0.37,0.54) (2.12,0.15) (1.0,0.32) (0.84,0.36)

Observations: 19,333. Bootstrapped standard errors in parentheses (500 replications). X represents the set of
observable characteristics included in the regression, XY is the interaction of the set of covariates used with the
time indicator. fmX and fmXY are the corresponding interactions with the (F −M) gender dummy. The set of
covariates X is split in the following way: HC contains years of schooling, LM includes labor market experience,
its square, job tenure as well as firm-size dummies, Demo includes a dummy for being married and place of
residence (North & Centre) and OccInd occupational and sectoral dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Empirical Results Case 2: Private-Public Sector Wage Gap between Women

and Men

Here we discuss the results of the second empirical application of -that is, the change in the

PPWG between men and women from 2005 to 2016 in Italy. Figure 3 shows the estimated

(raw) PPWG for men and women in 2016, as well as our decomposition approach along the wage
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distribution. The PPWGs are especially pronounced at the bottom of the wage distribution.

The difference in the PPWG between men and women is especially pronounced at the very

bottom and top of the distribution, while it is relatively small elsewhere in the distribution.
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Figure 3: PPWG for Women & Men as well as Difference by Gender

Figure 4 shows that the explained components diverged the most at the bottom and top of the

distribution (Qt and QT , where t = men and T = women), and the corresponding unexplained

components (Pt and PT ) are also more pronounced at these points of the distribution. In the

middle of the distribution, the components tend to be constant.

Table 6 shows the decomposition results of the standard OB method using male reference

parameters and the regression-compatible decomposition of Fortin (2008). We find negative

PPWGs at all points of the distribution that are due to higher pay levels in the public sector.

For women, the unexplained component is more pronounced than it is for men, suggesting

differences in the unexplained component between women and men across sectors .

Table 7 shows a positive and statistically significant difference in the PPWG between women

and men of |−0.04| log points. By construction, this result is in line with the standard approach’s

estimation results (Table 6). We find a statistically significant difference between the men’s and

women’s PPWG at the mean and median of the distribution. The negative sign indicates that

the sectoral earnings gap is most pronounced for women, so women earn substantially less in the
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Figure 4: Our Decomposition Approach, Components of the PPWG

private sector than they do in the public sector and compared to their male colleagues in the

private sector. The unexplained component is never statistically significantly different, while

the explained component contributes substantially to the pay divergence at the bottom and top

at the 10% significance level. The significant difference between men’s and women’s PPWG in

the middle of the wage distribution cannot be explained by the aggregate decomposition.

The detailed decomposition of the PPWG between women in men, shown in the Table 8,

allows us to attribute the change to gender differences in education, experience in the labour

market, demographic characteristics, and occupational sorting. However, these characteristics’

contributions vary across the wage distribution. Gender differences in remuneration that are

due to occupational (and sectoral) sorting contribute statistically significantly to the PPWG

between men and women only at the 10th percentile. Thus, sorting of higher-earning individuals,

particularly higher-earning women in public-sector employment, explains the difference in the

PPWG between women and men.11

11The detailed decomposition results from using the standard OB and regression-compatible decomposition are
shown in Table E.2 in Appendix F.
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Table 6: Decomposition of the Private-Public Sector Wage Gap by Gender (Case 2) at the Mean
& Selected Percentiles, Standard Approach

(1) (2) (3) (4) (5) (6) (7) (8)
Men Women Men Women Men Women Men Women

Percentile Mean 10. 50. 90.

Panel A: Decomposition with Male-Reference Category
PPWG -0.210*** -0.252*** -0.214*** -0.228*** -0.168*** -0.221*** -0.179*** -0.188***

(0.012) (0.013) (0.018) (0.018) (0.009) (0.009) (0.023) (0.016)

Explained -0.134*** -0.131*** -0.113** -0.147*** -0.101*** -0.125*** -0.153*** -0.114***
(0.024) (0.022) (0.046) (0.035) (0.017) (0.015) (0.036) (0.020)

Unexplained -0.076*** -0.121*** -0.101** -0.081** -0.068*** -0.097*** -0.026 -0.074***
(0.026) (0.024) (0.048) (0.038) (0.018) (0.017) (0.041) (0.025)

Panel B: Regression-Compatible Decomposition
PPWG -0.210*** -0.252*** -0.214*** -0.228*** -0.168*** -0.221*** -0.179*** -0.188***

(0.012) (0.013) (0.017) (0.018) (0.009) (0.009) (0.023) (0.016)

Explained -0.157*** -0.153*** -0.117*** -0.147*** -0.123*** -0.136*** -0.224*** -0.169***
(0.012) (0.014) (0.019) (0.018) (0.009) (0.009) (0.021) (0.016)

Unexplained -0.052*** -0.099*** -0.096*** -0.081*** -0.045*** -0.085*** 0.045* -0.018
(0.015) (0.018) (0.026) (0.024) (0.011) (0.012) (0.027) (0.020)

Observations: 5,789 men and 4,359 women. Robust standard errors in parentheses. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05,
∗p < 0.1

8 Conclusion

This paper proposes a new method that allows changes in pay gaps between groups and across

samples to be decomposed directly. For illustration, we show two empirical applications of the

method using data for Italy, but the methodology can be used to study (the evolution of) group

differences in any (continuous and unbounded) outcome variable. Our alternative decomposition

method overcomes essential flaws in the standard OB method (the index number and omitted

group problems) and allows inferences to be drawn on the difference between two wage gaps. The

proposed method can easily be extended beyond the mean by using linear unconditional quantile

regressions and allows both aggregate and detailed decomposition. We propose to decompose the

GPG following the intercept-shift approach proposed by Fortin (2008) and applying the OVB

formula (as proposed by Gelbach, 2016). Thus, when we conduct a detailed decomposition,

we can associate the single parts of the explained component with specific covariates, and the

invariance problem with respect to categorical variables can be solved (Gardeazabal and Ugidos,

2004; Fortin, 2008).
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Table 7: Proposed Regression-Compatible Decomposition of the Private-Public Wage Gap be-
tween Women and Men (Case 2) at the Mean & Selected Percentiles

(1) (2) (3) (4)
Percentile Mean 10. 50. 90.

∆GPG = 2 ∗ γbase
FJ -0.042** -0.014 -0.052*** -0.008

(0.008) (0.012) (0.006) (0.014)
∆GPG = 2 ∗ γfull

FJ -0.169 -0.276 0.050 -0.354**
(0.078) (0.113) (0.058) (0.088)

Explained: QT (X) -0.004 -0.018* 0.003 -0.005
(0.007) (0.011) (0.005) (0.010)

Explained Qt (XY) 0.010 0.021 -0.011 0.036*
(0.013) (0.022) (0.010) (0.021)

H0 : QT = Qt
χ2-Statistic, P-value 0.65, 0.42 2.98, 0.085 2.1, 0.15 2.92, 0.087

Unexplained: PT (fmX) -0.007 0.013 -0.012* -0.000
(0.010) (0.016) (0.007) (0.015)

Unexplained: Pt (fmXY) 0.044 0.085 -0.029 0.138
(0.071) (0.117) (0.051) (0.111)

H0 : PT = Pt
χ2-Statistic, P-value 0.49, 0.48 1.64, 0.20 1.18, 0.28 2.09, 0.15

Observations: 10,148. Bootstrapped standard errors in parentheses (500 replications). X represents the set of
observable characteristics included in the regression, XY is the interaction of the set of covariates used with
the time indicator. fmX and fmXY are the corresponding interactions with the (F − M) gender dummy.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 8: Proposed Regression-Compatible Detailed Decomposition of the Private-Public Wage
Gap between Women and Men (Case 2) at the Mean & Selected Percentiles

(1) (2) (3) (4)
Percentile Mean 10. 50. 90.

∆GPG = 2 ∗ γbase
FJ -0.042** -0.014 -0.052*** -0.008

(0.008) (0.012) (0.006) (0.014)

∆GPG = 2 ∗ γfull
FJ -0.169 -0.276 0.050 -0.354**

(0.078) (0.113) (0.058) (0.088)

Explained: QT (X)
X HC 0.005*** 0.004** 0.004*** 0.005***

(0.002) (0.002) (0.002) (0.002)
X LM -0.006** -0.006* -0.005*** -0.006*

(0.003) (0.004) (0.002) (0.003)
X Demo -0.003*** -0.004*** -0.002*** -0.001

(0.001) (0.001) (0.001) (0.001)
X OccInd -0.000 -0.012 0.006 -0.004

(0.006) (0.010) (0.005) (0.010)
Explained: Qt (XY)
XY HC -0.004* -0.007* -0.006*** 0.008**

(0.002) (0.004) (0.002) (0.004)
XY LM 0.007 0.003 0.008 0.016

(0.008) (0.012) (0.005) (0.012)
XY Demo 0.005* 0.009* 0.001 0.007

(0.003) (0.005) (0.002) (0.004)
XY OccInd 0.002 0.017 -0.014 0.005

(0.012) (0.019) (0.008) (0.018)

H0 : QT HC = Qt HC

(χ2-Statistic, P-value) (7.57, 0.006) (7.1, 0.008) (13.55, 0.0002) (1.29, 0.26)
H0 : QT LM = Qt LM (3.05, 0.08) (1.67, 0.20) (6.69, 0.0097) (4.49, 0.03)
H0 : QT Demo = Qt Demo (6.13, 0.01) (8.02, 0.005) (1.53, 0.22) (3.16, 0.076)
H0 : QT OccInd = Qt OccInd (0.02, 0.88) (2.28, 0.13) (3.14, 0.08) (0.73, 0.39)

Unexplained: PT (fmX)
fmX HC -0.000 0.010** -0.001 -0.006

(0.002) (0.004) (0.002) (0.004)
fmX LM -0.002 -0.015*** -0.002 0.003

(0.003) (0.005) (0.002) (0.005)
fmX Demo 0.002 0.010*** 0.000 0.001

(0.001) (0.003) (0.001) (0.002)
fmX OccInd -0.007 0.008 -0.010 0.001

(0.009) (0.015) (0.007) (0.015)
Unexplained: Pt (fmXY)
fmXY HC 0.028 0.118 -0.034 0.092

(0.058) (0.095) (0.041) (0.090)
fmXY LM 0.038 -0.006 0.013 0.036

(0.032) (0.053) (0.023) (0.050)
fmXY Demo 0.001 0.002 -0.000 -0.001

(0.001) (0.002) (0.001) (0.002)
fmXY OccInd -0.023 -0.028 -0.008 0.011

(0.020) (0.033) (0.014) (0.031)

H0 : PT HC = Pt HC

(χ2-Statistic, P-value) (0.25, 0.62) (2.42, 0.12) (1.81, 0.18) (1.65, 0.20)
H0 : PT LM = Pt LM (1.40, 0.24) (1.14, 0.29) (1.41, 0.24) (1.41, 0.24)
H0 : PT Demo = Pt Demo (0.34, 0.56) (5.45, 0.02) (1.05, 0.3) (1.03, 0.31)
H0 : PT OccInd = Pt OccInd (0.63, 0.43) (1.58, 0.21) (1.0, 0.32) (0.73, 0.39)

Observations: 10,148. Bootstrapped standard errors in parentheses (500 replications). X represents the set of
observable characteristics included in the regression, XY is the interaction of the set of covariates used with the
time indicator. fmX and fmXY are the corresponding interactions with the (F −M) gender dummy. The set of
covariates X is split in the following way: HC contains years of schooling, LM includes labor market experience,
its square, job tenure as well as firm-size dummies, Demo includes a dummy for being married and place of
residence (North & Centre) and OccInd occupational and sectoral dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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The first application adds to the discussion of the convergence of the GPG over time. Changes

in the GPG over the last several decades have been widely discussed in the literature, and

determining the reasons for the narrowing is of significant interest, especially with regard to

policy implications (Blau and Kahn, 2006,0; Godin, 2014). We find a statistically significant

convergence of the GPG over period from 2005 to 2016 in Italy that can be explained only by

a reduction in the differences in observable labour market characteristics at the mean and the

bottom of the wage distribution. At the top of the distribution, changes in the unexplained

component have led to a significant reduction in the GPG. The change in the price component

that results when using the standard OB decomposition and estimating the GPG separately for

2005 and 2016-that is, following the double OB decomposition-might have suggested that the

implementation of anti-discrimination laws and changing attitudes toward women in the labour

market have influenced the narrowing of the pay gap over time as well, but these policies and

changes in social norms appear to have been less effective than expected (except at the top of

the distribution). In fact, even if the unexplained part is found to be the main contributor to

the GPG in a particular year, it becomes insignificant when changes in the GPG are estimated

directly over time.

The results for the second empirical application, the PPWG between women and men, point

to differences in employee-sorting in the public and private sectors, which are found to be

a main driver of the differential. The decomposition we carried out allows us to determine

whether both parts of the price effect-the difference in the intercepts and the difference in

remuneration-drive the change in the pay gap in a statistically significant way. We conclude

that both parts contribute to the difference in the PPWG between women and men, although

they do so differently along the wage distribution.

All in all, our decomposition method helps to clarify what led to the narrowing of the GPG

from 2005 to 2016 in Italy and what drives the difference in the PPWG between women and

men. Policymakers would benefit from taking our inferences about what drives the difference

in the respective pay gaps into consideration. Our proposed decomposition approach leads to

additional insights on the composition of differences in gaps. The method can be extended to

the choice of the reference category (Reimers, 1983; Cotton, 1988; Neumark, 1988; Oaxaca and
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Ransom, 1994; Fortin, 2008) as well as to the indeterminacy problem (Lee, 2015).
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Appendices

A Parameter Link

The links of the parameters presented in Section 3 are presented here in detail.

1. When F=1, i.e. Female, J=1, i.e. year t:

� α̂Ft = α̂full0 + α̂full1 + α̂full2 + α̂full3

� β̂Ft = β̂1 + β̂2 + β̂3 + β̂4

2. When F=0, i.e. Male, J=1, i.e. year t, we get:

� α̂Mt = α̂full0 + α̂full3

� β̂Mt = β̂1 + β̂3

3. When F=1, i.e. Female, J=0, i.e. year T, we get:

� α̂FT = α̂full0 + α̂full2

� β̂FT = β̂1 + β̂2

4. When F=0, i.e. Male, J=0, i.e. year T, we get:

� α̂MT = α̂full0

� β̂MT = β̂1
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Re-arranging terms slightly, gives us:

α̂full0 = α̂MT

α̂full2 = α̂FT − α̂MT

α̂full3 = α̂MT − α̂Mt

α̂full1 = α̂Ft − α̂MT − α̂FT + α̂MT − α̂Mt + α̂MT

= (α̂MT − α̂FT )− (α̂Mt − α̂Ft)

β̂1 = β̂MT

β̂2 = β̂FT − β̂MT

β̂3 = β̂Mt − β̂MT

β̂4 = β̂MT − β̂FT − β̂Mt + β̂Ft

= (β̂MT − β̂FT )− (β̂Mt − β̂Ft)

B Inference

The derivation of the asymptotic distribution of
√
Nδ̂ =

√
N(δ̂X δ̂FX δ̂JX δ̂FJX) follows the same

line of argument in Gelbach (2016). In particular, given that all estimators involved in the

decomposition are asymptotically normal and given that the decomposition involves continuously

differentiable functions of these estimators, joint asymptotic normality of the decomposition

components follows from the delta method.

The elements of the decomposition, δ̂ in (17) can be written as:

√
N(δ̂ − δ) =

√
N(Γ̂ ˆβfull − Γβfull) (B.1)

where

X2 = X1Γ +W (B.2)
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with W , matrix (N × 4K) of the error terms. (B.1) can be written as:

√
N(δ̂ − δ) = Γ̂

√
N( ˆβfull − βfull) +

√
N(Γ̂− Γ)βfull (B.3)

where Γ̂ = (X
′
1X1)−1X

′
1X2 and given that:

Γ̂− Γ = (X
′
1X1)−1X

′
1W

(B.3) can be expressed as:

√
N(δ̂ − δ) = Γ̂

√
N( ˆβfull − βfull) + (

X
′
1X1

N
)−1X

′
1W√
N

βfull (B.4)

The asymptotic variance of the vector δ̂ is given by:

AsyCov(δ̂) = Γ̂AsyV ar(β̂full)Γ̂
′︸ ︷︷ ︸

I

+ (
X
′
1X1

N
)−1plim(

X
′
1Wβfullβfull

′
W
′
X1

N
)(
X
′
1X1

N
)−1︸ ︷︷ ︸

II

+ Γ̂AsyCov(
√
N( ˆβfull − βfull), X

′
1Wβfull√

N
)(
X
′
1X1

N
)−1︸ ︷︷ ︸

III

+ (
X
′
1X1

N
)−1AsyCov(

X
′
1Wβfull√

N
,
√
N( ˆβfull − βfull))Γ̂′︸ ︷︷ ︸

IV

(B.5)

where the consistent estimators for the matrices Q = E[x1,ix
′
1,i] and Γ have been already sub-

stituted in (B.4) by their consistent estimators:
X
′
1X1

N and Γ̂, respectively . Term I in (B.4)

entails the asymptotic variance of ˆβfull that can be consistently estimated under standard as-

sumptions. In particular, consider the vector of all the parameters estimated from the full model

β̂ = (α̂full
′
β̂full

′
):

var(β̂) = (X
′
X)−1(X

′
ΣX)(X

′
X)−1 (B.6)
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where Σ is the variance covariance matrix of the error terms εfull in the full specification (12)

and X = [X1X2]. The asymptotic variance of β̂full is the sub-block of var(β̂) corresponding to

the variables in X2.

By organizing the observations for group and sector (for instance gender and period) εfull

can be thought as εfull
′

= (εfull
′

Ft εfull
′

Mt ε
full′

FT εfull
′

MT ) where F = female and M = male and t =

starting period and T = ending period . It follows that

Σ =



σ2
Ft1NFt,NFt σFt,Mt1NFt,NMt

σFt,FT1NFt,NFT σFt,MT1NFt,NMT

σFt,Mt1NMt,NFt σ2
Mt1NMt,NMt

... ...

σFt,FT1NFT ,NFt ... ... ...

σMT,Ft1NMT ,NFt ... ... ...


where 1K,L is a (K×L) matrix with unit and NFJ is the number of observations for category F at

time J . The AsyV ar(β̂full) can be estimated consistently by taking the appropriate sub-block of

a consistent estimate of (B.6) where the single components in Σ are obtained from the consistent

estimates of the OLS residual from the full model: ε̂full = Y −Xβ̂full, i.e. σ̂2
Ft =

ε̂
′
Ftε̂Ft

NFt−K .

The estimation of the middle part of Term II in (B.4) can be obtained by using the consistent

estimates of βfull and W , i.e. β̂full and Ŵ = X2 − X1Γ̂. The estimation of terms III and

IV requires the estimation of the covariance between
√
N(β̂full − βfull) and X1Wβfull√

N
. Given

standard assumption on the error terms, the consistent estimation of the covariance is given by

the columns corresponding to the variables X2 the matrix below:

plim(
X
′
X

N
)−1plim(

X1εfullβfull′W
′
X
′
1

N
)

where βfull, εfull and W are substituted by their corresponding consistent estimators.

C Unconditional Quantile Regression

To be precise, the RIF-OLS regression model allows us to estimate the effect of explanatory

variables X on the unconditional quantile Qτ of an outcome variable Y . The RIF is estimated
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in quantile regressions by first calculating the sample quantile Q̂τ and computing the density at

Q̂τ -that is, f(Q̂τ )-using kernel methods Firpo et al. (2009).

This approach relies on the indicator function 1{Yt ≤ Qτ}, which takes the value of one

if the condition in {·} is true, and zero otherwise. Estimates for each observation i of the

RIF R̂IF (Yit;Qτ ) are then obtained by inserting Q̂τ and f(Q̂τ ) in the aggregate RIF function,

defined as:

RIF (Yt;Qτ ) = Qτ + IF (Yt;Qτ )

= Qτ +
τ − 1{Yt ≤ Qτ}

fY (Qτ )

=
1

fYt(Qτ )
1{Yt > Qτ}+Qτ −

1

fYt(Qτ )
(1− τ) (E.1)

where the RIF is the first-order approximation of the quantile Qτ , and IF (Yt;Qτ ) represents

the influence function for the τth quantile. It measures the (marginal) influence of an observation

at Y on the sample quantile. Adding the quantileQτ to the influence function yields the RIF. The

probability density of Y at time t is evaluated atQτ is fYT (Qτ ). The model can then be estimated

by OLS using the RIFs as dependent variables. 132009Firpo et al.Firpo, Fortin and Lemieux

() modelled the conditional expectation of the RIF-regression function E[RIF (Yt;Qτ )|X] as a

function of explanatory variables X in the UQR:

E[RIF (Yt;Qτ )|X] = gQτ (X) (E.2)

where a linear function Xβτ is specified for gQτ (X). The explanatory variables X contain

time-varying controls like labour market experience and job tenure as well as time-constant con-

trols like education. The average derivative of the unconditional quantile regression EX
[dgQτ (X)

dX

]
captures the marginal effect of a small location shift in the distribution of covariates on the τth

UQ of Yt, keeping everything else constant. Therefore, the coefficients βτ can be uncondi-

tionally interpreted as E[RIF (Yt;Qτ )] = EX
[
E
(
RIF (Yt;Qτ )|X

)]
= E(X)βτ . That is, the
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unconditional expectations E[RIF (Yt;Qτ )] using the LIE allow for the interpretation of the

unconditional mean: On the other hand, the interpretation of the conditional mean is valid only

in the context of CQRs: Qτ (Yt|X) = XβCQRτ , where βCQRτ can be interpreted as the effect of X

on the τth CQ of Y given X. The LIE does not apply here; Qτ 6= EX [Qτ (Yt|X)] = E(X)βCQRτ ,

where Qτ is the UQ. Hence, βCQRτ cannot be interpreted as the effect of increasing the mean

value of X in the UQ Qτ . In UQR, the coefficients βτ can be estimated by OLS in the following

way:

Qτ = E[RIF (Yt;Qτ )] = EX [RIF (Yt;Qτ )|X] = E(X)βτ (E.3)

D Solving the Index Number Problem for the Level of the Gen-

der Pay Gap

Section 5 presents the solution to the indeterminacy problem for the variation over time of the

GPG. This Appendix shows how to solve the indeterminacy problem for the level of the GPG

within the OVB decomposition. Our aim is to have a wage decomposition invariant to the

reference category adopted. Following Fortin (2008), we include gender intercept shifts along

with an identification restriction, in the regression of females and males pooled together, when

considering the standard case of the GPG:

yi = γ0 + γ0FFi + γ0MMi +Xiγ + εi

subject to:

γ0F + γ0M = 0

where Fi (Mi) is equal to one if the individual is female (male) and zero otherwise. The

identification restriction, γ0F +γ0M = 0, imposes that the pooled wage equation truly represents

a non-discriminatory wage structure, i.e. a wage structure where the advantage of men is equal
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to the disadvantage of women:

ȳM − ȳF = (X̄M − X̄F )γ̂ + (γ̂0M − γ̂0F ) (D.1)

The first component on the RHS, (X̄M − X̄F )γ̂, is the explained part, while γ̂0M and γ̂0F

are the advantage of men and the disadvantage of women, respectively. In particular:

γ̂0M = X̄M (β̂M − γ̂) + (α̂M − γ̂0) advantage of men

γ̂0F = X̄F (β̂F − γ̂) + (α̂F − γ̂0) disadvantage of women.

where α̂M , α̂F , β̂M , β̂F are the estimated coefficients of the wage equations for men and

women, respectively:

yiM = αM +XMβM + εiM (D.2)

yiF = αF +XFβF + εiF (D.3)

In order to recast the wage decomposition of the full model with the conditional decomposition

framework proposed in Section 3 we estimate the following wage equation:

yi = γ0 + γ0FFi + γ0MMi +Xiγ +XiFiγXF +XiMiγXM + νi (D.4)

subject to:

γ0F + γ0M = 0

γXkF + γXkM = 0 for k = 1 . . .K

where γXkF and γXkM are the parameters of the interaction term between the kth regressor

Xk and the dummy F and M , respectively. The error term is represented by vi. Evaluating

equation (D.4) at the mean yields:
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ȳM = γ̂0 + γ̂0M + X̄M γ̂ + X̄M γ̂XM

ȳF = γ̂0 + γ̂0F + X̄F γ̂ + X̄F γ̂XF

Hence, the GPG is given by:

ȳM − ȳF = (γ̂0M − γ̂0F ) + (X̄M − X̄F )γ̂ + X̄M γ̂XM − X̄F γ̂XF (D.5)

= 2γ̂0M + (X̄M − X̄F )γ̂ + (X̄M + X̄F )γ̂XM (D.6)

First, we observe that there exists the following relationship between the parameter estimates

of equations (D.2)-(D.3) and (D.4):

γ̂ − γ̂XM = β̂F

γ̂0 − γ̂0M = α̂F

γ̂ + γ̂XM = β̂M

γ̂0 + γ̂0M = α̂M

Therefore, the GPG of (D.6) can be re-written in terms of the Fortin-decomposition as:

ȳM − ȳF = (α̂M − γ̂0)− (α̂F − γ̂0) + (X̄M − X̄F )γ̂ + X̄M (β̂M − γ̂)− X̄F (β̂F − γ̂) (D.7)

= (X̄M − X̄F )γ̂ + [X̄M (β̂M − γ̂) + (α̂M − γ̂0)]︸ ︷︷ ︸
advantage of men

− [X̄F (β̂F − γ̂) + (α̂F − γ̂0)]︸ ︷︷ ︸
disadvantage of women

(D.8)

Second, the estimation can be recast in terms of sequential decomposition by considering the

following base model:

yi = γbase0 + (Mi − Fi)γbase0M + εbasei (D.9)

where the set of regressors of the base model is given by X1 =

[
1, (M − F )

]
, the constant and
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the difference between the two dummy variables F and M . The full model is defined as follows:

yi = γfull0 + (Mi − Fi)γfull0M +Xiγ +Xi(Mi − Fi)γXM + εfulli (D.10)

where X2 =

[
X,X(M − F )

]
. X(M − F ) is the interaction between the matrix of regressors X

and the vector that contains the difference between the two dummy variables M and F . By the

OVB formula the following relationship holds:

 γ̂base0

γ̂base0M

 =

 γ̂full0

γ̂full0M

+ (X
′
1X1)−1X

′
1X2

 γ̂

γ̂XM

 (D.11)

where (γ̂base0 γ̂base0M )
′

is the vector of coefficient estimates of X1 from the base model (D.9);

(γ̂full0 γ̂full0M )
′

is the vector containing the coefficient estimates of X1 from the full model (D.10)

and (γ̂ γ̂XM )
′

is the vector of coefficients estimates of X2 from the full model (D.10). Observe

that:

 γ̂base0

γ̂base0M

 =

 ȳM+ȳF
2

ȳM−ȳF
2

 (D.12)

and γ̂full0M is equal to α̂M−α̂F
2 .

Given (D.12), our interest relies on the second row of equation (D.11), that represents the

decomposition of the GPG. We observe that the linear projection of X with respect to X1 is

equal to:

(X
′
1X1)−1X

′
1X =

 /

(X̄
′
M − X̄

′
F )/2


The linear projection of X(M − F ) with respect to X1 is equal to:

(X
′
1X1)−1X

′
1X(F −M) =

 /

(X̄
′
M + X̄

′
F )/2


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Given (D.11), we observe that:

2γ̂base0M = 2(ȳM − ȳF ) = ∆(y) = 2γ̂full0M + (X̄M − X̄F )γ̂ + (X̄M + X̄F )γ̂XM

= 2γ̂full0M + (X̄M − X̄F )γ̂ + X̄M (β̂M − γ̂) +−X̄F (β̂F − γ̂)

= (X̄M − X̄F )γ̂ + [X̄M (β̂M − γ̂) + (α̂M − γ̂0)]︸ ︷︷ ︸
advantage of men

− [X̄F (β̂F − γ̂) + (α̂F − γ̂0)]︸ ︷︷ ︸
disadvantage of women

that completes the proof of the decomposition equivalence.

D.1 Invariance Decomposition with respect to Categorical Variables

A second type of identification issue arises when dummy variables are considered in the wage

decomposition. Oaxaca and Ransom (1999) show that the assignment of the unexplained part of

the GPG to specific variables is not invariant to the choice of reference groups. This problem can

be easily solved by imposing the following parameters restrictions as proposed by Gardeazabal

and Ugidos (2004) and Yun (2005):

Ck∑
j=1

γjk = 0, k ∈ C (D.13)

where C denotes the set of categorical variables, and Ck the number of categories for variable

k. The neutral, i.e. non-sensitive to any left-out category, Oaxaca-Blinder decomposition follows.

The zero-sum restriction on the coefficients for the single categories lead to express the effects as

deviations from the grand mean. The zero-sum restriction (D.13) is applied to the wage equation,

when female and male wages are estimated separately as well as to the pooled regression with

gender dummies. The latter is additionally estimated with the identification restriction γ0M +

γ0F = 0 on the gender parameters. Thereby, the intercepts, αM , β0F and γ0, are no longer

influenced by the choice of the reference category and the single parts of the endowments effect

can be associated to specific covariates (Fortin, 2008). The restriction (D.13) can also be applied

to the method proposed in Section 3 leading to indicator variables that, in case of categorical

variables, are invariant to the choice of the left-out category.
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E Intercept-shift Approach versus Pooled-sample Approach

The Intercept-shift Approach versus the Pooled-sample Approach Lee (2015) showed that the

intercept-shift approach proposed by Fortin (2008) presents two drawbacks. First, the reference

parameter for the OB decomposition, that is, the parameter that would prevail in a fair world

with no discrimination, relies on the difference in the variance among categories. Second, the

reference intercept is arbitrary: the same OB decomposition holds with vastly different reference

intercepts. However, our proposed decomposition does not suffer from any of these issues, as it

arises from a specification that allows different intercepts and slopes. In addition, the constraints

imposed on the parameters that identify the counterfactual reference parameters are such that

men’s advantage is equal to women’s disadvantage. In fact, in our model the slope that would

prevail under no discrimination, γ, is the sample average of the group slopes: αM and αF :

γ = 0.5αM + 0.5αF

That is, it is equivalent to considering the weights proposed by Reimers (1983).12 Moreover,

the constraint:

αF − γ0F = αM + γ0F

prevents the indeterminacy problem shown by Lee (2015) in eq. (6) page 74 . It turns out

that, in our model, the intercept indeterminacy problem Lee (2015) highlighted is ruled out by

imposing the constraint that men’s advantage should be equal women’s disadvantage.

12See also Lee, 2015, p.72.
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F Further Empirical Results

Table E.1 presents the detailed decomposition of the standard approaches: the OB (Panel

A) and Fortin’s regression-compatible decomposition (Panel B). The results show that gender

differences in education are always higher for men than they are for women, while differences in

labour market experience and job tenure are higher for men at all points of the wage distribution.

Again, the standard approach reveals no substantial changes in the explained components from

2005 to 2016 in Italy. The unexplained components’ point estimates suggest more differences

over time; in particular, the remuneration scheme between men and women changed with respect

to human capital and labour market characteristics.

Table E.1: Detailed Decomposition of the Gender Pay Gap in 2005

& 2016 (Case 1) at the Mean & Selected Percentiles, Standard

Approach

(1) (2) (3) (4) (5) (6) (7) (8)

2005 2016 2005 2016 2005 2016 2005 2016

Percentile Mean 10. 50. 90.

GPG 0.155*** 0.087*** 0.087*** 0.029** 0.123*** 0.071*** 0.258*** 0.132***

(0.008) (0.009) (0.009) (0.013) (0.009) (0.007) (0.018) (0.013)

Panel A: Decomposition with Male-Reference Category

Explained:

X HC -0.023*** -0.023*** -0.007*** -0.011*** -0.016*** -0.017*** -0.045*** -0.041***

(0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.005) (0.004)

X LM 0.040*** 0.036*** 0.030*** 0.040*** 0.038*** 0.028*** 0.058*** 0.018***

(0.004) (0.004) (0.004) (0.006) (0.003) (0.003) (0.008) (0.006)

X Demo -0.003** -0.004*** -0.003* -0.008*** 0.002 -0.004*** -0.010*** -0.002

(0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.003) (0.002)

X OccInd -0.009* -0.021*** -0.007 -0.022*** -0.010** -0.018*** -0.016 -0.029***

(0.005) (0.005) (0.006) (0.007) (0.005) (0.003) (0.013) (0.008)

Total 0.008 -0.010 0.015** -0.007 0.011* -0.012*** -0.007 -0.036***

(0.007) (0.007) (0.007) (0.009) (0.006) (0.005) (0.015) (0.010)
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Unexplained:

X HC -0.056 -0.132** -0.300*** -0.248*** -0.218*** -0.122*** 0.310*** 0.205**

(0.039) (0.058) (0.075) (0.092) (0.044) (0.042) (0.095) (0.087)

X LM 0.032 0.037 0.011 -0.016 0.053** 0.025 0.053 0.009

(0.021) (0.024) (0.030) (0.041) (0.021) (0.018) (0.059) (0.050)

X Demo 0.001 0.004 -0.006* 0.004 0.007*** 0.005** 0.003 0.008*

(0.002) (0.003) (0.003) (0.004) (0.002) (0.002) (0.005) (0.004)

X OccInd -0.029* -0.030 -0.055* -0.058 0.007 -0.018 0.005 0.001

(0.016) (0.022) (0.034) (0.036) (0.019) (0.016) (0.036) (0.031)

Constant 0.172*** 0.233*** 0.484*** 0.409*** 0.289*** 0.194*** -0.251** -0.194*

(0.047) (0.067) (0.091) (0.107) (0.053) (0.049) (0.113) (0.101)

Total 0.147*** 0.096*** 0.105*** 0.036** 0.112*** 0.084*** 0.265*** 0.167***

(0.008) (0.009) (0.014) (0.015) (0.009) (0.007) (0.020) (0.015)

Panel B: Regression-Compatible Decomposition

Explained:

X HC -0.024*** -0.026*** -0.014*** -0.017*** -0.021*** -0.020*** -0.039*** -0.037***

(0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.004) (0.003)

X LM 0.040*** 0.030*** 0.031*** 0.041*** 0.038*** 0.022*** 0.056*** 0.021***

(0.003) (0.003) (0.003) (0.005) (0.003) (0.002) (0.006) (0.004)

X Demo -0.004*** -0.004*** -0.007*** -0.008*** 0.001 -0.003*** -0.006*** -0.001

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002) (0.001)

X OccInd -0.012*** -0.018*** -0.013** -0.024*** -0.014*** -0.018*** 0.001 -0.016***

(0.004) (0.004) (0.006) (0.006) (0.004) (0.003) (0.009) (0.006)

Total 0.002 -0.012** 0.002 -0.013* 0.007 -0.015*** 0.008 -0.019**

(0.006) (0.006) (0.007) (0.007) (0.006) (0.004) (0.011) (0.008)

Unexplained:

X HC -0.055 -0.128** -0.293*** -0.242** -0.213*** -0.119*** 0.304*** 0.201***

(0.039) (0.053) (0.078) (0.099) (0.044) (0.041) (0.087) (0.072)

X LM 0.031 0.043 0.010 -0.017 0.052** 0.031 0.055 0.006

(0.024) (0.027) (0.035) (0.049) (0.022) (0.019) (0.061) (0.048)

X Demo 0.002 0.003 -0.002 0.004 0.007*** 0.004** -0.002 0.007**

(0.002) (0.002) (0.003) (0.004) (0.002) (0.002) (0.005) (0.003)
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X OccInd -0.026** -0.033 -0.050** -0.056 0.010 -0.018 -0.012 -0.012

(0.012) (0.021) (0.022) (0.052) (0.019) (0.013) (0.024) (0.019)

Constant 0.172*** 0.233*** 0.484*** 0.409*** 0.289*** 0.194*** -0.251** -0.194**

(0.049) (0.067) (0.097) (0.130) (0.054) (0.047) (0.104) (0.083)

Total 0.153*** 0.099*** 0.118*** 0.042*** 0.117*** 0.086*** 0.250*** 0.150***

(0.007) (0.009) (0.014) (0.014) (0.008) (0.006) (0.018) (0.014)

9,185 observations in 2005 & 10,148 observations in 2016. Robust standard errors in parentheses. X represents the set

of observable characteristics included in the regression, XY is the interaction of the set of covariates used with the time

indicator. fmX and fmXY are the corresponding interactions with the (F −M) gender dummy. The set of covariates X is

split in the following way: HC contains years of schooling, LM includes labor market experience, its square, job tenure as

well as firm-size dummies, Demo includes a dummy for being married and place of residence (North & Centre) and OccInd

occupational and sectoral dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Table E.2: Detailed Decomposition of the Private-Public Sector

Wage Gap by Gender (Case 2) at the Mean & Selected Quantiles,

Standard Approach

(1) (2) (3) (4) (5) (6) (7) (8)

Men Women Men Women Men Women Men Women

Percentile Mean 10. 50. 90.

PPWG -0.210*** -0.252*** -0.210*** -0.252*** -0.210*** -0.252*** -0.210*** -0.252***

(0.012) (0.013) (0.012) (0.013) (0.012) (0.013) (0.012) (0.013)

Panel A: Decomposition with Male-Reference Category

Explained:

X HC -0.027*** -0.027*** -0.027*** -0.027*** -0.027*** -0.027*** -0.027*** -0.027***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

X LM -0.084*** -0.098*** -0.084*** -0.098*** -0.084*** -0.098*** -0.084*** -0.098***

(0.007) (0.010) (0.007) (0.010) (0.007) (0.010) (0.007) (0.010)

X Demo 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005

(0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006)

X OccInd -0.026 -0.010 -0.026 -0.010 -0.026 -0.010 -0.026 -0.010
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(0.024) (0.020) (0.024) (0.020) (0.024) (0.020) (0.024) (0.020)

Total -0.134*** -0.131*** -0.134*** -0.131*** -0.134*** -0.131*** -0.134*** -0.131***

(0.024) (0.022) (0.024) (0.022) (0.024) (0.022) (0.024) (0.022)

Unexplained:

X HC -0.052 0.014 -0.052 0.014 -0.052 0.014 -0.052 0.014

(0.074) (0.092) (0.074) (0.092) (0.074) (0.092) (0.074) (0.092)

X LM 0.003 0.093** 0.003 0.093** 0.003 0.093** 0.003 0.093**

(0.048) (0.044) (0.048) (0.044) (0.048) (0.044) (0.048) (0.044)

X Demo 0.029** 0.031 0.029** 0.031 0.029** 0.031 0.029** 0.031

(0.014) (0.020) (0.014) (0.020) (0.014) (0.020) (0.014) (0.020)

X OccInd 0.055 0.207* 0.055 0.207* 0.055 0.207* 0.055 0.207*

(0.090) (0.121) (0.090) (0.121) (0.090) (0.121) (0.090) (0.121)

Constant -0.109 -0.467*** -0.109 -0.467*** -0.109 -0.467*** -0.109 -0.467***

(0.131) (0.164) (0.131) (0.164) (0.131) (0.164) (0.131) (0.164)

Total -0.076*** -0.121*** -0.076*** -0.121*** -0.076*** -0.121*** -0.076*** -0.121***

(0.026) (0.024) (0.026) (0.024) (0.026) (0.024) (0.026) (0.024)

Panel B: Regression-Compatible Decomposition

Explained:

X HC -0.029*** -0.027*** -0.029*** -0.027*** -0.029*** -0.027*** -0.029*** -0.027***

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

X LM -0.089*** -0.095*** -0.089*** -0.095*** -0.089*** -0.095*** -0.089*** -0.095***

(0.006) (0.007) (0.006) (0.007) (0.006) (0.007) (0.006) (0.007)

X Demo -0.003 0.001 -0.003 0.001 -0.003 0.001 -0.003 0.001

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

X OccInd -0.037*** -0.031*** -0.037*** -0.031*** -0.037*** -0.031*** -0.037*** -0.031***

(0.010) (0.012) (0.010) (0.012) (0.010) (0.012) (0.010) (0.012)

Total -0.157*** -0.153*** -0.157*** -0.153*** -0.157*** -0.153*** -0.157*** -0.153***

(0.012) (0.014) (0.012) (0.014) (0.012) (0.014) (0.012) (0.014)

Unexplained:

X HC -0.050 0.015 -0.050 0.015 -0.050 0.015 -0.050 0.015

(0.070) (0.082) (0.070) (0.082) (0.070) (0.082) (0.070) (0.082)

X LM 0.008 0.090** 0.008 0.090** 0.008 0.090** 0.008 0.090**

54



(0.049) (0.043) (0.049) (0.043) (0.049) (0.043) (0.049) (0.043)

X Demo 0.034** 0.036 0.034** 0.036 0.034** 0.036 0.034** 0.036

(0.015) (0.024) (0.015) (0.024) (0.015) (0.024) (0.015) (0.024)

X OccInd 0.065 0.229 0.065 0.229 0.065 0.229 0.065 0.229

(0.070) (0.154) (0.070) (0.154) (0.070) (0.154) (0.070) (0.154)

Constant -0.109 -0.467** -0.109 -0.467** -0.109 -0.467** -0.109 -0.467**

(0.121) (0.202) (0.121) (0.202) (0.121) (0.202) (0.121) (0.202)

Total -0.052*** -0.099*** -0.052*** -0.099*** -0.052*** -0.099*** -0.052*** -0.099***

(0.015) (0.018) (0.015) (0.018) (0.015) (0.018) (0.015) (0.018)

9,185 observations in 2005 & 10,148 observations in 2016. Robust standard errors in parentheses. X represents the set

of observable characteristics included in the regression, XY is the interaction of the set of covariates used with the time

indicator. fmX and fmXY are the corresponding interactions with the (F −M) gender dummy. The set of covariates X is

split in the following way: HC contains years of schooling, LM includes labor market experience, its square, job tenure as

well as firm-size dummies, Demo includes a dummy for being married and place of residence (North & Centre) and OccInd

occupational and sectoral dummies. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.
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