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Abstract

Ensuring the security of stable, efficient, and reliable energy supplies has intensified the
interconnections among energy markets. Imbalances between supply and demand due to
operational failures, congestions and other sources of risk faced by these connections can lead
to a system that is vulnerable to the spread of risk and its spill-over. The main contribution
of this paper lies in the adoption of recently proposed network models in an innovative way,
which enhances the proper analysis of these market connections. The case of the Italian energy
market is studied because it is a clear example of a zonal market where risk can spread across
connected zones. We estimate within-day and across-day zonal market interconnections with a
multivariate time series of hourly prices, forecast demand and wind generation over the period
2010 – 2016 and evaluate the dynamics and persistence of zonal market connections examining
the central market and the spread of risk in the zones of the Italian electricity market. Our
findings show that models based purely on prices give a better and more accurate explanation
of risk contagion than models with exogenous regressors, revealing that the Central North
and Central South zones are the most influential in terms of hub centrality for intraday and
inter-day risk transmission, respectively, in the Italian energy market.

Keywords: Bayesian inference, complex networks, energy prices, market efficiency, systemic
risk, volatility, zonal power market

JEL: C11; C15; C32; C52; G01; Q41

1. Introduction

For several decades, the hallmark of energy policy and regulation has been the security of
energy supply and reliability in many countries. Recently, the focus of the energy sector, has
been on improving economic efficiency, increasing productivity and reducing costs, thereby,
providing long-term efficiency gains. Specifically, in the electricity sector, many markets have
introduced competitive bid-based electricity auctions to set energy prices and capacity, which
often accounts for congestion costs (Creti and Fontini, 2019). However, several efficiency
mechanisms put in place are facing new and unexpected challenges in terms of transmission
and distribution. Since deregulations, there have been upsurges in electricity price volatility,
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with effects on various sectors of the economy. Among the main causes of price volatility are
new environmental requirements, which have led to the mass retirement of coal-generation
resources, the volatility of fuel prices and the spiky nature of raw materials for energy produc-
tion. Mitigating the various risk in these markets coupled with the issues of climate change
have therefore become topics of major concern.

This paper studies the relationships governing the risk spread over the zones of the Italian
electricity market. There are many causes underlying the exposure of the Italian electricity
markets to risks of contagion among different zones (see for instance, Creti et al., 2010). The
efficiency of zonal pricing is challenged by the fact that it does not take into consideration
the behavioral perspective of the public good in network management, because of the in-
divisibility of network security. In addition, it does not accommodate consumer behaviour
in terms of price differentials, which impact on overall social welfare. Despite the different
methods adopted in pricing electricity, various network structures inherent in the market
need to be explored and provide a first step in understanding the extent of risk exposure
in the market. Congestions in transmission lines causes price differences in various zones of
the network (Fianu, 2015). In their paper, Bigerna and Bollino (2016) derive optimal zonal
prices according to a Ramsey optimal scheme in the Italian spot electricity market estimating
a complete system of hourly demands. It is argued that optimal pricing improves welfare
in the Italian day-ahead electricity market more than existing methods such as the uniform
pricing scheme. Sapio and Spagnolo (2018) examine transmission volatility patterns using
the VAR-GARCH estimation approach, before and after the inauguration of a new cable in-
frastructure, accounting for linkages in electricity market zones rich in intermittent renewable
energy sources. Specifically, the SAPEI cable accommodates stronger volatility transmissions
towards Sardinia in off-peak periods, while no significant volatility transmissions are observed
during peak-load periods. As indicated by Klos et al. (2015), the configuration of the zonal
energy market is often a result of political decisions. Among the methods developed to aid
zonal delimitation, Klos et al. (2015) present a technique which aims to curb the loop flow
effect, an element of unscheduled flows that introduces a loss of market efficiency in addition
to a detailed decomposition of power flow in order to carry out zonal partitioning and to
identify zones which cause problems in the network.

Our original contributions in this paper are therefore as follows. First, to the best of
our knowledge, no paper has considered the application of BG-VAR, specifically, to examine
the spread of systemic risk in zonal electricity markets. Our paper is the first to employ
this recently proposed methodology in studying energy markets. One of the most important
reasons for using this methodology, is the spatial nature of the zonal market, which requires
a space-time analysis. Second, the paper introduces two different types of analysis of risk
contagion: “intraday” and “inter-day”. The intraday mechanism spreading volatility is rel-
evant for very short contagion events, with effects limited to the day of the auction. The
inter-day approach also includes contagion transmitted from past auctions. In this way, it is
possible to disentangle a pure spatial contagion (intraday) from a mixed spatial and temporal
contagion (inter-day). Third, the model enables us to determine the zones that are dominant
in the spread of systemic risk. In addition, it detects various hidden network structures and
relationships between the various zones. The examination of each zone provides an overview
of congestion events pertaining to a zone in relationship to other zones. Finally, all these
findings are relevant for policy makers and, if properly taken into account, would ensure good
policy design for the proper risk management of energy markets, especially those that are
spatial in nature. The application of the procedure provides a platform for making opti-
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mal environmental and energy policies, especially when the different congestion events and
regimes identified are considered for investment decisions.

The remaining sections of the paper are organized as follows: section 2 reviews the lit-
erature about risk propagation, interconnections and linkages in energy markets. Section 3
provides an overview of the structure of the Italian zonal market. It also details the various
market operations in the zonal power market. Section 4 presents the underpinning of the
graphic methodology used in the paper. The data in the empirical section and results are
presented and discussed in section 5. Finally, section 6 presents some concluding remarks and
policy recommendations for policymakers, market participants, regulators and governments.

2. Literature review

The theoretical and empirical literature have so far dealt with price differentials from
both the supply and the demand side, starting with Bigerna and Bollino (2016). As is
well known, in the zonal day-ahead market (MGP: Mercato del Giorno Prima) the so-called
“market splitting” occurs in the event of congestion. In this case, prices in contiguous areas
are different because, in the area where the supply of electricity is lower than the demand,
the prices are higher. Due to market congestion, the Ancillary Services Market (ASM) must
be activated in order to find a balance between supply and demand (Cappers et al., 2013).
Prices on the ASM may differ greatly from prices on the MGP with a huge risk of price hikes
for the end users (Lamadrid and Mount, 2012). Market congestion is a source of concern for
market regulators, who must always ensure the right balance between supply and demand in
order to avoid power outages.

Another source of risk in electricity markets is price spikes in the form of sudden jumps
in power prices. Extreme price changes are common in electricity price time series because
electricity cannot be economically stored and must be delivered immediately. It is worth
noting that risks from spikes can spread from one zone to others creating a contagion effect.
A further source of contagion, which has been observed in recent years, is associate with the
massive introduction of renewable sources (RES) such as solar and wind energy (Phan and
Roques, 2015). For instance, photovoltaic plants have led to increases in the cost of energy in
the evening hours because of the need for operators of conventional power plants to recover
investments and idling costs in a shorter time span, when PV generation is unavailable1. The
share of the production of renewable sources has been increasing over the years due to public
policy, which promotes the achievement of the 20/20/202 targets under the EU climate and
energy package via incentives in the form of a feed–in premium for solar plants and green
certificates for all other renewable energy sources3. The intermittent nature of RES increases
the volatility of prices in zones where solar and particularly wind plants are widespread and
this additional volatility can spread to other zones though contagion. Energy market risks
affecting market participants, including wholesalers, retailers, and consumers, can be hedged
by resorting to futures contracts, but this involves high costs normally reflected in retail prices
on deregulated markets.

Consequently, it is essential to study how different types of risk are transmitted from
one zone to another. To the best of our knowledge, while many papers have been published

1AEEG report to the Senate Industry Commission on 18 April 2012.
220% reduction in emissions, 20% increase in renewable energies and 20% improvement in energy efficiency

by 2020.
3For detailed overview, see Schwartz (2012).
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dealing with contagion and systemic risk on financial markets, there are very few empirical
studies about contagion on energy markets (Lautier and Raynaud, 2012; Pierret, 2013) and
just one concerning contagion on electricity markets (Bollino et al., 2012). This paper, there-
fore, provides a first-time approach to the use of network analysis in order to examine the
direction of contagion in electricity markets. We present a broad overview of the different
characterization of networks focusing on the zonal market because it provides a spatial source
of information. To this extent, the focus is on systemic risk4 and how it spreads via the mar-
ket price. Characterizing the various types of risk in zonal electricity markets is a first step
towards providing insight for the proper risk management of energy and commodity markets.

Complex networks are currently gaining ground in various disciplines, for example, in
economics, finance, mathematics and many more. The use of complex networks has helped to
extract hidden information from various complex systems. In terms of the energy market, it
pinpoints the centrality of networks and the volatility that spreads over other networks. They
help market participants such as traders, investors and regulators to guard against sudden
systemic failures which can negatively impact on many businesses and economies because
of the significant socio-economic role played by energy in the global economy. Recent work
on systemic risk includes Billio et al. (2012); Diebold and Yilmaz (2014); Ahelegbey and
Giudici (2014); Ahelegbey et al. (2016a). Billio et al. (2012) who propose several econometric
measures of connectedness based on principal components analysis and Granger-causality
networks. According to the authors, systemic risk is inherent in financial systems and groups
of interconnected institutions with business relationships so the risk of illiquidity, insolvency
and losses can quickly propagate during periods of financial distress5.

Unlike any other, this paper uses Bayesian graphical vector autoregression (BG-VAR) as
recently proposed by Ahelegbey et al. (2016a) by incorporating exogenous and non-exogenous
variables to investigate the complex network dynamics of zonal power markets. The Vector
AutoRegressive (VAR) model has been widely applied in econometrics to model temporal
dependence in multivariate time series. It has recently been used to model interdependence in
systemic risk analysis (Billio et al., 2012; Diebold and Yilmaz, 2014; Ahelegbey et al., 2016a).
The Bayesian graphical VAR (BG-VAR), proposed by Ahelegbey et al. (2016a), presents
a framework to model directional relationships in a multivariate time series that can be
operationalized as VAR models. The approach is based on a Bayesian procedure and a graphic
representation of VARmodels. The methodology involves inferring the underlying dependence
structure of the model, which the coefficients of the relevant covariates to be selected and
estimated. This setting naturally produces sparse and parsimonious models for effective
forecasts and easy interpretation. Knowledge of the underlying dependence structures can
help researchers and policymakers to understand directional or causal relationships among
market variables. Furthermore, such structures can be visualized to provide insight into
the connectivity pattern among variables and to identify communities and channels for risk
propagation. For regulators, this captures and helps to identify the central zones that can
cause systemic breakdown when severely affected, and to advance policy measures to ensure
the stability of the electricity market.

4The term systemic risk is uniquely used in this paper to refer to risk propagations and transmissions,
which are significant enough to cause the breakdown in energy systems.

5See Ahelegbey (2016) for a review of the state of the art for statistical inference and the application of
network analysis to financial time series.
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3. The Italian zonal power market

This section provides an overview of the Italian zonal power market. The Italian elec-
tricity market is known as the Italian power exchange (IPEX). It comprises a spot market,
a forward market and an over-the-counter (OTC) session, which provides a platform for the
physical delivery of contracts. The spot market comprises three types of markets: the day-
ahead (MGP), the intraday (MI: Mercati Infra-giornalieri) with 7 sessions, and the ancillary
services markets (MSD: Mercato dei Servizi di Dispacciamento6). GME (Gestore dei Mer-
cati Elettrici) manages the IPEX together with the OTC registration platform for forward
electricity contracts stipulated on the bidding system. The market embeds 7 foreign virtual
zones, 6 physical zones and 5 poles of limited production (national virtual zones)7. The
geographical zones analyzed in this paper are the North (NORD), Center-North (CNOR),
Center-South (CSUD), South (SUD), Sardinia (SARD) and Sicily (SICI) (see Figure 1). A
zone can be defined as the representation of a portion of the power grid, where, for system
security purposes, there are physical limits to the transfers of electricity to/from other geo-
graphical zones. Figure 2 gives further details of the structure of the Italian zonal market
in the current regulatory framework. Zonal prices are the market clearing prices, which are
characteristic of each geographical and virtual zone in the Day–Ahead Market8. The equi-
librium price is determined hourly by the intersection supply and demand curves, see Fianu
(2015) for further details. Constraints in inter-zonal capacity often lead to congestion in the
grid.

Congestion occurs because of different market clearing prices in two zones, creating po-
tential market imperfections. In terms of the operational paradigm, the market is divided
into two zones, North and South, with generators located in both. The role of the Market
Operator (MO) is to coordinate consumption and generation via the day-ahead market, which
is organized on an hourly basis. Therefore, at the beginning of every hour, the MO invites
generators to submit a menu of prices at which they are willing to supply with corresponding
quantities. The MO, then, forecasts market demands in the various zones. Given the location
of each generator and the demand in various zones, the MO solves the optimal dispatch prob-
lem subject to an exogenous set of inter–zonal transmission constraints9. This determines
optimal prices every hour in every zone, along with the amount of transfer between the zones
(see Boffa et al., 2010).

In recent years, the Italian energy market has undergone various regulatory transforma-
tions, which have helped to ensure fair competition among market participants. In effect, the
development of electricity networks and the excess of supply due to the reduction in demand
and growth in renewable energy sources have enhanced competition in electricity markets in
Italy. Legislative Decree 28/11 came into effect in 2012, transforming incentives for renew-
able sources. For instance, the green certificate mechanism was replaced by feed-in tariffs,
with maximum allowable expenditure in order to provide incentives for capacity with auction
procedures reserved for large plants. However, in 2013, a new national energy strategy was
approved and confirmed by the Italian government. In the wholesale market, competition is
continually improving. For example, the market share of the four largest operators decreased

6Abbreviations refer to the Italian market names. See http://www.mercatoelettrico.org/en/\Mercati/
MercatoElettrico/MPE.aspx

7https://www.terna.it/en-gb/sistemaelettrico/mercatoelettrico.aspx
8The Day–Ahead Market hosts most of the electricity transactions.
9The aim of optimal dispatch is to minimize the total electricity expenditure of consumers.
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by 5% in 2012 compared to 2011 (49%). Specifically, ENEL remains the main market oper-
ator with 25% of the market (26% in 2011), followed by ENI (9%), Edison (7.2%) and E.On
(4.4%). Furthermore, the collective shares of small operators increased to 30.2%.

Figure 1: Map of Italy with the regional distribution of installed wind energy capacity (in varying
degrees of green) in 2016 and the borders between zones in the transmission grid (thick black lines).
The zonal connections, shown in the top right corner, show the basic structure of the market—physical
zones. Source: processing by the authors.

.

In 2016, the Italian government put forward a decree in 2016 to support incentives for
other renewable energy sources in addition to photovoltaic systems. The introduction of
market coupling with Slovenia, Austria and France provides significant benefits by reducing
inefficiencies in the cross-border transmission capacity rights allocation.

The internal grid was modified and upgraded) in 2012 allowing for improved integration
between market zones and consequently the improved transmission of electricity throughout
CSUD and SUD zones. The main challenge of network regulators in various developed coun-
tries is how to synchronize their regulatory frameworks in the context of the penetration of
renewable energy sources allowing them to pursue such traditional aims as adequacy, efficiency
and security of infrastructure, while serving customers and remaining customer-friendly. The
energy market continues to undergo regulatory change.

4. Model formulation

We present the model and estimation procedure adopted in this paper to analyze inter-
dependencies among zones in the Italian electricity market. These interdependencies can be
decoupled and broken down into two networks: an intraday (same day) network, in which
the dependence occurs on the same day; and an inter-day (day-to-day) network, in which
the dependence occurs with a time-lag. We model the intraday and inter-day dependen-
cies from multivariate time series using, respectively, a simultaneous equation and a vector
autoregressive model.
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Figure 2: The structure of the Italian zonal market. Source: Processing by the authors based on a
map by Terna

.

4.1. Modeling Intra-day dependence
Let Yt = (Y1,t, . . . , Yn,t) be the vector of log price volatilities in n zones at time t, and

denote with Zt = (Z ′1,t, . . . , Z ′n,t), a vector of exogenous factors. We model the intraday
pattern of dependence among zones via a structural equation model with exogenous factors:

Yi,t = Bi,y|yYt +Bi,y|zZi,t + Ui,t (1)

where Zi,t is a vector of exogenous factors that affects only Yi,t. In addition, Bi,y|y and Bi,y|z
are vectors of coefficients, respectively, such that the i-th element of Bi,y|y are zeros since Yi,t
cannot influence itself. Let By|y = (B′1,y|y, . . . , B

′
n,y|y)

′ and By|z = diag(B1,y|z, . . . , Bn,y|z) be
a stacked representation of Bi,y|y and Bi,y|z. By definition, By|y is a zero diagonal matrix and
By|z is a zero off-diagonal matrix. Equation (1) can be expressed as

Yt = By|yYt +By|zZt + Ut (2)

where Ut = (U1,t, . . . , Un,t) is a vector of structural error terms. Our focus here is to analyze
the direction of influence between zones at time t. This is shown in Figure 3.
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By|y =




0 0 0 0 0
β21 0 0 0 0
β31 0 0 0 0
0 β42 0 0 β45
β51 0 β53 0 0




=⇒

Y2

Y1

Y5

Y4

Y3

Figure 3: Coefficient matrix and the associated network structure. The non-zero elements in By|y are
real numbers. The column and row labels of By|y are (Y1, Y2, Y3, Y4, Y5) at time t. Links in the network
are related to the non-zero elements in By|y and are directed from column labels to row labels.

4.2. Modeling Inter-day Dependence
We model the inter-day dynamics of Yt as a p-order VAR with exogenous factors:

Yt =
p∑
l=1

Al,y|yYt−i +Ay|zZt + Vt (3)

where t = p + 1, . . . , T ; p is the maximum time-lag; Al,y|y, 1 ≤ l ≤ p, is the matrix of
coefficients; Ay|z is a zero off-diagonal matrix of coefficients; Vt is a vector of error terms.

Inter-day networks generally comprise autoregressive (own-lagged) and cross-lagged de-
pendencies. In this application, we follow a concept similar to that of Granger causality
(Granger, 1969) by focusing on the cross-lagged dependencies. See Figure 4 for an illustra-
tion.

A1,y|y =




α11 0 0 0 0
α21 0 α23 0 0
α31 0 α33 α34 0
0 0 α43 α44 0
0 α52 0 0 α55




=⇒

Y2

Y1

Y5

Y4

Y3

Figure 4: Coefficient matrix of a VAR(1) model and the associated cross-lagged network. The column
labels of Ay|y are lags of (Y1, Y2, Y3, Y4, Y5) and row labels are at time t. Links in the network are
results of non-zero elements in Ay|y and are directed from column labels to row labels.

4.3. Bayesian Graphical Model Inference
This section discusses the Bayesian graphical framework for multivariate analysis. The

models presented in (2) and (3) follow typical multivariate multiple regressions given by:

Yt = BXt + εt, εt ∼ N (0, Q) (4)

where B = (By|y, By|z) and Xt = (Y ′t , Z ′t)′ in the case of (2); and B = (A1,y|y, . . . , Ap,y|y, Ay|z)
and Xt = (Y ′t−1, . . . , Y

′
t−p, Z

′
t)′ in the case of (3).

Following Ahelegbey et al. (2016a), (4) can be modeled using a graphic framework with
the relation B = (G ◦ Φ), where G is a variable selection matrix of binary 0/1 entries, Φ is
a matrix of coefficients, and the operator (◦) is the element-by-element Hadamard’s product.
The entries of G represent the presence or absence of an edge between pairs of variables. A
one-to-one correspondence between B and Φ conditioned on G can be identified based on the
above definition. Specifically, Bij = Φij , 0, if Gij = 1; and Bij = 0, if Gij = 0.

Let Dt = (Y ′t , X ′t)′ and suppose that Dt ∼ N (0,Ω−1), where Ω is a precision matrix
defined as: Ω = Σ−1. Let Y = (Y ′1 , . . . , Y ′T )′, X = (X ′1, . . . , X ′T )′ and D = (D1, . . . , DT )
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be a collection of Yt, Xt and Dt respectively over a fixed window of length T . We denote
with Σyy - the covariances among elements in Y , and Σxy denotes the covariance between
elements in X and Y . The relationship between Ω, B and Σε, such that if X ∼ N (0,Σxx)
and Y |X ∼ N (BX,Σε), then B and Σε can be obtained from Σ as follows:

B = ΣyxΣ−1
xx , Σε = Σyy − ΣyxΣ−1

xxΣxy (5)

Following these relationships, the joint distribution of the variables in Dt can be sum-
marized with a network model and represented by the pair (G,Ω) ∈ (G × Θ), where G is a
directed acyclic graph (DAG), Ω consists of the model parameters, G and Θ are the network
and parameter space, respectively.

To estimate the topological structure of interactions among the zones, we adopt a Bayesian
paradigm where the posterior of the graph (network) combines prior beliefs and marginal
likelihood over DAGs, P (G|D) ∝ P (G) P (D|G). The Bayesian method is designed to take
into consideration uncertainty in the determination of the presence/absence of a link between
zones in the network. Since there are a large number of possible networks that can equally
explain the data, the Bayesian approach allowing for model averaging, helps us infer networks
in the high-scoring region of the space of network. This enables us to extract and average
over models whose edges have a high marginal posterior probability. This method has been
shown to perform better than alternative approaches that estimate a single model fitting the
data well (Ahelegbey et al., 2016a,b).

In this application, we assume a uniform graph prior by considering each edge in the
network as a Bernoulli trial with probability 0.5, i.e., P (G) ∝ 1. Following Geiger and
Heckerman (2002), the marginal likelihood for any DAG model can be expressed as

P (D|G) =
n∏
i=1

P (D(i,πi)|G)
P (Dπi |G) =

n∏
i=1

P (Dfi
|G)

P (Dπi |G) =
n∏
i=1

P (Yi|Xπi), (6)

where D(a) is a sub-matrix of D restricted to the indices in set a, πi is the set of indices of
the predictors of the i-th equation, and fi = (πi∪ i). Following (Ahelegbey et al., 2016b), the
probability of Yi conditional on its direct explanatory variables, Xπi , is given by

P (Yi|Xπi) = π−
1
2T ν

1
2ν

(ν + T )
1
2 (ν+T )

Γ
(ν+T−nf

2
)

Γ
(ν−nf

2
) ( |Σ(πi)|
|Σ(fi)|

) 1
2 (ν+T )

, (7)

where nf = |fi| is the cardinality of fi and Σ̄(a) is the sub-matrix of Σ̄ restricted to the indices
in set a, where Σ̄ = 1

ν+T
(
νI +

∑T
t=1DtD

′
t

)
is the posterior covariance matrix. I is an identity

matrix whose dimension is equal to the number of variables in Dt; ν > max(nf ) + 1 is a
degree of freedom parameter and Γ(·) is the gamma function.

5. Modeling Risk Contagion in the Italian Energy Market

Network analysis is currently gaining grounds in various disciplines given the fact that
almost everything seems to have some kind of interrelationships. Network analysis and its
applications, especially in energy markets is no different. With the energy revolution taking
place in various countries, the slow but steady transition from non-renewable energy sources
is faced by investors and regulators with different forms of uncertainty. This makes the
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application of network analysis to the study of risk network structures in energy markets
relevant and a topic of major concern.

Volatility networks have gained traction in the financial systemic risk literature because
of their ability to track the fear of investors (Diebold and Yilmaz, 2014). Employing network
techniques in the study of energy and other commodity markets holds promise not only for the
present but also for the future. In systemic risk literature, volatility connectedness (referred
to as “fear connectedness”) has become increasingly important in identifying risk transmission
mechanisms in markets. They can be extended to track the spread of risk in energy markets
and this could be very useful to investors, policymakers, regulators and government agencies.
For instance, they will be a guide to proper risk management and taking investment decisions.
The Italian market, with its zonal structure and the close interconnections among zones,
provides an ideal framework for original network analysis.

We obtain hourly spot prices (on the day-ahead market) in the 6 physical zones of the
Italian electricity market between January 2010 to December 2016 from the Italian Electricity
Market website. We also obtain the forecast hourly demand and wind generation of the zonal
power markets between March 2014 and December 201610. We analyzed the geographical
zones of the North (NORD), Centre North (CNOR), Centre South (CSUD), South (SUD),
Sardinia (SARD) and Sicily (SIC). Suppose that Yi,t,j is the observed data for the i-th zone
at the j-th hour of day t. Following the literature on volatility estimation from historical data
(see Martens and Van Dijk, 2007), we construct daily standard deviations (σi,t) as a measure
of realized price volatility, defined as follows:

σ2
i,t = 1

N − 1

N∑
j=1

(Yi,t,j − Ȳi,t)2 (8)

where Ȳi,t is the average of Yi on day t and N is the total number of observations in a day,
i.e., N = 24. This formula was used to compute standard deviations for prices and exogenous
factors - the forecast demand and forecast wind generation.

5.1. Descriptive Statistics
Figure 5 sets out descriptive statistics for price distributions in the Italian zonal power

markets in the period 2010-2016. They highlight variations in energy prices in the various
zones. A quick glimpse at the prices shows some co-movements in the evolution of energy
prices, which initially confirm the existence of some form of structures in the various zones.
The distribution of log daily volatilities shows non-negative values almost throughout the
sample period. From the various multivariate regression models presented in the previous
section, the error terms of the models are assumed to be drawn from a multivariate Gaussian
distribution. To satisfy this condition, we standardize the log volatility series to a zero mean
and unit variance.

Table 1 gives the descriptive statistics of the daily log-volatility in individual zones in terms
of mean, standard deviation, minimum, maximum, skewness, and excess kurtosis. Sicily and
the South recorded the maximum and minimum daily price volatilities, respectively, over the
sample period. On average, the price volatility in the North zone was lower than that of South.

10Day-ahead prices were downloaded from the website of the Italian Regulator of the electricity market
(GME), www.mercatoelettrico.org. Forecast wind generation of electricity and forecast electricity demand
(one day-ahead horizon) were obtained from the website of the Italian TSO Terna, www.terna.it.
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Figure 5: Time series of average daily prices and log volatilities of the Italian zonal electricity market.

N Mean St.Dev Min Max Skew Ex.Kurt.

NORD 2557 2.4023 0.4872 0.4751 4.1219 -0.3288 0.1207
CNOR 2557 2.4819 0.4908 0.8745 4.0567 -0.2860 0.0164
CSUD 2557 2.5069 0.5084 0.8745 4.0920 -0.2791 -0.1142
SUD 2557 2.4589 0.5101 0.2056 3.8325 -0.2695 -0.0962
SARD 2557 2.6999 0.6465 1.0089 4.7530 0.3106 0.1324
SIC 2557 3.1055 0.7424 -0.7761 6.3674 -1.4152 2.5428

Table 1: Descriptive statistics of the daily log volatility of the individual zones in terms of mean,
standard deviation, minimum, maximum, skewness, and excess kurtosis.

With the exception of Sicily, which appeared to be negatively skewed with higher kurtosis,
the remaining zones have an approximately normal distribution with skewness ranging from
-0.33 to 0.31, and excess-kurtosis ranging between -0.12 and 0.13.

5.2. Zonal Volatility Connectivity
We analyze simultaneous (intraday) and lagged (inter-day) volatility connectivity among

the market zones. The estimated network based on network density, in/out-degree, link
stability and node centrality (see Appendix A for a brief review of network measures) is
discussed by first considering the full-sample period between 2010-2016 and then focusing on
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yearly sub-periods.

5.2.1. Correlation-Based Analysis
Correlation-based analysis is first conducted to shed some light on the relationship between

the price volatilities observed in the various zones. Correlation analysis evaluates the marginal
relationship between a pair of continuous variables. Distinctly from common practice in
the analysis of relations among different zones of the market (see, for instance, Ignatieva
and Trueck, 2016), we compare the correlation matrix with the partial correlations, which
evaluate the conditional relationship between couples of variables taking into account the effect
and contributions of other variables. This comparison highlights the net linear relationship
between couples of zones, excluding the influence of the connection with other zones not
involved in the relationship.

Zones NORD CNOR CSUD SUD SARD SIC
Correlations

NORD 1 0.8902 0.8436 0.7591 0.6352 0.4443
CNOR 0.8902 1 0.9478 0.8564 0.6832 0.4436
CSUD 0.8436 0.9478 1 0.9041 0.7205 0.4823
SUD 0.7591 0.8564 0.9041 1 0.6515 0.4615
SARD 0.6352 0.6832 0.7205 0.6515 1 0.5279
SIC 0.4443 0.4436 0.4823 0.4615 0.5279 1

Partial Correlations

NORD 1 0.5358 -0.0222 -0.0234 0.0515 0.1050
CNOR 0.5358 1 0.6529 0.0121 -0.0138 -0.0991
CSUD -0.0222 0.6529 1 0.5336 0.2322 0.0669
SUD -0.0234 0.0121 0.5336 1 -0.0195 0.0729
SARD 0.0515 -0.0138 0.2322 -0.0195 1 0.2906
SIC 0.1050 -0.0991 0.0669 0.0729 0.2906 1

Table 2: Correlation and partial correlation of volatility of the zonal markets in relation to the full
sample.

The correlation results in Table 2 suggest a positive degree of association between the
zones. A striking feature is that the correlation between Sicily and the other zones appears
to be the lowest. This is followed by the correlation between Sardinia and the rest. The
strongest correlations occur between North and Central North, Central North and Central
South, Central South and Sardinia, and Central South and the South. This is not surprising
given the longitudinal nature of Italy, which simply implies that zones that are close to each
other will tend to be highly correlated. Hence, the further one zone is from an other, the
lower the degree of correlation.

The results of the partial correlations in Table 3 show the degree of association between
pairs of zones conditional on physically connected zones. The table shows that the degree of
association does not change significantly on the basis of the penetration of renewable energy
sources such as forecast wind generation alone (Y |W ) and forecast demand (Y |W,D). The
highest degree of partial correlations among the zones occurs between North and Central
North, Central North and Central South, Central South and South. The price volatility in
the two Islands (Sardinia and Sicily) seems not to be correlated with other zones, including
zones connected through cables, i.e. Sicily with the South and Sardinia with the Central North
zone. Both correlation and partial correlation only show the association between zones, but
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Zones NORD CNOR CSUD SUD SARD SIC
Partial Correlations (Y)

NORD 1 0.45 -0.06 -0.08 -0.01 0.01
CNOR 0.45 1 0.74 0.03 -0.07 -0.04
CSUD -0.06 0.74 1 0.51 0.26 -0.08
SUD -0.08 0.03 0.51 1 0.05 0.17
SARD -0.01 -0.07 0.26 0.05 1 0.31
SIC 0.01 -0.04 -0.08 0.17 0.31 1

Partial Correlations (Y|W)

NORD 1 0.44 -0.06 -0.08 -0.01 0.01
CNOR 0.44 1 0.74 0.03 -0.07 -0.04
CSUD -0.06 0.74 1 0.51 0.26 -0.08
SUD -0.08 0.03 0.51 1 0.05 0.17
SARD -0.01 -0.07 0.26 0.05 1 0.32
SIC 0.01 -0.04 -0.08 0.17 0.32 1

Partial Correlations (Y|W, D)

NORD 1 0.42 -0.05 -0.06 0 0.03
CNOR 0.42 1 0.74 0.03 -0.07 -0.05
CSUD -0.05 0.74 1 0.50 0.26 -0.07
SUD -0.06 0.03 0.50 1 0.05 0.15
SARD 0 -0.07 0.26 0.05 1 0.31
SIC 0.03 -0.05 -0.07 0.15 0.31 1

Table 3: Partial correlations of daily log volatility in the Italian zonal power market, 2014-2016.

do not provide any information about dependencies or the direction of influence between the
zones. That information is provided by network analysis.

5.3. Intraday Volatility Networks
This subsection presents the results of the intraday networks among the zones in the period

2010-2016. First, we analyze the evolution of the yearly network topology for the log price
volatilities denoted by SEM(Y). Figure 6 presents the dynamics of yearly intraday volatility
in the above period. For most of the years, CNOR → NORD, CSUD → SARD, CSUD →
SUD and CSUD → CNOR, the arrows depict the direction of linkage between the zones.
Figure 7 shows network density for each sub-year. The most dense networks are recorded in
2011, 2013 and 2015, and the least dense in 2010.

The ranking of the zones based on in/out-degree measures is presented in Table 4. Highly
(scarcely) connected zones in terms of in/out degree are ranked first (last). The Central South
zone is ranked first in terms of out-degree every year, whilst Sicily was ranked last. In terms
of in-degree, the North ranked first and Sicily last for most of the years considered.

Comparing intraday Network Models
The analysis of rolling-window intraday volatility connectedness over the sample pe-

riod was carried out by comparing networks estimated via SEM(Y) with models that in-
clude exogenous variables, i.e., SEM(Y|W) and SEM(Y|W,D). We estimate SEM(Y|W) and
SEM(Y|W,D) conditional on forecast wind generation and forecast demand. For the purpose
of comparison, we estimate all three models for the sub-period between March 2014 and De-
cember 2016. This allows us us to investigate the impact of the penetration of renewable
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Figure 6: Intraday networks among zones in the Italian electricity market between 2010–2016.
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Figure 7: Intraday network densities for zones in the Italian electricity market between 2010–2016.

energy sources (in our case wind) on volatility connectivity among the market zones in the
last three years (2014-2016) of the sample. We analyze the dynamics in zonal volatility con-
nectedness by considering a yearly (365 days) rolling window estimation. The first rolling
window estimation is from March 1, 2014 to February 28, 2015 and the last is from January
2, 2016 to December 31, 2016 leading to 673 rolling windows altogether.

Table 5 shows the average network matrix for the three different models over the rolling
windows. The top panel represents the average matrix for SEM(Y), the middle is SEM(Y|W)
and the bottom is SEM(Y|W,D). For a clear understanding of the table, the column labels
are represented as explanatory variables and the row labels indicate the dependent variables.
The variables FWG (forecast wind generation) and FD (forecast demand) are zone-specific
attributes.

The table shows a strong and persistent intraday link between some zones among the
various competing models. For example, Central North has a strong impact on the North
in the SEM(Y) and SEM(Y|W) models, but this falls significantly when account is taken of
forecast demand for the North. On the other hand, only forecast demand seems to have a
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Rank 2010 2011 2012 2013 2014 2015 2016
Out-Degree

1 CSUD CSUD CSUD CSUD CNOR CNOR CSUD
2 CNOR CNOR CNOR CNOR CSUD CSUD CNOR
3 NORD SUD NORD SUD NORD SUD SUD
4 SUD NORD SUD NORD SUD NORD NORD
5 SARD SARD SARD SARD SARD SARD SARD
6 SIC SIC SIC SIC SIC SIC SIC

In-Degree

1 NORD NORD NORD NORD SUD SARD NORD
2 SUD CNOR CNOR CNOR NORD NORD CNOR
3 SARD SUD SUD SUD SARD CSUD SUD
4 CNOR SARD CSUD SARD CNOR SUD SARD
5 CSUD SIC SARD SIC CSUD SIC CSUD
6 SIC CSUD SIC CSUD SIC CNOR SIC

Table 4: Ranking of zones based on out/in-degree of intraday volatility connections.

Zones NORD CNOR CSUD SUD SARD SIC FWG FD
SEM(Y)

NORD 0 1 0 0.24 0.02 0.03
CNOR 0 0 0.21 0.09 0 0
CSUD 0 0.56 0 0.23 0 0
SUD 0 0.55 0.66 0 0 0
SARD 0 0.60 0.84 0.16 0 0
SIC 0.09 0 0 0.23 0.24 0

SEM(Y|W)

NORD 0 0.99 0.04 0.08 0.10 0.17 0.12
CNOR 0 0 0.35 0.19 0.07 0 0.19
CSUD 0 0.52 0 0.25 0.16 0 0.01
SUD 0 0.61 0.61 0 0.27 0 0.10
SARD 0 0.62 0.47 0.18 0 0 0.20
SIC 0 0 0.02 0.36 0.28 0 0.64

SEM(Y|W, D)

NORD 0 0.44 0.15 0 0.02 0.25 0.21 1
CNOR 0.49 0 0.24 0.06 0 0 0.22 0.45
CSUD 0.06 0.65 0 0.25 0.13 0 0 0.04
SUD 0.05 0.79 0.52 0 0.14 0.08 0.07 0.39
SARD 0 0.75 0.55 0.48 0 0.18 0.20 0
SIC 0.05 0 0.04 0.36 0.07 0 0.65 0.40

Table 5: Intraday average network matrix. Links are directed from column labels to row labels. FWG
stands for Forecast Wind Generation, which is specific for each zone; and FD denotes the Forecast
Demand for each zone. Boldface values indicate averages above 0.5.

persistent effect on the North. Central South has a strong impact on Sardinia conditional
or not on forecast wind and demand jointly. This effect, however, diminished slightly when
conditional on forecast wind generation alone. Finally, there is no evidence of a simultaneous
effect of any zone on Sicily. However, the only factor that seems to drive volatility in Sicily
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Figure 8: Intraday average threshold network.

is forecast wind generation. Figure 8 shows the resulting network structure of the competing
models when the average network matrix is threshold at 0.5. The common links among the
three models are CNOR → CSUD, CNOR → SARD, CNOR → SUD, and CSUD → SUD.

Rank SEM(Y) SEM(Y|W) SEM(Y|W,D)
Hub Centrality

1 CNOR (1) CNOR (1) CNOR (1)
2 CSUD (0.62) CSUD (0.30) CSUD (0.78)
3 NORD (0) NORD (0) NORD (0)
4 SUD (0) SUD (0) SUD (0)
5 SARD (0) SARD (0) SARD (0)
6 SIC (0) SIC (0) SIC (0)

Authority Centrality

1 SARD (1) SUD (1) SARD (1)
2 SUD (1) NORD (0.77) SUD (1)
3 NORD (0.62) CSUD (0.77) CSUD (0.56)
4 CSUD (0.62) SARD (0.77) NORD (0)
5 CNOR (0) CNOR (0) CNOR (0)
6 SIC (0) SIC (0) SIC (0)

Table 6: Ranking of Hub and Authority centrality of the intraday zonal power market network.
Boldface indicates the most central zone for each metric.

To gain insight into the importance of the zonal structure in the intraday transmission of
risk in the Italian electricity market, we analyze the centrality of the average threshold network
of the three models. The ranking of the zones based on hub and authority centrality is shown
in Table 6. The results reveal that Central North ranks highest in terms of hub centrality, i.e.,
it plays an influential role as a source of risk transmission. It is closely followed by Central
South. Sardinia and South are equal in rank in terms of authority centrality according to the
SEM(Y) and SEM(Y|W,D) models, while SEM(Y|W) ranks South highest. It is, therefore,
safe to conclude that South is the highest ranked authority central zone and consequently is
highly vulnerable to the transmission of risk from other zone.

5.4. Inter-day Volatility Connections
The inter-day volatility network among the zones of the market is analyzed first by esti-

mating the time-lag parameter following the lag selection of the VAR model. The modified
BIC approach is used for graphical VAR models as in Ahelegbey et al. (2016b). Table 7
summarizes the statistics for the time-lag parameter for p ∈ {1, 2, . . . , 7} over the 673 rolling
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windows. The modified BIC favors lag p = 1, since it recorded the minimum average and
median BIC. Thus, the optimal time-lag of dependence among the zones is at most 1 day.

Lag Min Max Median Mean SDev

p=1 2059.18 4800.84 3226.41 3298.67 558.81
p=2 2097.43 4852.13 3291.42 3361.67 543.26
p=3 2126.35 4897.97 3382.17 3435.00 541.85
p=4 2148.49 4940.40 3448.04 3484.96 538.30
p=5 2249.80 5015.45 3545.37 3559.14 527.68
p=6 2236.92 5054.32 3482.44 3546.51 580.38
p=7 2300.54 5082.37 3540.47 3592.62 538.04

Table 7: Distribution of the time-lag parameter of dependence among zones in the period 2010-2016.

Using the estimated time-lag parameter, we analyze the inter-day network by investigating
the years between 2010-2016. VAR(Y) represents the lagged multivariate model for log price
volatilities. Figure 9 shows the yearly inter-day volatility network among the zones in 2010-
2016.
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Figure 9: Inter-day networks among Italian zonal energy markets for sub-years from 2010 to 2016.

The 2011 and 2014 networks in the figure show Sicily and Sardinia as highly connected
with outgoing links, whilst the 2015 network shows Central South as highly connected with
incoming links. Figure 10 shows a plot of the network density for each year. The densest
networks were in 2014, followed by 2011 and 2015.

Table 8 shows the ranking of the zones in the inter-day networks based on in/out-degree
measures. For out-degree, there are different top ranked zones for each of the years between
2010-2016 with Central South dominating in 2012 and 2013. For in-degree, the North dom-
inates in three years (2010, 2011, 2014) whilst Central South is highly ranked in 2015 and
2016. In both the in- and out-degree ranking, Sicily is lowest and Sardinia second lowest.
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Figure 10: inter-day networks among Italian zonal energy markets for sub-years from 2010 to 2016.

Rank 2010 2011 2012 2013 2014 2015 2016
Out-Degree

1 NORD SIC CSUD CSUD SARD SUD CNOR
2 CNOR CSUD NORD SUD CNOR NORD NORD
3 CSUD SUD CNOR SARD CSUD SARD CSUD
4 SUD NORD SUD NORD NORD CNOR SUD
5 SARD CNOR SARD CNOR SUD CSUD SARD
6 SIC SARD SIC SIC SIC SIC SIC

In-Degree

1 NORD NORD CNOR SIC NORD CSUD CSUD
2 CNOR CNOR SUD CSUD CNOR CNOR SARD
3 CSUD CSUD SARD NORD CSUD SUD NORD
4 SUD SUD NORD CNOR SUD SARD CNOR
5 SARD SARD CSUD SUD SARD NORD SUD
6 SIC SIC SIC SARD SIC SIC SIC

Table 8: Ranking of zones based on out/in-degree in inter-day volatility connections.

Comparing inter-day Network Models
Comparing inter-day network models, we analyze the rolling-window inter-day volatility

connectedness over the sample period by comparing networks estimated from VAR(Y) with
models that include exogenous variables, i.e., VAR(Y|W) and VAR(Y|W,D). VAR(Y|W) and
VAR(Y|W,D) are estimated by incorporating covariates like forecast wind generation and
forecast demand. In this paradigm, we estimate the rolling-window network for all three
models between March 2014 and December 2016, which enables us to investigate the impact
of the penetration of renewable energy sources (in our case wind) on inter-day volatility con-
nectivity between the zones of the market in the last three years (2014-2016) of the sample. As
for the intraday models, we analyze the dynamics in inter-day zonal volatility connectedness
by considering a yearly (365 days) rolling window. One rolling window estimation goes from
March 1, 2014 - February 28, 2015 and the other from January 2, 2016 - to December 31,
2016. Table 9 shows the averaged inter-day network matrix for competing models over all the
rolling windows. The top panel represents the average matrix for VAR(Y), the middle panel
is VAR(Y|W) and the bottom panel is VAR(Y|W,D). Again, the column labels represent the
explanatory variables and the row labels the dependent variables. Columns FWG and FD
are forecast wind generation and forecast demand for each specific zone.
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Zones NORD CNOR CSUD SUD SARD SIC FWG FD
VAR(Y)

NORD 1 0 0.12 0.22 0.18 0.22
CNOR 0.55 0.51 0.24 0.54 0.33 0.21
CSUD 0.43 0.47 0.36 0.55 0.48 0.23
SUD 0.03 0.36 0.09 0.78 0.41 0.32
SARD 0.19 0.21 0.13 0.53 0.59 0.43
SIC 0.07 0 0 0.14 0.21 1

VAR(Y|W)

NORD 1 0.03 0.15 0.34 0.18 0.25 0.05
CNOR 0.60 0.52 0.29 0.56 0.40 0.22 0.11
CSUD 0.54 0.51 0.47 0.60 0.51 0.26 0.09
SUD 0.07 0.38 0.13 0.82 0.48 0.38 0
SARD 0.36 0.24 0.23 0.60 0.64 0.44 0
SIC 0.08 0 0 0.14 0.23 1 0.55

VAR(Y|W, D)

NORD 1 0.05 0.17 0.51 0.18 0.30 0.06 0.78
CNOR 0.61 0.53 0.39 0.58 0.45 0.23 0.13 0.33
CSUD 0.54 0.51 0.66 0.61 0.54 0.27 0.11 0.17
SUD 0.11 0.39 0.15 0.84 0.50 0.36 0.01 0.11
SARD 0.41 0.27 0.39 0.60 0.65 0.46 0 0
SIC 0.10 0 0 0.15 0.22 1 0.56 0.15

Table 9: Inter-day average network matrix. The arrows are directed from column labels to row labels.
FWG: Forecast Wind Generation specific for each zone; FD: Forecast Demand specific for each zone.
Boldface indicates the most central zone for each metric.
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Figure 11: Inter-day average threshold networks.

From the table, it is evident that there are strong and persistent autoregressive effects
(self-loop) in most of the zones with the exception of Central South. The autoregressive
effect for Central South becomes significant only when conditioned on both forecast wind and
demand (see, lower panel of Table 9). In terms of cross-lag connections, North affects Central
North in the VAR(Y) model. The effect of North and Central North on Central South only
persists when the VAR model is conditioned on forecast wind and demand. South has a
persistent lagged effect on other zones except North and Sicily. The effect of South on North
changes when conditioned on forecast wind and demand. Sardinia, on the other hand, had
a fairly persistent lagged effect on Central South and South when forecast wind and demand
are taken into account. Figure 11 shows the network structure of competing models when
the average network matrix has a threshold of 0.5. In the three networks, the strongest links
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among the three models are NORD → CNOR, SUD → (SARD, CNOR, CSUD).

Rank VAR(Y) VAR(Y|W) VAR(Y|W,D)
Hub Centrality

1 SUD (1) SUD (1) SUD (1)
2 NORD (0.41) NORD (0.82) NORD (0.68)
3 CNOR (0) CNOR (0.50) SARD (0.49)
4 CSUD (0) SARD (0.50) CNOR (0.41)
5 SARD (0) CSUD (0) CSUD (0)
6 SIC (0) SIC (0) SIC (0)

Authority Centrality

1 CNOR (1) CSUD (1) CSUD (1)
2 CSUD (0.71) CNOR (0.65) CNOR (0.65)
3 SARD (0.71) SARD (0.35) NORD (0.39)
4 SUD (0) SUD (0) SARD (0.39)
5 NORD (0) NORD (0) SUD (0.19)
6 SIC (0) SIC (0) SIC (0)

Table 10: Ranking betweenness, Hub and Authority centrality for the intraday zonal power market
network. Boldface indicates the most central zone for each metric.

The centrality of the average threshold inter-day network of the three models is shown
over the sample period. Table 10 shows the ranking of the zones based on hub and authority
centrality metrics. The South is the highest ranked zone in terms of hub centrality, i.e., it plays
an influential role (source) in inter-day risk transmission. For authority centrality, Central
North ranks highest in the VAR(Y) but is second highest in relation to Central South when
account is taken of the impact of the penetration of renewable energy sources on volatility
connectivity between the zones of the market.

5.5. Comparing Model Performance
With regard to the model performance, we compare the explanatory power of the esti-

mated intraday and inter-day network models by employing the network BIC to analyze the
contributions of the penetration of renewable energy sources.

Min Max Median Mean Stdev
intraday Network BIC

SEM(Y) 2441.90 3839.68 3026.53 3116.20 356.49
SEM(Y|W) 2480.59 3897.87 3055.41 3150.69 367.67
SEM(Y|W,D) 2504.45 3937.89 3081.67 3197.81 379.08

inter-day Network BIC

VAR(Y) 2059.18 3286.31 2705.85 2705.82 265.39
VAR(Y|W) 2129.19 3326.76 2744.60 2746.28 262.73
VAR(Y|W,D) 2175.47 3393.37 2784.39 2805.83 278.11

Table 11: Summary Statistics of network BIC.

Figure 12 shows the time series of the network BIC for intraday and inter-day models. The
plots show similar performance for the competing models. Table 11 summarizes statistics for
the network BIC. On average, the SEM(Y) and VAR(Y) models record the minimum BICs,
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Figure 12: Time series plot of the network BIC.

which indicates that both models perform well accurately capturing the intraday and inter-
day volatility linkages in the Italian zonal electricity market. Although the penetration of
renewable sources helps explaining the volatility dynamics in some zones, the models with
these variables are outperformed by the models without exogenous variables.

6. Conclusions

This paper innovatively and successfully uses the Bayesian graphical model to investigate
risk propagation in the Italian electricity market, accounting for volatility interconnections
between the physical zones in the electricity market. Our analysis provides a better under-
standing of and insight into the spread of risk among different zones in the market. For
instance, imbalances of energy supply and demand due to operational failures, congestion
and other causes of shocks such as the penetration of more renewables in these interconnec-
tions are likely to affect the stability and efficiency of the energy supply. In view of this, our
framework includes two cases: modeling interdependencies with exogenous variables (fore-
cast demand of electricity and forecast wind generation), and (ii) modeling interdependencies
without exogenous variables. All in all, the modeling without exogenous variables via the
graphical network model provides a better network structure based on network Bayesian in-
formation criteria. The fact that exogenous variables play no significant role in influencing
the direction and spread of risks confirms the results of Bigerna et al. (2017), who empirically
show that no changes occur in the interdependence mechanism. The NORD zone suffers no
contagion effects due to the development of renewable energy sources in Italy.

These findings show that CNOR plays a dominant role in the spread of risk among the var-
ious interconnections in the period 2014-2016, whilst CSUD helps to mitigate risk propagation
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between the zones in the market by highlighting the various risk network structures present
in the zones of the market. Indeed, this indicates that network analysis and its application
to systemic risk is promising, providing a platform to meet current and future challenges and
solutions to the problems of society and emerging risk. It may also indicate when a crisis is
at its peak and when it ends. For instance, linkages between the spread of systemic risk in
energy systems and the penetration of more renewable energy sources are extremely relevant,
especially in an effort to create of a single European power market incorporating bidding
zones.

Furthermore, these findings are relevant for policymakers because they provide a unique
way of visualizing and quantifying the extent of exposure to risk and the spread of systemic
risk in the zonal market. They also establish a platform for identifying the spread of systemic
risk providing a support mechanism for the design of optimal environmental and energy
policies by prudently including early warning and local investment signals. It is also useful
for risk managers and other practitioners in their efforts to anticipate and prepare for a crisis
in the electricity market as well as other commodity markets, increasing the resilience of the
electricity market. Finally, given this amount of information, market participants are able to
take prudent decisions in their trading and dealings in the zonal power market. In this light,
our analysis could be extended to modeling other segmented commodity markets. however,
it is not without shortcomings, which mostly lie in the lack of information on other sources
of shock such as the increase in the penetration of renewable energy sources over the years.
With more available data the analysis could be extended to accommodate calendar effects
and their impacts and hence, provide a benchmark for future research.
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Appendix A. Network Analysis

This section briefly describes the network analysis measures considered in the paper.

Network Density
The density of a network measures the number of estimated links in the network divided by

the total number of possible links. For n number of zones and given that out estimate network
is a directed network, there are n(n−1) possible links (without self-loops). Standard applica-
tions indicate that the higher the network density, the higher the degree of interconnectedness
of the markets. Denser networks have been shown to provide risk sharing mechanisms among
institutions as well as shock propagation and spill-over into markets (Acemoglu et al., 2015;
Elliott et al., 2014; Glasserman and Young, 2016).

In/Out-Degree
The concept of in/out-degree in network analysis is crucial to understand the most con-

nected zone in terms of risk transmission. The In-degree of say zonei measures the total
number of links directed toward zonei, while the Out-degree measures the total number of
links from zonei to the others. The higher the out-degree (in-degree), the higher the influence
(vulnerability) of a zone in the network.

Link Stability
We conduct a stability analysis to investigate the survival/persistence of links in the es-

timated networks. This is carried out by averaging the estimated network over the rolling
windows which produces a weighted adjacency matrix where the weights represent probabili-
ties. In this application, we threshold the average network matrix by considering a link to be
stable (or persistent) when the edge probability is over 0.5.

Node Centrality
In network analysis, node centrality measures the importance of a node in the network.

In our analysis, we focus on two main centrality measures, i.e., hub and authority. Hub
and authority centrality distinguishes between prominent senders and receivers of risk in the
zonal volatility network. These centrality measures assign a score to each zone in a way that
is proportional to the scores for importance of neighbors. Given an adjacency matrix A where
links are directed from column to row labels, the hub and authority score require the following
problem to be solved:

(A′A) hv = λhhv, (AA′) av = λaav, (A.1)

where hv and av are the hub score and authority score vectors, respectively, and λh and λa
are the largest eigenvalue of A′A and AA′, respectively. A zone with a high hub score is
well connected and a prominent sender of risk in the network, whereas a zone with a high
authority score is heavily dependent on the hub and very vulnerable in the case of a negative
shock on hub counterparties.
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