
ISSN: 2281-1346 

 

 

 

 

 

 

DEM Working Paper Series 

 

 

Market Risk, Connectedness and 

Turbulence: A Comparison 
of 21st Century Financial Crises 

 

Daniel Felix Ahelegbey  
(Boston University) 

(Università di Pavia) 

 

Paolo Giudici 
(Università di Pavia) 

 

  
 

# 188 (05-20) 

 

 

Via San Felice, 5 

I-27100 Pavia 
 

 economiaweb.unipv.it 

http://economiaweb.unipv.it/


Market Risk, Connectedness and Turbulence: A Comparison
of 21st Century Financial Crises

Daniel Felix Ahelegbeya,b,∗, Paolo Giudicib

aDepartment of Mathematics and Statistics, Boston University, USA
bDepartment of Economics and Management, University of Pavia, Italy

Abstract

We construct a network-based turbulence score that proves useful for analyzing the rela-
tionship between financial interconnectedness, and global market risk, and for identifying
systemically important markets, with the highest contribution to financial turbulence. We
apply our measure to study the integration among the major stock markets over the first two
decades of the 21st century, particularly during the tech, sub-prime, and ongoing COVID-19
crises. The result shows that the interconnectedness of the markets amplifies initial global
market risks (on average almost four times), to cause financial turbulence. We also found
evidence that the United States is central to global market turbulence, followed by Brazil,
France, Hong Kong, and Germany.
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1. Introduction

The reaction of world economies to the global pandemic, caused by the widespread of
the novel coronavirus (COVID-19), has reignited discussions on the fragility/resilience of the
financial system to turbulent events of such magnitude. The debate has centered on whether
a financial system with dense market interconnections is more vulnerable/resilient to shocks.
On one hand, a considerable number of studies, beginning with Allen and Gale (2000) and
Freixas et al. (2000), support the conclusion that densely connected markets are more resilient
to financial turmoil. Their argument is based on the premise that higher connectedness pro-
vides an avenue for risk-sharing and diversification, thereby improving financial stability. In
contrast, the works by Billio et al. (2012); Blume et al. (2013) among others, show that dense
financial network creates a vulnerable system for risk propagation. While these two streams of
literature provide an opposing conclusion on dense financial networks, recent studies by Hal-
dane (2013) and Acemoglu et al. (2015) show that dense market connections may be viewed
as a “robust-yet-fragile” system, in the sense that when the magnitude of shocks is within a
certain range, the connections serve as shock-absorbers. Beyond a tipping point, these links
act as shock-amplifying channels for a systemic meltdown.

The above debate inspires the first two research questions (RQ) of our current work:
(RQ-1) does a densely interconnected market reduce or amplify the financial risks caused by
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shock events?; and (RQ-2) Is there a threshold level of risk beyond which financial connection
channels serve as shock-amplifiers?

Another topical issue in financial contagion studies is the identification of “systemically
important” financial entities. These are countries, markets or institutions whose failure affects
the entire financial system. Identifying such entity is of great importance to regulators, poli-
cymakers, and researchers for the formulation of regulations. Various definitions of systemic
importance have been put forth in the literature on network centrality measures (Bonacich,
1972; Faust, 1997; Freeman, 1978; Newman, 2010) and systemic risk (Avdjiev et al., 2019;
Billio et al., 2012; Borgatti and Everett, 2006; Diebold and Yilmaz, 2014). To some, centrality
is measured by the number of connected counterparties (degree). For others, the importance
is portrayed by the location of an entity in the network (betweenness or closeness), and to
some, centrality depends on the importance of an entity’s counterparties (eigenvector central-
ity, authority, hub). While these centrality measures have proved helpful, they only focus on
the network properties without the relevance of an entity’s risk, except Härdle et al. (2016).

The above open issue motivates our third research question: (RQ-3) which major financial
market is central to the creation of financial turbulence?

We begin by modeling the return network of the world’s major stock market indices
as a vector autoregression residual structural equation model (VAR-RSEM). The choice of
the equities market is inspired by the fact that it is at the heart of the world’s financial
system, and most investors look at these markets for assets to diversify their exposures and
for portfolio growth. The choice of the VAR-SEM is motivated by the necessity to model
structural serial and cross-lagged dependence in multivariate financial time series, as in the
VAR models of (Barigozzi and Brownlees, 2019; Basu and Michailidis, 2015; Billio et al.,
2012; Diebold and Yilmaz, 2014). We extend VAR models with a network structure that is
estimated via a Bayesian approach. This allows us to deal with the uncertainty in network
link prediction by incorporating relevant prior information and applying model averaging,
as in the works of Ahelegbey et al. (2016a,b); Carvalho et al. (2007); Carvalho and West
(2007). To infer the network, we build on the Bayesian graphical VAR (BGVAR) in Ahelegbey
et al. (2016a,b) by applying a sequential algorithm that samples the lag structure and, then,
the contemporaneous connections. Unlike the previous algorithm that draws the network
separately from their marginal posterior probabilities, the current approach is sequential and
improves computational efficiency, making it scalable to high dimensional models.

We address the research questions by extending the Mahalanobis measurement of Kritz-
man and Li (2010) to construct a network-based financial turbulence index from the intricate
interaction between the interconnections and risks. Our turbulence index has three key fea-
tures. One, our index is a score of the level of disruptions in global financial markets across
time. Thus, it signals the direction of financial markets and provides early warnings for in-
vestors to avoid trading in certain assets during turbulent times. Our turbulence index is in a
way related to systemic risk measurements but very distinct from it. For various systemic risk
measures see (Adrian and Brunnermeier, 2016; Banulescu and Dumitrescu, 2015; Billio et al.,
2012; Brownlees and Engle, 2017; Diebold and Yilmaz, 2014; Huang et al., 2012; Kritzman
et al., 2011). The difference, however, lies in the fact that systemic risk indices assign a score
to the level of vulnerability embedded in the system, while our turbulence index measures
the severity of disruptions to the system, which can be caused by internal or external shocks.

The second feature of our turbulence index is that it decomposes into a product of two
indicators, namely, risk and network effect. The risk effect records the magnitude of initial
global market risk, and the network effect is the degree to which interconnectedness among
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markets intensifies or weakens the initial global market risks. Closely related concepts to this
decomposition are the magnitude and correlation surprise in Kinlaw and Turkington (2013).

The third feature of our proposed index is that it decomposes into marginal turbulence
contribution (MTC) and systemic sensitivity to individual risk (SSIR), with both measures
shown to be useful when assessing the relevance of a market to financial turbulence. We define
MTC as the score of each financial market’s contribution to the overall turbulence index and
SSIR as the responsiveness of the system to a small change in an individual market’s risk.

These three features outline our contribution to answering our research questions. One,
we study the evolution between our network-based turbulence index and standard network
density to answer (RQ-1). Two, we monitor the risk effects to identify the threshold of
global market risks beyond which dense financial connections serve as shock-amplifiers, thus,
answering (RQ-2). Finally, we rank the two market indicator measures to assess the relevance
of each market to financial turbulence, thus answering (RQ-3).

We apply our proposed model to study the equities market by considering the 20 major
stock market indices, selected for their market capitalization, covering countries across the
Americas, Asia-Pacific, and Europe. The dataset consists of daily close prices from January
2000 to March 2020. The result shows that the correlation between network density and our
turbulence index is 0.5565, which indicates a positive relationship between the two indices.
Thus, densely interconnected networks amplify financial risks, thereby confirming the results
of Billio et al. (2012); Blume et al. (2013). From the full sample analyzed, the highest risk
effect recorded was 29.2 of returns (in October 2008), followed by 22.5 of returns (in March
2020), which coincide with the global financial crisis, and the ongoing COVID-19 pandemic,
respectively. The network effect during these times was 4.9 and 4.1, respectively, which
suggests that market interconnections played a significant role in amplifying the initial shock
events. We standardized the risk and network effect indices and applied them as a barometer
to study the tipping point in financial turbulence measurement. The result shows that when
risk effect is above 2.0 of returns, and the network effect is beyond the mean value of 3.9,
financial connection channels serve as shock-amplifiers leading to global market disruption.
The centrality analysis shows that the US market is the most influential, and small changes
in its risk causes the highest financial turbulence. In terms of turbulence contribution, the
US is the first, followed by Brazil, France, Hong Kong, and Germany. The result also shows
that, although Brazil has a higher contribution to turbulence than France, a small change in
the risk of the French market has a higher turbulence amplification than that of Brazil.

The organization of the paper is as follows. In Section 2, we introduce the VAR-RSEM
model and our proposed measure of turbulence. We discuss model estimation and network
selection in 3. We present a description of the data in Section 4 and report the results in
Section 5. Section 6 concludes the paper with a final discussion.

2. VAR-RSEM Models and Turbulence Measures

Before discussing the VAR-RSEM models and turbulence measures, we briefly introduce
the general concept of network models and centrality measures.

2.1. Network Models and Centrality Measures
A network model is a convenient representation of the relationships between a set of n

statistical variables (such as market returns). It is defined by the pair (V,E), in which the
set of vertices (nodes) V contains the n variables and the set of edges (links) E describes
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the statistical relationships between a pair of variables. In many network applications, the
links are directed edges, representing statistical dependencies between the variables. In this
representation, the relationships between variables can be summarized as a zero diagonal
adjacency matrix A, determined by a latent binary indicator Gij ∈ {0, 1} that denotes the
presence/absence of a link between nodes such that for i, j = 1, . . . , n,

Aij = 0 if Gij = 0 =⇒ Yj 6→ Yi
Aij , 0 if Gij = 1 =⇒ Yj → Yi

(1)

where Yj 6→ Yi means that Yj does not influence Yi.
A key feature of network models in financial contagion analysis is their usefulness in

summarizing how densely connected are the institutions, and to identify which units are
critical (or central) to the robustness or fragility of the system. The density of a network is
the number of links in the estimated network divided by the total number of possible links:

Dnet = 100× 1
n(n− 1)

∑
i

∑
j

Aij (2)

The centrality of institutions in a network is measured by assigning centrality scores to the
nodes in the network. Degree is the commonest measure of centrality obtained by counting
the number of counterparties connected to an institution. More formally, the in-degree of
node-i, ←−D i, and the out-degree of node-j, −→D j , are defined by:

←−
D i =

∑
j

Aij ,
−→
D j =

∑
i

Aij (3)

where ←−D i (
−→
D j) counts the number of links directed towards node-i (going out of node-j).

Other metrics for criticality assessment of institutions for financial contagion are eigen-
vector centralities (hubs and authorities). This centrality measure computes the importance
score of an institution by considering the importance of its counterparties. For example, the
hub and authority centrality measures assign a score to nodes by solving the following:

(A′A) h = λhh, (AA′) a = λaa, (4)

where h and a are the hub score and authority score eigenvectors, corresponding to λh and
λa, the largest eigenvalues of A′A and AA′ respectively.

From a financial contagion viewpoint, nodes with the highest in-degree are liable to be
influenced and those with high out-degree are “influencers”. However, nodes with the highest
hub measures indicate high “transmitters” of risk, while nodes with high authority values are
“receivers” or risk (see Billio et al., 2012; Borgatti and Everett, 2006; Diebold and Yilmaz,
2014). The above-described measures only focus on the properties of the network without
considering the relevance of institutional risks. Thus, they tend to overestimate or underesti-
mate the criticality of institutions in financial contagion analysis. The objective of this work
is to construct a network-based measure of criticality using an econometric model.

2.2. A VAR-RSEM Model
Let Yt = (Y1,t, . . . , Yn,t) be an n-variable vector of observed market returns at time t,

where Yi,t is the time series of variable-i at time t. We model the dynamics of Yt as a vector
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autoregression residual structural equations model (VAR-RSEM) given by

Yt =
p∑

k=1
Bk Yt−k +Rt (5)

Rt = B0 Rt + εt (6)

where Bk is an n× n coefficients matrix such that Bijk capture the effect of Yj on Yi with a
lag of k, Rt is a vector of reduced-form residuals, B0 is a contemporaneous coefficients matrix
such that Bij0 records the instantaneous effect of a shock to Yj on Yi, εt is the vector of error
terms at time t that quantifies the factors that are not considered in the model, and it is
assumed to be independent and identically distributed as a multivariate normal distribution
with zero mean and a diagonal covariance matrix Σε = diag{σ2

εi
}.

The formulation above is a variant of the general structural VAR model, a convenient
framework for analyzing and forecasting out-of-sample observations of multiple time series.
The objective of the model is to estimate the matrices (B0, B1:p,Σε) employing the avail-
able data. The VAR-RSEM parameters can be obtained by specifying the contemporaneous
structure of the system (6) after model (5) is estimated. Model (5) is a reduced-form VAR
approximation of n systems of equations with the i-th equation expressing the dependence of
the i-th variable on its lag and the cross-lag effects of the remaining n−1 variables. Model (6)
is a Residual Structural Equation Model (RSEM) representation with a system of n equations
where the i-th equation represents the i-th VAR residuals expressed as a contemporaneous de-
pendence on the remaining n−1 residuals. Within the VAR-RSEM formulation, the matrices
B0 and B1:p, are of crucial importance to understand the channels of shock transmission.

2.3. A Network VAR-RSEM Model
The introduction of networks in VAR models helps to interpret the relationships in the

model (Ahelegbey et al., 2016a,b; Barigozzi and Brownlees, 2019; Basu and Michailidis, 2015).
For the VAR-RSEM model in (5) and (6), network nodes correspond to the observed vari-
ables. The links between the nodes correspond to significant contemporaneous or temporal
dependencies, with weights measuring the estimated contemporaneous or lagged coefficients.
To formalise this representation, we extend the specification of the adjacency matrix in (1)
as follows. Let Gijl ∈ {0, 1} be a latent binary indicator that denotes the presence/absence
of a link between nodes such that for i, j = 1, . . . , n, and l = 0, 1, . . . , p:

Bijl = 0 if Gijl = 0 =⇒ Yj,t−l 6→ Yi,t
Bijl , 0 if Gijl = 1 =⇒ Yj,t−l → Yi,t

where Yj,t−l 6→ Yi,t means that Yj does not influence Yi at lag l, including l = 0, which
correspond to contemporaneous dependence. We then define two n×n zero diagonal adjacency
matrices, AW and AU , whose ij-th element is given by:

AWij =
{

0, if Gijl = 0, ∀l∑p
l=0Bijl, if ∃! l : Gijl = 1 , AUij =

{
0, if AWij = 0 =⇒ Yj 6→ Yi
1, if AWij , 0 =⇒ Yj → Yi

(7)

where AW is a weighted adjacency matrix, and AU is an unweighted binary indicators matrix.
AUij in (7) specifies that any two variables, (Yi, Yj), are connected by a directed link from Yj
to Yi if there exist at least one VAR-RSEM coefficient, contemporaneous or lagged, that
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is significantly different from zero. The matrix AW reports the adjacency matrix with the
associated weights obtained as a sum of the estimated coefficients.

Following (5), (6) and (7), a network VAR-RSEM model is fully specified by the parame-
ters (p,G,B,Σε) where p is the lag order; G = {G0, G1:p} determines the network structure;
B = {B0, B1:p} specifies the coefficients associated with that structure and Σε is the resid-
ual variance. Note that (G0, B0) represents the contemporaneous part of the model and
(G1:p, B1:p) the temporal part.

The available literature on financial networks is typically focused either on structural
learning or on quantitative learning. In the former case, it insists on learning G and deriving
summary centrality measures, as in the work of (Battiston et al., 2012; Giudici and Spelta,
2016). In the latter case, it insists on learning B and drawing inferences from it (Billio
et al., 2012; Diebold and Yilmaz, 2014). The two approaches seem not to overlap except for
Ahelegbey et al. (2016a,b); Corander and Villani (2006); George et al. (2008). The proposed
Network VAR-RSEM models follow the spirit of the latter.

In the next section, we introduce the model estimation framework necessary to estimate all
parameters of a network VAR-RSEM model. Before doing so, we introduce a set of network
summary measures that are interpretable from a financial viewpoint and that can thus be
employed to answer our research questions.

2.4. Network-Based Turbulence Measures
We begin by presenting the Mahalanobis turbulence measure proposed in Kritzman and

Li (2010), which has been shown to provide a good representation of financial risks during
periods of market turmoil. The measure constructed by the authors can be expressed as:

dt = (Yt − µ)′Σ−1
Y (Yt − µ) = tr(Σ−1

Y St) (8)

where dt indicates the turbulence measure at time t, Yt is a n × 1 vector of returns, µ is a
n× 1 mean returns vector, ΣY is the n×n covariance matrix, calculated over the whole time
period, tr() is the trace operator (the sum of the diagonal elements) and St = (Yt−µ)(Yt−µ)′
is the n× n inner product matrix.

Equation (8) consists of two main components: the return partial correlations (captured
by Σ−1

Y ) and the return standard deviations (captured by St). Note that, in the definition,
the partial correlation matrix Σ−1

Y does not have constraints on its elements. From a network
perspective, this corresponds to a full adjacency matrix (that is, AW with no off-diagonal
zeros elements). We propose to replace the full adjacency matrix with a constrained one
that can be obtained from the estimated AW . Thus, we extend the Mahalanobis turbulence
measure, without loss of generality and reference to a specific time point.

Proposition 1. Consider n return variables Y = (Y1, . . . , Yn), with standard deviations
σ(Y ) = (σ1, . . . , σn). Assume the inner-product Sσ = σ(Y )σ(Y )′ describes the risks of the
returns, and Ω = (I + AW )′(I + AW ) is their constrained partial correlations matrix. A
systemic turbulence measure (T sys) can then be obtained replacing in (8) Σ−1

Y with Ω:

T sys = 1
n
tr (ΩSσ) = 1

n

∑
i

Ψii (9)

where Ψ = ΩSσ. From (9) note that the turbulence score decomposes in two main compo-
nents. The matrix Sσ has individual variances on the main diagonal and products of pairs of
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standard deviations on the off-diagonal.
To better understand the structure of these two matrices, consider an n = 3-dimensional

vector (i, j, k) with standard deviations σ(Y ) = (σi, σj , σk). We then have:

I +AW =

 1 aij aik
aji 1 ajk
aki akj 1

 , Sσ =

 σ2
i σiσj σiσk

σjσi σ2
j σjσk

σkσi σkσj σ2
k


Ω =

 1 + a2
ji + a2

ki aij + aji + akiakj aik + ajiajk + aki
aij + aji + akjaki a2

ij + 1 + a2
kj aijaik + ajk + akj

aik + ajkaji + aki aikaij + ajk + akj a2
ik + a2

jk + 1


where Ωij = (aij + aji + akiakj) is the weight of the undirected link between i and j. Note
that Ωij = 0 if and only if i and j are not directly related (aij = aji = 0) and both variables
are not related through k (i.e either aki = 0 or akj = 0). In network terminology, aki , 0
means that k is a child of i, and akj , 0 means that k is a child of j. Thus, if k is a child of
both i and j, then i and j are both parents of k. So even though i and j may not be directly
related (aij = aji = 0), they may be conditionally related through k if aki , 0 and akj , 0.
The systemic turbulence, T sys = 1

ntr (ΩSσ) is then computed as

T sys = 1
n
tr


Ωii Ωij Ωik

Ωji Ωjj Ωjk

Ωki Ωkj Ωkk


 σ2

i σiσj σiσk
σjσi σ2

j σjσk
σkσi σkσj σ2

k




= 1
n

[
Ωiiσ

2
i + Ωjjσ

2
j + Ωkkσ

2
k + 2Ωijσiσj + 2Ωikσiσk + 2Ωjkσjσk

]
(10)

In this application, we study the evolution between our systemic turbulence index in (9)
and standard network density in (2) to answer the first research question (RQ-1).

An important feature of our turbulence index is that it decomposes into two further useful
measures, namely, risk (Proposition 2) and network effect (Proposition 3).

Proposition 2. From (9), a risk effect measure (Rsys) can be obtained as:

Rsys = 1
n
tr (Sσ) = 1

n

n∑
i=1

σ2
i . (11)

Note that Rsys can be viewed as the initial global market risk computed by averaging the
risks of different markets from the turbulence score in (9) when all off-diagonal elements in
AW are set to zero. We remark that the Rsys measure is a variant of the magnitude surprise
of Kinlaw and Turkington (2013).

Proposition 3. From (9), a network effect measure (N sys) can be obtained as:

N sys = T sys

Rsys
= tr (ΩSσ)

tr (Sσ) . (12)

Note that N sys measures the degree to which interconnectedness intensifies or weakens initial
global market risks. The network effect can also be linked to the correlation surprise in Kinlaw
and Turkington (2013). Thus, it isolates the effect of interconnectedness in the turbulence
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score. Clearly, the network intensifies the initial risks when N sys > 1, and weakens it with
N sys < 1.

Corollary 1. From Proposition 3, the systemic turbulence score decomposes into:

T sys = N sysRsys (13)

where Rsys expresses initial market risks and N sys is how such risks are “amplified” in the
system through interconnectedness.

In this study, we monitor the risk effects to identify the threshold of global market risks
beyond which dense financial connections serve as shock-amplifiers, and thus, answering our
second research question (RQ-2).

Another vital feature of the turbulence index in (9) is that it decomposes into marginal
turbulence contribution (MTC: Proposition 4) and systemic sensitivity to individual risk
(SSIR: Proposition 5), with both measures shown to be useful when assessing the relevance
of an institution to financial turbulence. We define MTC as the score of each institution’s
contribution to the overall turbulence index, and SSIR as the responsiveness of the system to
a small change in an institution’s risk. See the following propositions for details.

Proposition 4. The marginal turbulence contribution of institution-i (denoted by M sys
i ) is

the difference between T sys and T sys−i (the turbulence calculated without i), given by:

M sys
i = 1

n
Ψii u T sys − T sys−i (14)

Proof. To establish the above relationship, we begin with the right-hand-side (RHS)

T sys − T sys−i = T sys − 1
n
tr
[(

Ωjj Ωjk

Ωkj Ωkk

)(
σ2
j σjσk

σkσj σ2
k

)]
= Ω[i,:][:,i]Sσ (15)

where Ω[i,:][:,i] is the i-th row and column of Ω and zeros elsewhere. Thus,

T sys − T sys−i = 1
n
tr
(
Ω[i,:][:,i]Sσ

)
= 1
n
tr


Ωii Ωij Ωik

Ωji 0 0
Ωki 0 0


 σ2

i σiσj σiσk
σjσi σ2

j σjσk
σkσi σkσj σ2

k




= 1
n

[
(Ωiiσ

2
i + Ωijσjσi + Ωikσkσi) + Ωjiσiσj + Ωkiσiσk

]
(16)

where Ωij = Ωji and Ωik = Ωki due to the symmetry of Ω.
It is expected that the turbulence index must equal the sum of all institution’s contribution

to the overall index. However, in general and according to the expression in (10) and (16),
T sys ,

∑
i(T sys−T

sys
−i ). This is due to the fact that the terms Ωjiσiσj and Ωkiσiσk are double

counted. To achieve equality, the common approach is to introduce a matrix, Θ, with unit
diagonal elements (θii = 1) and whose off-diagonals are such that (θij + θji = 1) (see Li et al.,
2013, for details). The matrix Θ is used to transform Ω[i,:][:,i] through the following

Ω̃[i,:][:,i] = Ω[i,:][:,i] ◦Θ =


Ωii Ωij Ωik

Ωji 0 0
Ωki 0 0

 ◦
 1 θij θik
θji 1 θjk
θki θkj 1


 (17)

8



where (◦) is the element-by-element Hadamard product. A simple choice for θij = θji = 0.5.
Through the above transformation, the RHS expression of (14) can be obtained as

T sys − T sys−i = 1
n
tr
(
Ω̃[i,:][:,i]Sσ

)
= 1
n
tr


 Ωii θijΩij θikΩik

θjiΩji 0 0
θkiΩki 0 0


 σ2

i σiσj σiσk
σjσi σ2

j σjσk
σkσi σkσj σ2

k




= 1
n

[
(Ωiiσ

2
i + θijΩijσjσi + θikΩikσkσi) + θjiΩjiσiσj + θkiΩkiσiσk

]
= 1

n

[
Ωiiσ

2
i + Ωijσjσi + Ωikσkσi

]
(18)

We now consider the left-hand-side (LHS) of (14). Let Ψ = (ΩSσ) and denote with Ω[i,:] the
i-th row of Ω and zeros elsewhere. The i-th diagonal element of Ψ is given by

Ψii = tr
(
Ω[i,:]Sσ

)
= tr


Ωii Ωij Ωik

0 0 0
0 0 0


 σ2

i σiσj σiσk
σjσi σ2

j σjσk
σkσi σkσj σ2

k




= Ωiiσ
2
i + Ωijσjσi + Ωikσkσi (19)

From the expressions in (18) and (19), we can establish the following equality

T sys − T sys−i = 1
n

Ψii = M sys
i (20)

Proposition 5. The systemic sensitivity to risk of institution-i (denoted by Ssysi ) is the
partial derivative of T sys with respect to i’s standard deviation:

Ssysi = ∂T sys

∂σi
= 2
n

Ω[i,:]σ(Y ) (21)

where Ω[i,:] is the i-th row of Ω.

Proof. Recall from (10) that

T sys = 1
n

[
Ωiiσ

2
i + Ωjjσ

2
j + Ωkkσ

2
k + 2Ωijσiσj + 2Ωikσiσk + 2Ωjkσjσk

]
∂T sys

∂σi
= 1

n

[
2Ωiiσi + 2Ωijσj + 2Ωikσk

]
= 2

n
Ω[i,:]σ(Y ) (22)

where Ω[i,:] the i-th row of Ω.

The sensitivity to individual risk and the marginal turbulence contribution are clearly
related to each other. It can be shown that:

Corollary 2. From Propositions 4 and 5, the following can be established:

Ssysi = 2
σi
M sys
i (23)
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From the the marginal contribution to turbulence expression in (18) and (19),

M sys
i = 1

n

[
Ωiiσ

2
i + Ωijσjσi + Ωikσkσi

]
= 1

n
σi [Ωiiσi + Ωijσj + Ωikσk] = 1

2σiS
sys
i (24)

Corollary 2 can be employed to decompose the turbulence score as a sum of local products
between individual risks and sensitivities to that risk.

Corollary 3. From Propositions 1 and 4 and corollary 2, we have the following

T sys =
∑
i

M sys
i = 1

2
∑
i

Ssysi σi (25)

The decomposition of the turbulence score (T sys) into institutional level indicators (M sys
i

and Ssysi ) enables us to analyze the role of each institution in the creation of financial turbu-
lence, thus answering our third and final research question (RQ-3).

2.5. Network Visualization
For any n-dimensional vector, we can interpret Ω (defined in Proposition 1) as symmetrized

version of the weighted adjacency matrix AW . Following Hoff (2008), we can obtain the
position of nodes in network associated with AW via an eigen-decomposition of Ω, whose
ij-th entry can be parametrized as:

Ωij = (CΛC ′)ij (26)

where Ωij is the i-th row and the j-th column of Ω, Λ = diag (λ1, . . . , λr), is a diagonal matrix
of eigenvalues, C is a n × r coordinate matrix of n points in an r-dimensional system such
that Ci,: denotes the i-th row of C (that is, the coordinates of i-th node). These coordinates
can provide a spatial representation of the nodes of a financial network which can be very
useful for their interpretation.

3. Model Selection and Estimation

In this section we explain how the proposed network VAR-RSEMmodel and, consequently,
the proposed turbulence measures, can be estimated from the available data. Let Yt =
(Y1,t . . . , Yn,t) be n × 1 vector of current returns, Zt = (Y ′t−1, . . . , Y

′
t−p)′ is np × 1 vector of

past returns, and denote with Y = (Y1, . . . , YN ) and Z = (Z1, . . . , ZN ), a collection of Yt and
Zt over a fixed window of length N , each of dimension N × n and N × np, respectively. Let
X be a stacked collection of Y and Z, with a covariance matrix Σ = cov(X), as follows:

X =
(
Y ′

Z ′

)
, Σ =

(
Σyy Σyz

Σzy Σzz

)
(27)

where X is of dimension m×N with m = n+ np, and Σ is a m×m cross-covariance matrix
for which Σyy = cov(Y ) and Σyz = cov(Y, Z).

We first consider the estimation of (p,B,Σε), assuming that G = {G0, G1:p} is known.
Later, we remove this assumption and consider how to learn the “optimal” structure of G =
{G0, G1:p} from the data. Given G, the rest of the parameters can be estimated as follows:
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1. Determine p by estimating an unrestricted VAR model and minimizing the BIC:

BIC(p) = log |Σ̂y|z(p)|+ n2p
logM
M

, 1 ≤ p ≤ p̄ (28)

where Σ̂y|z(p) = Σyy−ΣyzΣ−1
zz Σ′yz, M = N − p is the number of observations, |Σ̂y|z(p)|

is the determinant of Σ̂y|z(p) and p̄ is the maximum possible number of lags.

2. Estimate the coefficients of the reduced-form VAR in (5) via a Bayesian estimator, using
G1:p as a variable selection matrix. The i-th row of B̂1:p is given by

B̂iπi|1:p = (Z ′πi
Zπi + ηId)−1Z ′πi

Yi (29)

where Zπi ∈ Z are the lag predictors of Yi, Id denotes an d-dimensional identity matrix
with d the number of covariates in Zπi and η is a hyper-parameter which gives the prior
precision of the coefficients.

3. Estimate the covariance matrix in the SEM model in (6) as:

R̂′ = Y ′ − B̂1:pZ
′, and Σ̂R = cov(R̂) (30)

4. Use G0 as a variable selection matrix to estimate B̂0 - the coefficients of the residual
SEM, and the covariance matrix Σ̂ε of structural errors. The i-th row of B̂0 is given by

B̂iπi|0 = (R̂′πi
R̂πi + ηId)−1R̂′πi

R̂i, and Σ̂ε = (I − B̂0)Σ̂R(I − B̂0)′ (31)

where R̂πi ∈ R̂−i = R̂\{R̂i} is the restricted set of contemporaneous predictors of the
i-th equation of the residual SEM model whose dependent variable is R̂i.

What is described so far is conditional on a given structure for G. Estimating G is crucial
for deciding which elements of B1:p and B0 should be included or excluded in the final model.
While the estimation process of (p,B,Σε) is an adaption of methods known in the literature,
for the estimation of G, we propose a Bayesian graphical VAR (BGVAR) approach. The
approach is based on a search-and-score technique that explores all networks within the space
of possible configurations, assigns a score to each of them, and, finally, averages the link
probability across the models with the highest scores. More precisely, the proposed BGVAR
is made up of three main building blocks:

(i) A network score function
(ii) A network search algorithm
(iii) A link probability model

We now describe each of the above-mentioned components.

3.1. Network Score Function
Let U andW be two random variables and let D be the available data. Consider U andW ,

a dependent and explanatory variable respectively. The network matrix Guw = 1 establishes
the relationshipW → U , and the score function assigns a score to this relationship. Following
Geiger and Heckerman (2002), the closed-form expression for Score(Guw = 1) = logP (W →
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U |D) = logP (U |W,D) equal to:

P (U |W,D) = π−
1
2N ν

1
2ν0
0

ν
1
2νn
n

Γ
(ν0+N−nf

2
)

Γ
(ν0−nf

2
) ( |Σ̄ww|

|Σ̄ff |

) 1
2νn

, (32)

where f = (u ∪ w) is the union of the indexes of U and W , nf = |f | is the number of
elements in f , ν0 > m is a degree of freedom hyper-parameter of the prior precision of Σ,
νn = ν0 +M , Σ̄ww and Σ̄ff are the posterior covariance matrices of {W} and {(U,W )}. As
shown, for example, in Geiger and Heckerman (2002), the latter can be obtained from the
full posterior distribution of Σ given by

Σ̄ = 1
νn

(X ′X + ν0Im), (33)

where Im is an m-dimensional identity matrix with m the number of variables in X.
A careful look at (32) indicates that only the ratio of the posterior covariances depends

on the data. Thus, for computational efficiency, we can pre-compute the part of the score
function that is independent of the data, for different values of nf ∈ [1, np+ 1] and for fixed
ν0 = m + 2 and N . In addition, we can pre-compute the posterior of the full covariance
matrix according to (33), and save computational time by extracting the sub-matrices Σ̄ww

and Σ̄ff of the indexes that corresponds to {W} and {(U,W )}. This is in line with the local
computation approach introduced by (Dawid and Lauritzen, 1993; Geiger and Heckerman,
2002; Giudici and Green, 1999; Grzegorczyk and Husmeier, 2008).

3.2. Network Search Algorithm
Following the expression in (32), letting U = Yi, the next step of BGVAR inference

is to find the combination of variables in W = Wyz ∈ (Y−i, Z) that maximizes the score
function, with Y−i = Y \{Yi}. In other words, the objective of the network search algorithm
is to sample a combination of vertices Wyz ∈ (Y−i, Z) that can help to predict Yi. Since
our overall VAR-RSEM model is constructed to estimate the VAR, followed by RSEM, we
incorporate the same idea into the search algorithm. Following Ahelegbey et al. (2016a), we
implement a modified version of the collapsed Gibbs sampler put forward by the authors.
The difference between the algorithm presented in this paper and that of the authors is that
the current version is implemented sequentially rather than independently. More precisely,
the algorithm is designed to the first search for the combination of vertices Wz ∈ Z that
most likely generates G1:p, and then, conditionally on this (and not independently) search
for Wy|Wz ∈ (Y−i, Z) that most likely generate G0. Correspondingly, the Gibbs sampler
simulation aimed at estimating the posterior graph structure probabilities iterates as follows:

1. Sample the lag network, [G1:p|D] by searching for Wz ∈ Z
2. Sample the contemporaneous network, [G0|D, G1:p] by searching for Wy|Wz ∈ (Y−i, Z)

In the following, we present these two steps in more detail.

3.2.1. Sampling Lag Network
We initialize the search by first computing the conditional probability of Yi given each

Zj ∈ Z, i.e P (Yi|Zj ,D), and comparing it with a reference score of the marginal probability
of Yi, P (Yi|D). If P (Yi|Zj ,D) > P (Yi|D), then Zj contain reliable information to improve the
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prediction of Yi, thus, Zj is a candidate lag predictor of Yi. This allows us to have a subset
Wz ∈ Z of lag variables to consider for learning the combination that produces the highest
score. Although we begin the search with this subset of variables, we also allow for other
candidates in Z that may not have been selected but which can improve the explanatory
power of the network model. The algorithm explores a considerable number of combination
of lag predictors and applies model averaging over networks with different configurations in
the highest score regions. The final result of model averaging produces a highly representative
network structure. A detailed description of how to sample G1:p is presented in Appendix A.1.

3.2.2. Sampling Contemporaneous Network
Here our focus is on the contemporaneous network, looking for the best combination

of predictors for each dependent variable. Given the optimal lag predictors from the G1:p
sampling step, the second step of the algorithm investigates if the random addition of any of
the variables in Y−i can improve the explanatory power of the network model. Let Wz ∈ Z
be the optimal predictors of the lag network model. If P (Yi|Yj ,Wz,D) > P (Yi|Wz,D) for
Yj ∈ Y−i, Yj is a candidate contemporaneous predictor of Yi which, if combined with Wz ∈ Z
can improve the network model performance. We then proceed by searching for possible
combinations of Wy ∈ Y−i such that Wy|Wz ∈ (Y−i, Z) improves the explanatory power of
the network model. We then finish off with model averaging to obtain a more appropriate
network structure. A detailed description of how to sample G0 is presented in Appendix A.2.

3.3. Network Link Probability Model
We monitor the Gibbs sampling MCMC algorithm to ensure the convergence of the chain

and to construct a criterion to identify significant links. We monitor the mixing of the MCMC
using the sampled network scores at each iteration to compute the potential scale reduction
factor (PSRF) of Gelman and Rubin (1992). The criterion is such that if PSRF ≤ 1.2 the
chains have converged. In this application, we ensure that this condition is satisfied.

We then proceed to compute marginal edge posterior probabilities by model averaging over
the sampled networks. Let γ̂ij be the average of the ij-th entry over the sampled networks.
Using the credibility criterion in Ahelegbey et al. (2016a), we can parametrize the ij-th entry
of the estimated network Ĝ with the link function:

Ĝij = 1(ξij > τ), ξij = γ̂ij − z(1−α)

√
γ̂ij(1− γ̂ij)

neff
, neff = H

1 + 2
∑∞
t=1 ρt

(34)

where neff is the Markov chain effective sample size (see Casella and Robert, 2004, pp. 499-
500) representing the number of independent posterior samples of the graph, H is the total
number of posterior samples of the graph, ρt is the autocorrelation of the graph scores at lag
t, and z(1−α) is the z-score of the normal distribution at (1− α) significance level. A default
value for τ is 0.5, α is 0.05 and z(1−α) = 1.65.

4. Data Description

The data we consider to illustrate our methodology is taken from the Bloomberg database
and consists of the daily market indices of 20 countries, selected according to their market
capitalization. We consider only one index per country, which typically contains the stock
prices of the largest companies listed in the nation’s largest stock exchange. The considered
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countries can be grouped into three regions: the Americas (Brazil, Canada, Mexico, and the
United States), Asia-Pacific (Australia, China, Hong Kong, India, Japan and South Korea),
and Europe (Belgium, France, Germany, Italy, the Netherlands, Portugal, Russia, Spain,
Switzerland, and the United Kingdom). A description of the market indices chosen for the
selected countries is presented in Table 1. The data cover January 3, 2000 to March 31,
2020. The selected market indices vary in terms of composition, in the sense that some have

Region No. Country Code Description Index

Americas 1 Brazil BR Brazil Bovespa IBOV
2 Canada CA Canada TSX Comp. SPTSX
3 Mexico MX Mexico IPC MEXBOL
4 United States US United States S&P 500 SPX

Asia-Pacific 5 Australia AU Australia ASX 200 AS51
6 China CN China SSE Comp. SHCOMP
7 Hong Kong HK Hong Kong Hang Seng HSI
8 India IN India BSE Sensex SENSEX
9 Japan JP Japan Nikkei 225 NKY
10 Korea KR South Korean KOSPI KOSPI

Europe 11 Belgium BE Belgium BEL 20 BEL20
12 France FR France CAC 40 CAC
13 Germany DE Germany DAX 30 DAX
14 Italy IT Italy FTSE MIB FTSEMIB
15 Netherlands NL Netherlands AEX AEX
16 Portugal PT Portugal PSI 20 PSI20
17 Russia RU Russia MOEX IMOEX
18 Spain ES Spain IBEX 35 IBEX
19 Switzerland CH Switzerland SMI SMI
20 United Kingdom UK UK FTSE 100 UKX

Table 1: Detailed description of stock market indices of countries classified according to regions.

a smaller number of stocks compared to others. For instance, the U.S. is represented by the
S&P 500, which contains the stocks of the top 500 large-cap corporations, whereas France is
represented by CAC 40, which contains 40 stocks selected among the top 100 corporations.

Figure 1 reports the time series plot of the daily index closing prices, on a logarithmic scale.
Due to differences in the values, plotting the original prices would be difficult to visualize. We,
therefore, scale the prices to a zero mean and unit variance and add the absolute minimum
value of each series to avoid negative outcomes. This standardizes the scale of measurement
for the different series. Panel A of the figure reports the national indices, while Panel B
shows a comparison between the scaled values for the United States market, as a benchmark,
and the averaged scaled values for Asia-Pacific and Europe. We also report, separately, a
global index constructed as the average of all 20 series. Figure 1 clearly shows that, amid
many fluctuations, and some local specificities, stock market indices are highly synchronized
and have been affected by three major downturns, that are grey-shaded in the Panel B of
Figure 1: 2000–2003 period (the “tech” crisis); 2007–2009 (“sub-prime” crisis); and the March
2020 (COVID-19 crisis). To help the interpretation of grey-shaded periods, Table 2 reports a
summary description of the main events recorded during the major downturn periods.

The look back at historical events in Figure 1 and Table 2 shows that financial markets are
initially slow to adjust to the emergence of a crisis. They, however, tend to over-react as the
crises begin to spread and affect different markets, either directly or through interconnected-
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Figure 1: Time series of scaled daily national, regional, and global average stock market prices (January 3,
2000 – March 31, 2020). Gray-shadings represent periods of significant downturns in the averaged global index.

Dates Event Details

1 Mar 10, 2000 – Mar 12, 2003 Collapse of Dot-com bubble (Mar 10, 2000)
Decline in economic activity after Sept 11, 2001
Stock market downturn of Oct 9, 2002

2 Oct 11, 2007 – Mar 9, 2009 Fall in housing prices that peaked in Oct 2007
Near-collapse and acquisition of Bear Sterns in Mar 2008
Bankruptcy of Lehman Brothers & bailout of AIG in Sep 2008

3 Feb 24, 2020 – COVID-19 outbreak in China in late 2019 began to affect Europe
and the U.S., plunging many stock markets into turmoil.

Table 2: Stock market large downturns between January 2000 – March 2020.

ness. Although there is not yet much data to fully compare the current COVID-19 crisis with
the previous tech and sub-prime crisis, the daily plunge in index prices between February 24,
2020, and March 31, 2020, as illustrated in Figure 1 provides evidence that market decline
occur simultaneously for all the three periods.
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To better understand the peculiarity of the different crises, Table 3 presents the dates
and values of the largest downturns, for each market, and across the three crisis periods. We

Country 2000 – 2003 2007 – 2009 2020

Brazil 9.63 : 2001-09-11 12.10 : 2008-10-15 15.99 : 2020-03-12
Canada 8.47 : 2000-10-25 9.79 : 2008-12-01 13.18 : 2020-03-12
Mexico 8.27 : 2000-04-14 7.27 : 2008-10-22 6.64 : 2020-03-09
United States 6.00 : 2000-04-14 9.47 : 2008-10-15 12.77 : 2020-03-16
Australia 5.55 : 2000-04-17 8.71 : 2008-10-10 10.20 : 2020-03-16
China 6.54 : 2002-01-28 9.26 : 2007-02-27 3.94 : 2020-01-28
Hong Kong 9.29 : 2001-09-12 13.58 : 2008-10-27 4.98 : 2020-03-23
India 7.42 : 2000-04-04 11.60 : 2008-10-24 14.10 : 2020-03-23
Japan 7.23 : 2000-04-17 12.11 : 2008-10-16 6.27 : 2020-03-13
Korea 12.80 : 2001-09-12 11.17 : 2008-10-24 8.77 : 2020-03-19
Belgium 5.61 : 2001-09-11 8.32 : 2008-09-29 15.33 : 2020-03-12
France 7.68 : 2001-09-11 9.47 : 2008-10-06 13.10 : 2020-03-12
Germany 8.87 : 2001-09-11 7.43 : 2008-01-21 13.05 : 2020-03-12
Italy 7.87 : 2001-09-11 8.60 : 2008-10-06 18.54 : 2020-03-12
Netherlands 7.53 : 2001-09-14 9.59 : 2008-10-06 11.38 : 2020-03-12
Portugal 4.57 : 2001-09-11 10.38 : 2008-10-06 10.27 : 2020-03-12
Russia 10.48 : 2003-10-30 20.66 : 2008-10-06 8.65 : 2020-03-12
Spain 5.99 : 2001-09-14 9.59 : 2008-10-10 15.15 : 2020-03-12
Switzerland 7.33 : 2001-09-11 8.11 : 2008-10-10 10.13 : 2020-03-12
United Kingdom 5.89 : 2001-09-11 9.27 : 2008-10-10 11.51 : 2020-03-12

Table 3: Dates of the largest daily downturn in national stock market indices during the tech crisis (2000–2003),
the sub-prime crisis (2007–2009), and the recent COVID-19 crisis (2020). Bold values indicate the maximum
drop of each index over the three crisis periods.

notice from the table that, during the tech crisis, the largest daily drop in the US S&P 500 was
6 percent, recorded on April 14, 2000; during the sub-prime crisis it was 9.5%, on October 15,
2008; and 12.8% on March 16, 2020 during the COVID-19 outbreak. Indeed, Table 3 suggests
that, compared with other crises, the COVID-19 pandemic is having an unprecedented impact
on the world’s major equity markets, with 13 out of the top 20 national stock market indices
recording their maximum daily downturn of the 21st century occurring in March 2020.

We compute daily returns as the log differences of successive daily closing prices, that is,
Yi,t = 100 (logPi,t − logPi,t−1), with Pi,t the daily closing price of market i on trading day
t. Table 4 reports a set of summary statistics for the index returns over the period from
January 4, 2000 to March 31, 2020. From the summary statistics, we notice that almost all
index returns have a near-zero mean and a relatively high standard deviation, which ranges
between 1.01 (Australia) and 1.98 (Russia). The highest standard deviations, indicating
individual market volatilities, are those of the emerging markets of Russia and Brazil. The
markets of Russia, Italy, and Brazil have the lowest minimum returns, while Russia, India,
and Brazil have the highest maximum returns. The skewness of the returns ranges between
-0.93 (Canada) and -0.04 (Mexico), indicating that all of them have distributions with mostly
small but consistent positive gains and, occasionally, large negative returns, suggesting that
most volatility arises from the left part of the distribution. The kurtosis varies between 5.4
(China) and 17.5 (Canada), indicating a leptokurtic behavior of the daily return series.
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Country Code Mean St. Dev. Min Max Skew Kurt

Brazil BR 0.0283 1.7957 -15.9930 13.6783 -0.3971 7.0544
Canada CA 0.0090 1.1311 -13.1758 11.2945 -0.9347 17.5301
Mexico MX 0.0307 1.2684 -8.2673 10.4407 -0.0410 5.6344
United States US 0.0111 1.2404 -12.7652 10.9572 -0.3825 11.5896
Australia AU 0.0094 1.0115 -10.2030 6.7665 -0.7811 9.1395
China CN 0.0135 1.5283 -9.2561 9.4010 -0.3207 5.4109
Hong Kong HK 0.0059 1.4384 -13.5820 13.4068 -0.1032 8.2888
India IN 0.0329 1.4486 -14.1017 15.9900 -0.3769 9.8492
Japan JP -0.0000 1.4627 -12.1110 13.2346 -0.3779 6.8760
Korea KR 0.0103 1.4715 -12.8047 11.2844 -0.5724 7.5077
Belgium BE -0.0026 1.2589 -15.3275 9.3340 -0.4484 10.3656
France FR -0.0058 1.4412 -13.0983 10.5946 -0.2181 6.4959
Germany DE 0.0075 1.4786 -13.0549 10.7975 -0.1753 6.0329
Italy IT -0.0171 1.5366 -18.5411 10.8742 -0.5943 9.3923
Netherlands NL -0.0065 1.4036 -11.3758 10.0283 -0.2218 7.5473
Portugal PT -0.0207 1.1906 -10.3792 10.1959 -0.4289 7.5186
Russia RU 0.0543 1.9810 -20.6571 25.2261 -0.2013 16.5058
Spain ES -0.0104 1.4691 -15.1512 13.4836 -0.3235 8.1606
Switzerland CH 0.0040 1.1614 -10.1339 10.7876 -0.2994 8.0790
United Kingdom UK -0.0039 1.1846 -11.5117 9.3843 -0.3447 8.4262

Table 4: Statistics of daily returns for stock market indices (January 4, 2000 – March 31, 2020).

5. Empirical Findings

We apply our proposed estimation methodology to obtain monthly estimates of all VAR-
RSEM parameters and, in particular, of the matrices Ω and Sσ, which are the core components
of our network-based turbulence score. To improve the efficiency of the estimates of Ω we
aggregate monthly estimates in yearly rolling windows of about 240 trading days. We set the
increments between successive rolling windows to one month, setting the first window of our
study from February 1, 1999, to January 31, 2000, followed by March 1, 1999, to February
29, 2000; the last window is from April 1, 2019, to March 31, 2020. In total, we consider 243
rolling windows. To avoid over smoothing, Sσ is instead estimated monthly, that is, using only
the last month of each rolling window. We present our main findings in line with answering
the following research questions:

RQ-1 Does a densely interconnected market reduce or amplify the financial risks caused by
shock events?

RQ-2 Is there a threshold level of risks beyond which financial connection channels serve as
shock-amplifiers?

RQ-3 Which major world market is central to the creation of global financial turbulence?

We answer RQ-1 by studying the relationship between standard network density and our
turbulence index (Dnet and T sys in Section 5.1). We monitor the risk and network effects
(Rsys and N sys) to identify the threshold of global market risks beyond which dense financial
connections serve as shock-amplifiers, and thus, answering (RQ-2 in Section 5.2). Finally,
we rank the two market indicator measures (M sys and Ssys) to assess the relevance of each
market to financial turbulence, thus answering (RQ-3 in Section 5.3).
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5.1. Network Density and Financial Turbulence
Here we address our first research question: (RQ-1) Does a densely interconnected network

reduce or amplify the financial risks caused by shock events?
To answer this question, we investigate the relationship between the network density and

our turbulence index. Figure 2 shows the joint evolution of the two indices obtained via the
described yearly moving window aggregation of the estimated parameters.
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Figure 2: Network Density and Systemic Turbulence Scores from rolling windows estimation (2000-2020).

The result from the figure shows that, although the two indices have a different range
of values, they have a correlation coefficient of 0.556, which indicates a positive relationship
between the two measures. While the turbulence measure is highly concentrated, and reaches
a strong peak in October 2008, with a value that is 143.17 standard deviations higher than the
average, the network density is more disperse and shows about five peaks. Note in particular
what occurs in the last point of the series, corresponding to March 2020, when the COVID-19
pandemic hits Europe and the US. The network density reaches its maximum value of 60.26
(against 58.94 in October 2008), and the turbulence piles up at 92.13 standard deviations
above the average: a remarkable value, in less than one month of crisis.

To answer RQ-1, the result shows that interconnectedness does amplify financial risks,
thereby confirming the results of Billio et al. (2012); Blume et al. (2013). This is evident
not only from the highly positive correlation between the two series but also comparing the
periods which score the highest turbulence values: the tech crisis of 2000–2003, the global
financial crisis of 2007–2009, the European sovereign crisis of 2011–2012, the Chinese stock
market crash of 2015, and the COVID-19 crisis in March 2020. In all these times, both the
network density and turbulence index recorded values higher than their respective means.

5.2. Turning Points in Global Financial Markets
We now turn our attention to the second research question: (RQ-2) Is there a threshold

level of risks beyond which financial connection channels serve as shock-amplifiers?
We address this question by studying the joint evolution of the network and risk effect

(also referred to as initial global market risk) obtained via the decomposition of the turbulence
index over the rolling windows estimation (see Figure 3). Before proceeding with RQ-2, we
notice that Figure 3 confirms our previous conclusions. Overall, the network effect is positively
correlated with the risk effect (their correlation coefficient is indeed equal to 0.31). In parallel
to what Figure 2 shows, the risk effect index is highly concentrated, and peaks in October
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2008, with a value of 29.20 of returns, while the network effect is more disperse, and peaks
about 5 times. In each peak period, both the network and risk effect increases. Note also
that periods of lows in the network effect measure (such as 2004–2005 and early 2014–2015)
correspond to lows in the risk effects measure.
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Figure 3: Network and Risk Effects obtained from the decomposition of the turbulence score.

Min Median Mean Max St. Dev.

Network Density 26.32 37.89 38.77 60.26 58.94
Risk Effect 0.27 1.29 2.01 29.20 2.77
Network Effect 2.74 3.88 3.90 5.17 0.47
Turbulence Score 0.92 4.82 8.23 143.16 12.88

Table 5: Summary statistics of the considered network measures, with figures are rounded to the second digit.

Table 5 presents a summary statistics of the density and turbulence measures over the
full sample. The statistics shows that the risk effect mimics the turbulence index, with values
that range from a minimum of 0.27 (September 2017) to a maximum of 29.20 (October 2008),
with a mean of 2.01 (and a median of 1.29). The network effect instead has values that range
from a minimum of 2.74 (December 2004) to a maximum of 5.17 (July 2002, with 4.90 in
October 2008), and a mean of 3.90 (median of 3.88). This means that the volatility generated
by risk effect is amplified between 3 to 5 times by the interconnectedness. During crisis times,
the risk effect peaks as well the network amplifier.

For example, during the tech crisis, a risk effect of 0.31, multiplied by a network effect
of 5.17, gives mean market turbulence of 1.60 standard deviations from the mean. In the
peak of the global financial crisis, the risk effect of 29.198 of returns is amplified by a network
effect of 4.903 to produce a turbulence score of 143.158. This suggests an observed 20-variate
return series that is 143.158 (multivariate) standard deviations from the (multivariate) mean.
If we divide equally the effect among the 20 stock markets, we have that, during the financial
crisis, risk effect of 1.46, amplified by a network effect of 4.90 produces a disruption of 7.15
standard deviations from its mean. A similar assessment indicates that, during the COVID
pandemic in March 2020, an average risk effect of 1.12, amplified by a network effect of 4.08,
yields an average turbulence score of 4.57 standard deviations from its mean. By averaging
across all periods, and all 20 markets, risk effect of 0.10, multiplied by a network effect of
3.90, leads to an average turbulence score of 0.39 standard deviations from the mean.
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We consider advancing the results in Table 5 by standardizing the risk and network effect
indices and applying them as a barometer to classify financial market condition in each time
point into “robust” and “fragile” states. To do so, we compare the monthly value of Rsys
with its mean E(Rsys) and its standard deviation SD(Rsys) across the whole time period, to
interpret its “signal” as indicating a fragile or robust market condition. More precisely, we
can consider the transformation:

f(Rsysh ) = Rsysh − E(Rsys)
SD(Rsys) =

{
< 0, =⇒ Robust
> 0, =⇒ Fragile (35)

where E(N sys) and SD(N sys) is the mean and standard deviation of the risk effect. We apply
a similar transformation to the network effect score.
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Figure 4: Standardized Network and Risk Effect.

Figure 4 presents the evolution of the standardized measures according to (35). The zero-
line of the figure can be viewed as a threshold indicator for identifying turning points in global
market conditions, between states of market fragility or of robustness. Note that the zero-
threshold line corresponds to the mean risks and network effects reported in Table 5. When
a measure is below the zero lines, it signals a “robust” market condition, and when above,
it signals “fragile” conditions. From the figure, we can extract the “turning point” dates, as
they emerge from the movements of the standardized network and risk effects around the zero
lines. Table 6 lists the turning point dates.

Robust Fragile Reasons for Financial Market Fragility

- 2000:01 Collapse of Dot-com bubble
2001:05 2001:09 September 11 Effect
2002:02 2002:07 Stock market downturn of 2002
2005:05 2007:08 Sub-prime and Global Financial Crisis
2009:11 2010:05 EU Crisis - Greece debt crisis intensifies
2010:06 2011:08 EU Crisis - Crisis of Greece, Ireland & Portugal affect Spain & Italy
2011:12 2015:07 Chinese stock market turbulence
2015:10 2020:02 COVID-19 Crisis

Table 6: Identifying periods of market fragility (January 2000 – March 2020). The dates are in the format
YYYY:MM and they represent the start and end of financial fragility.
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The turning point dates identify the early 2000’s as a period of market fragility. This is
the tech (dot-com bubble) crisis, fuelled by the adoption of the internet in the late 1990s,
especially in developed markets. During the early 2000’s, tech-companies in these countries
capitalized on high investor demands, which inflated stock price. Then, a slowdown in the
United States led to investors cashing out their investment, triggering a downward movement
of prices of many developed market indices around March 2000. Although this event disrupted
global market operations, Figure 4 suggests that the impact of the dot-com bubble on the
global market was mild compared to the other two crises that followed.

The switch to robust market conditions in May 2001 was interrupted by the impact of
the event of September 11, 2000. Again the February 2002 recovery was short-lived due to
the downturn in July 2002. Markets finally recovered in May 2005 until the outburst of
the sub-prime crisis in August 2007. According to the financial reports, the US began to
face disruptions around early- to mid-2007, due to many top institutions holding mortgage-
related securities and those with high leverage crumbling under the weight of liquidity shocks
following the fall in housing prices and abrupt shutdown of sub-prime lending. This, however,
did not receive global attention until the losses in US sub-prime mortgages began to affect
other multinational institutions around mid- to late-2007. For instance, the global impact
was felt after the signal from the French BNP Paribas in August 2007 triggered the reaction
of other big market players around the world. Though this disruption began late-2007, the
global impact began to manifest in early 2008.

After the financial crisis, the standardized measures signal a transition to a robust market
in late 2009, and a new state of fragility during the early stages of the European Sovereign
crisis that began with Greece debts intensifying around May 2010. Though the effect seemed
on the global market was very small, the problem resurfaced in August 2011, when the crisis
of Greece, Ireland, and Portugal began to affect Spain and Italy (the third largest Euro area
economy and second-biggest debtor to bond investors). This triggered new heights of the crisis
with reactions across other EU member states and markets. The global market recovered in
around December 2012. After which a period of robust markets follows, and was interrupted
by the Chinese stock market turbulence in late 2015. The plot of the standardized risk effect
in Figure 4 shows that the effects of the European sovereign and Chinese crises had a limited,
or more regional, impact on global market operations.

As shown in Figure 4 and Table 6, robust market conditions that persisted between late
2015 to early 2020 have been abruptly interrupted by the COVID-19 crisis, whose effect
in terms of turbulence score, risk effect, and network effect are within the range of values
comparable to that of the global financial crisis, although the effect on most countries is less
than one month of our sample data. The result shows that, in crisis times, both the risk
effect and the network effect are strongly above the threshold line, and tightly coupled with
each other. This suggests that, during crisis, risk events affecting the major stock markets
can become very severe through network amplification.

In summary, the result shows an average risk and network effects of 2.0 and 3.90, respec-
tively. Thus, when the global market risk is higher 2.0 of returns and the network effect
is higher than 3.9, the multiplicative effect of interconnectedness may generate a meltdown.
For instance, over the first two decades of the 21st century, the highest global market risk
recorded were 29.2 of returns, followed by 22.5 at the end of October 2008 and March 2020,
respectively. These occurred during the global financial crisis and the ongoing COVID-19
pandemic. The associated network effect were 4.9 and 4.1, respectively.
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5.3. Network Centrality and Financial Turbulence
We now address our third research question: (RQ-3) Which major world market is central

to the creation of global financial turbulence?
To address this question, we study the relationship between interconnectedness and cen-

trality, investigating which markets are more central and, therefore, systematically more rel-
evant to financial market turbulence over the first two decades of the 21st century.
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Figure 5: A representation of the network structure for the sub-windows 2000:01–2020:03. Countries are
positioned based on their latent coordinates following the eigen-decomposition in (26). Red nodes denote
markets in the Americas, blue for European countries, and green for Asia-Pacific countries.

We report in Figure 5 the networks for the markets by applying (26) to the estimated
network structures, averaged for four consecutive periods of five years, and 2020-Q1. Each
network is represented with links that are color-coded according to the sign of the relationships
obtained from the Ω matrix. Positive effects are depicted with green links and negative ones
are represented in red. The nodes are also color-coded according to regions, i.e., red nodes
denote markets in the Americas, blue for European countries, and green for Asia-Pacific
countries. The position of the countries are based on the eigen-decomposition of the networks.
It reveal the tendency for markets to move together due to similarities in underlying market
conditions. Thus, markets with similar characteristics are likely to be closer to each other,
while those with different underlying conditions are likely to be farther apart.

From Figure 5, we notice that the positions of the markets are quite stable over time.
Except for 2020-Q1, the various sub-period networks reveal three clusters of countries over
time. In one cluster is the US alone, EU countries except Russia form a second cluster, and
Asia-Pacific with the rest of the Americas, apart from the US, form the third cluster. The
US market appears to be in a class of its own and highly linked to the rest of the world’s
major stock markets. The EU markets have a strong tendency to move together, with the
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obvious exception of the Russian market, which is closer to Asia-Pacific markets. France is
on one extreme of the European cluster, with strong links with the US, and tightly related
with Northern European countries (DE, NL), and to West/Southern European countries (BE,
ES, IT, PT). To the other extreme, the UK and Switzerland are well connected with both
American and Asia-Pacific markets. A similar clustering pattern occurs for the Asia-Pacific
markets, although to a lesser extent. The rest of the Americas (without the US) appear
more aligned to the Asia-Pacific cluster. Although there is still evidence of the clustering
pattern in the 2020-Q1 network, especially among the EU countries, that of the Americas
and Asia-Pacific are quite scattered, reflecting the heterogeneity of the underlying markets.

5.3.1. Full-Sample Systemic Relevance
To specifically address RQ-3, we report in Table 7, the full sample median summary

statistics of the marginal turbulence contribution, the systemic sensitivity to risk (henceforth
sensitivity measure), and other “classic” network centrality measures such as the in/out-
degree, and the hub-authorities. The table presents a ranking of the countries from “core”
(1st to 5th), through “semi-periphery” (6th to 15th), to “periphery” (16th to 20th).

Rank Msys Ssys In-Deg Out-Deg Hub Auth

Core

1 US – 0.443 US – 1.025 BE – 9 US – 16 US – 0.420 FR – 0.296
2 BR – 0.404 FR – 0.641 FR – 9 BR – 9 DE – 0.256 NL – 0.293
3 FR – 0.328 BR – 0.556 NL – 9 BE – 8 FR – 0.250 BE – 0.272
4 HK – 0.297 HK – 0.544 HK – 8 FR – 8 NL – 0.239 DE – 0.267
5 DE – 0.275 DE – 0.492 DE – 8 DE – 8 BE – 0.233 UK – 0.266

Semi-Periphery

6 IT – 0.251 NL – 0.459 IT – 8 NL – 8 IT – 0.215 CH – 0.257
7 ES – 0.250 ES – 0.457 ES – 8 CA – 7 CH – 0.215 IT – 0.253
8 NL – 0.217 CA – 0.435 CH – 8 HK – 7 UK – 0.212 ES – 0.247
9 RU – 0.205 IT – 0.430 UK – 8 IT – 7 BR – 0.204 HK – 0.206
10 JP – 0.202 MX – 0.427 AU – 7 ES – 7 ES – 0.204 JP – 0.206
11 KR – 0.201 BE – 0.405 JP – 7 CH – 7 CA – 0.173 PT – 0.204
12 MX – 0.198 KR – 0.394 KR – 7 UK – 7 KR – 0.155 RU – 0.191
13 BE – 0.164 UK – 0.347 PT – 7 MX – 6 HK – 0.149 AU – 0.190
14 CA – 0.150 JP – 0.345 RU – 7 JP – 6 MX – 0.147 KR – 0.188
15 UK – 0.146 RU – 0.310 BR – 6 KR – 6 PT – 0.140 US – 0.171

Periphery

16 IN – 0.138 AU – 0.295 US – 6 RU – 6 RU – 0.138 BR – 0.162
17 PT – 0.118 CH – 0.279 IN – 6 IN – 5 JP – 0.130 CA – 0.161
18 AU – 0.107 PT – 0.269 CA – 5 PT – 5 IN – 0.109 MX – 0.160
19 CH – 0.107 IN – 0.268 MX – 5 AU – 4 CN – 0.104 IN – 0.157
20 CN – 0.098 CN – 0.180 CN – 4 CN – 4 AU – 0.095 CN – 0.103

Table 7: Ranking of major stock markets into core, semi-periphery and periphery based on median summary
statistics of network and local turbulence measures for full-sample.

The out-degree shows that the US (with 16 out-links) is by far the market with the highest
influence on 16 out of 19 world markets. It is followed by Brazil with 9 out-links, and Belgium,
France, and Germany tied with 8 out-links. The high ranking of the US as a hub for risk
transmission is confirmed by the hub centrality. The relative importance of the hub centrality,
however, ranks Germany above France, followed by the Netherlands and Belgium. Although
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the core countries of the out-degree and hub centrality appear the same, the ranking is slightly
different, except for the US as top-ranked according to both measures. The in-degree indicates
a tie between Belgium, France, and the Netherlands, as the markets liable to be influenced
by 9 other major markets. The authority centrality disentangled this tie by ranking France
as the most influenced market, followed by the Netherlands and Belgium.

The marginal turbulence, (M sys), ranks the country markets in terms of their “share”
of the total turbulence, according to (25). The results in Table 7 show that the US has
the highest contribution to financial market turbulence over the first two decades of the
21st century. It is closely followed by Brazil, France, Hong Kong, and Germany. China, on
the other hand, contributes the lowest share of total turbulence. The sensitivity measure,
Ssys, unlike the marginal turbulence, is a forward-looking measure of how much financial
turbulence changes as a result of a change in the risk of a major world market index. The
sensitivity result shows that the turbulence index is highly sensitive to the US market, more
than any other. The second most relevant market is France, followed by Brazil, Hong Kong,
and Germany. This suggests that a 100% shock to the US S&P 500 will increase financial
turbulence by 102.5%, while the same 100% shock on France’s CAC 40, Brazil’s Bovespa,
Hong Kong’s Hang Seng and Germany’s DAX 30 increases the turbulence by 64.1%, 55.6%,
54.4%, and 49.2%, respectively. The impact of the rest is much lower. In particular, the
markets of China, India, Switzerland, and Australia (along with the Portuguese market) can
be identified as peripheries, since shocks to them have less than 30% impact the global system.

Overall, the result shows that the US market is the most influential, and small changes
in its risk causes the highest financial turbulence. In terms of turbulence contribution, the
US is the first, followed by Brazil, France, Hong Kong, and Germany. The result also shows
that, although Brazil has a higher contribution to turbulence than France, a small change in
the risk of the French market have a higher turbulence amplification than that of Brazil.

5.3.2. Sub-Sample Systemic Relevance
We extend our response to RQ-3 by studying the relevance of the markets to financial

turbulence over the four consecutive periods of five years, and 2020-Q1. Table 8 reports
a ranking of the “core” (1st to 5th) countries in terms of median summary statistics of
the marginal turbulence contribution, the systemic measure, and other “classic” network
centrality measures such as the in/out-degree, and the hub-authorities.

2000-2004 is the early part of the 21st century, known to be characterized by the tech crisis,
the September 11, and the stock market downturn of October 2002. The median summary
statistics of Table 8 show that during this sub-period, the US market was the most influential
(16 out of 19 out-links), and the hub for risk transmission. It was also the market with the
highest contribution to turbulence, and whose change in risk significantly alters global market
operations. During this period, the Netherlands was the most liable market to be influenced,
and the highest receiver of risk.

2005–2009 coincides with the global financial crisis, triggered by endogenous shock events,
fuelled by the sub-prime mortgages in 2007, the near-collapse and acquisition of Bear Sterns
by JP Morgan Chase in March 2008, the bankruptcy of Lehman Brothers (4th-largest US
investment bank at the time), and the bailout of American International Group (AIG, the
world’s largest insurance company) in September 2008. All these events began in the US. The
summary statistics of Table 8 shows that for 2005–2009, the US market maintained its status
as the most influential (17/19 out-links), and the hub for risk transmission. It was also the
market with the highest contribution to turbulence, and whose change in risk significantly
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Rank Msys Ssys In-Deg Out-Deg Hub Auth

2000 – 2004

1 US – 0.764 US – 1.530 NL – 10 US – 16 US – 0.464 NL – 0.304
2 DE – 0.580 FR – 0.770 KR – 9 DE – 9 DE – 0.286 FR – 0.295
3 FR – 0.512 DE – 0.709 FR – 9 NL – 9 FR – 0.263 UK – 0.274
4 KR – 0.483 KR – 0.541 HK – 8 KR – 8 NL – 0.262 IT – 0.272
5 BR – 0.468 BR – 0.535 DE – 8 FR – 8 IT – 0.249 DE – 0.267

2005 – 2009

1 US – 0.556 US – 1.178 FR – 11 US – 17 US – 0.403 FR – 0.298
2 BR – 0.517 MX – 0.772 BE – 10 MX – 11 MX – 0.256 UK – 0.281
3 MX – 0.506 BR – 0.708 ES – 10 BR – 9 FR – 0.244 NL – 0.276
4 HK – 0.372 HK – 0.599 UK – 10 CA – 8 DE – 0.232 ES – 0.273
5 RU – 0.333 DE – 0.525 HK – 9 HK – 8 NL – 0.230 BE – 0.270

2010 – 2014

1 FR – 0.442 US – 0.873 BE – 10 US – 14 US – 0.368 FR – 0.296
2 BR – 0.425 FR – 0.731 FR – 10 BR – 13.5 BR – 0.365 NL – 0.286
3 IT – 0.370 BR – 0.697 DE – 9 BE – 8 DE – 0.245 BE – 0.283
4 US – 0.336 HK – 0.570 NL – 9 FR – 8 UK – 0.241 DE – 0.281
5 ES – 0.329 ES – 0.529 UK – 9 DE – 8 FR – 0.238 UK – 0.269

2015 – 2019

1 HK – 0.260 US – 0.829 BE – 9 US – 17 US – 0.466 NL – 0.310
2 US – 0.254 HK – 0.513 NL – 9 BE – 9 BE – 0.278 BE – 0.300
3 BR – 0.232 FR – 0.513 HK – 8 FR – 8 FR – 0.265 FR – 0.295
4 FR – 0.225 NL – 0.450 JP – 8 DE – 8 NL – 0.250 DE – 0.262
5 ES – 0.185 BE – 0.445 FR – 8 CH – 7.5 CH – 0.248 UK – 0.260

2020:01 – 2020:03

1 US – 1.393 US – 1.801 BE – 10 BE – 13 HK – 0.328 ES – 0.311
2 BE – 1.234 BE – 1.234 FR – 10 MX – 12 MX – 0.291 IT – 0.305
3 NL – 1.014 FR – 1.227 NL – 10 US – 12 NL – 0.288 NL – 0.305
4 FR – 0.969 NL – 1.187 IT – 9 HK – 12 IT – 0.283 BE – 0.299
5 BR – 0.719 HK – 0.923 PT – 9 IT – 11 FR – 0.276 FR – 0.297

Table 8: Core markets ranked according to network and local turbulence measures over sub-periods.

alters global market operations. During this period, France was the most liable market to be
influenced, and the highest receiver of risk.

2010–2014 was characterized by the EU crisis which heavily affected EU markets. The
results in Table 8 shows that the US market still maintained its status as the most influential
(14/19 out-links) and the hub for risk transmission, as well as the market whose change in risk
significantly changes financial turbulence. The difference, however, between this period and
the preceding one is that France was the most liable market to be influenced and the highest
receiver of risk, and the highest contributor to turbulence. This is not quite surprising since
the European sovereign crisis mostly involved EU countries, as such the most contributor to
global market disruption, will certainly be from the EU.

2015–2019 is highly characterized by the Chinese stock market turbulence and United
Kingdom European Union membership referendum. The results in Table 8 shows that the
US market still maintained its status as the most influential (17/19 out-links) and the hub
for risk transmission, as well as the market whose change in risk profile significantly changes
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financial market turbulence. The Netherlands was the most liable market to be influenced
and the highest receiver of risk. The highest contributor to financial market turbulence during
this period was Hong Kong. This is also not quite surprising since Hong Kong is the special
administrative region of the People’s Republic of China (HKSAR) and the Hang Seng index
is often regarded as a reflection of China’s economic rise.

The first quarter of 2020 (2020-Q1) is characterized by the COVID-19 crisis, triggered by
an exogenous shock of non-financial origin affecting the real sector, first in China and then to
the rest of the world. Unlike the previous crisis, the COVID-19 pandemic is characterized by
high synchronicity between the markets (as depicted in Figure 5), with a fast spread of risks
and uncertainty, not experienced before. Table 8 shows that, for the 2020-Q1, unlike any of
the previous crises, the US market failed to maintain its status as the most influential and
the hub for risk transmission. However, it is still the market with the highest contribution to
turbulence, and whose change in risk profile significantly alter global market operations.

In summary, the evidence shows that during crises (periods with high magnitudes of
financial turbulence, and severe disruptions on a much broader segment of financial markets),
such as the tech (2000–2003), global financial crisis (2007–2009) and COVID-19 crisis (2020-
Q1), the US plays a critical role as the highest contributor to turbulence. For the majority of
these crises (except COVID-19, so far), the US is both the most influential and the hub for
risk transmission. The results of the sensitivity of turbulence to individual risk remain the
same over all the sub-periods. The consensus is that the US has the topmost market whose
change in risk profile can significantly disrupt global market operations.

5.4. Robustness Checks
To validate our findings relating to RQ-2, we conduct further analysis by comparing our

estimated risk effect indices with the Chicago Board of Exchange VIX index - a measure
that reflects the market’s expectation on the monthly volatility based on the S&P 500 index.
Figure 6 plots the evolution of the two indices over our sample period. The figure shows a
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Figure 6: Comparing the VIX and Risk Effect.

high correlation between the two indices. Although VIX focuses on only one of our markets,
and it is based on future expectations, rather than on past observations, the correlation with
our risk effect estimates is 0.77. A similar correlation holds for the VIX with the turbulence
index, as expected. The network density and the network effect indices, on the other hand,
have lower correlations of 0.65 and 0.49, respectively. In terms of “peaks”, the VIX reaches
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the highest monthly averages in October 2008 and March 2020, in line with our results. The
advantage of our proposed measure, compared to the VIX, is that it is based on multiple
markets, rather than on a single one. Besides, our measure can disentangle the “individual”
market volatility from that generated through interconnectedness.

6. Conclusion

In this paper, we construct a network-based turbulence score that proves useful for ana-
lyzing the relationship between financial interconnectedness, and global market risk, and for
identifying systemically important markets, with the highest contribution to financial turbu-
lence. We discussed three key features of our turbulence index: 1) The index scores the level
of global market disruptions and signals the direction of financial markets with early warnings
for investors; 2) The turbulence index decomposes into a product of two indicators, namely,
risk and network effect. The risk effect records the magnitude of initial global market risk, and
the network effect is the degree to which the interconnectedness among stock markets inten-
sifies or weakens the initial global market risks; and 3) The index decomposes into marginal
turbulence contribution and systemic sensitivity to individual risk, with both measures shown
to be useful when assessing the relevance of a stock market to financial turbulence.

We apply our proposed measure to address three important questions in financial conta-
gion analysis. The research questions are as follows: (RQ-1) Does a densely interconnected
market reduce or amplify the financial risks caused by shock events? (RQ-2) Is there a thresh-
old level of risk effect beyond which financial connection channels serve as shock-amplifiers?
(RQ-3) Which major stock market is central to the creation of global financial turbulence?

We address the above questions by studying the integration among the major stock mar-
kets over the first two decades of the 21st century, particularly during the tech, sub-prime,
and COVID-19 crises. The empirical result shows the following: 1) the correlation between
network density and our turbulence index is about 0.556, which confirms the results of Billio
et al. (2012) and Blume et al. (2013) that, densely interconnected markets amplify financial
risks; 2) when risk effect (or global market risk) is above 2.0 of returns, and the network effect
is beyond 3.9, global market conditions shift into a fragile state where financial connections
serve as shock-amplifiers to cause turbulence; and 3) the US market is the most influential, and
small changes in its risk causes the highest financial turbulence. For turbulence contribution,
the US is ranked first, followed by Brazil, France, Hong Kong, and Germany. Although Brazil
has a higher turbulence contribution than France, the turbulence index is more sensitive to a
small change in the risk of the French market than that of Brazil.

We believe that our methodology can be quite useful, for policymakers, investors, and
private individuals, as it provides results that are relatively easy to access and interpret, from
a financial stability viewpoint.
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Appendix A. Sampling Algorithms

The algorithm for sampling G1:p and G0 is a modified version of the collapsed Gibbs
scheme of Ahelegbey et al. (2016a). The first step of each Gibbs sampler is as follows:

1. Sample [G1:p|D]
2. Sample [G0|D, G1:p]

Appendix A.1. Sampling Lag Network
1. Initialization for sampling G1:p

(a) Compute the reference score for each dependent node Yi by P (Yi|D)
(b) Compute the score for each node Zj ∈ Z as a predictor of Yi by P (Yi|Zj ,D)
(c) Compute the Bayes Factor BFij|1:p = logP (Yi|Zj ,D)− logP (Yi|D)
(d) Convert Bayes Factor per node score to adjacency matrix, Gij|1:p = 1 if BFij|1:p > 0

2. Start MCMC such that at each iteration:
(a) Let Zc ∈ Z denote the current set of predictors of Yi, i.e., Gic|1:p = 1
(b) Randomly draw Zr ∼ {Z1, . . . , Znp} and update Zc such that

Zk =
{

(Zc ∪ Zr) if Zr < Zc
(Zc\Zr) if Zr ∈ Zc

(c) Compute the old score = P (Yi|Zc,D), and new score = P (Yi|Zk,D) and

φ = P (Yi|Zk,D)
P (Yi|Zc,D)

(d) Sample u ∼ U [0, 1] from a uniform distribution. If u < min{1, φ}, update Zc = Zk,
otherwise leave it unchanged. Note that if P (Yi|Zk,D) > P (Yi|Zc,D), then the set
of indexes in Zk are better predictors of Yi than Zc and Gik|1:p = 1.

Appendix A.2. Sampling Contemporaneous Network
1. Initialization for sampling G0

(a) Compute the reference score for each dependent node Yi|Wz by P (Yi|Wz,D)
(b) Compute the score for each node Yj ∈ Y−i as a predictor of Yi by P (Yi|Yj ,Wz,D)
(c) Compute the Bayes Factor, BFij|0 = logP (Yi|Yj ,Wz,D)− logP (Yi|Wz,D)
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(d) Convert Bayes Factor per node score to adjacency matrix, Gij|0 = 1 if BFij|0 > 0

2. Start MCMC such that at each iteration:
(a) Let Yc ∈ Y−i denote the current set of predictors of Yi, i.e., Gic|0 = 1
(b) Randomly draw Yr ∼ {Y1, . . . , Yn}\{Yi} and update Yc such that

Yk =
{

(Yc ∪ Yr) if Yr < Yc
(Yc\Yr) if Yr ∈ Yc

(c) Compute the old score = P (Yi|Yc,Wz,D), and new score = P (Yi|Yk,Wz,D) and

φ = P (Yi|Yk,Wz,D)
P (Yi|Yc,Wz,D)

(d) Sample u ∼ U [0, 1] from a uniform distribution. If u < min{1, φ}, update Yc = Yk,
otherwise leave it unchanged. Note that if P (Yi|Yk,Wz,D) > P (Yi|Yc,Wz,D), then
the set of indexes in Yk are better predictors of Yi than Yc and Gik|0 = 1.
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