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Abstract

We extend the extreme downside hedge methodology to model sensitivity interconnectedness
of market returns to the tail risk of other markets under turbulent conditions. We derive
the interconnectedness via Bayesian graph structural learning. The empirical application ex-
amines the dynamic interconnectedness among 15 major markets, including G10 economies,
during turbulent times. We investigate whether downside risk connections among these major
markets are merely anecdotal or provide evidence of contagion and the most central market
for spillover propagation. The result shows that the Covid-19 induced downside risk connec-
tions record the highest density, suggesting stronger evidence of contagion in the coronavirus
pandemic than during the financial and eurozone crisis. Central to the spillover propagation
is the finding that most of the transmitters and recipients of downside risk are EU markets.

Keywords: Bayesian Inference, Centrality, Contagion, Conditional VaR, Downside Risk,
Extreme downside hedge, Financial Crises, Financial Networks

JEL: C31, C58, G01, G12

1. Introduction

Increased interconnectedness among financial institutions and asset markets over time
play a substantial role in the contagion often observed during turbulent times (Forbes and
Rigobon, 2002; Mendoza and Quadrini, 2010). One outcome is that it causes the degree of
comovements in asset markets within and across countries to increase following shocks to
a major market or a group of major markets, and for the shocks to propagate to markets
across countries and regions, with corresponding impacts on asset prices/returns. Therefore,
a clear understanding of the nature of the networks of interconnectedness among markets
is critical since it is a central condition for potential contagion (see Ahelegbey and Giudici,
2020; Battiston et al., 2012; Billio et al., 2019, 2012; Diebold and Yilmaz, 2014).

The turn of events in major financial markets across the globe, especially in developed
economies during the ongoing pandemic is a reminder of how interconnectedness between mar-
kets can influence investors’ decisions in their selection of assets to diversify their investment.
This paper examines the effects of downside risk on stock market performance in turbulent
times to draw comparisons of the novel coronavirus pandemic to previous crises like the early
2000’s financial market disruptions due to the dotcom bubble and September 11, the global
financial crisis of 2007–2009, and the European sovereign debt crisis of 2010–2013.

We study the sensitivity of stock market performance to the downside risk of other ma-
jor world markets under severe conditions. It is well known that in turbulent times some

Email address: danielfelix.ahelegbey@unipv.it (Daniel Felix Ahelegbey)
1



assets/markets usually perform badly while others have mild reactions. Many assets that
react mildly are often desirable and usually, sell at a premium. We formalize the downside
risk reaction via an extreme downside hedge (EDH) model (see Ahelegbey et al., 2020; Harris
et al., 2019; Mojtahedi et al., 2020). The EDH is a parametric measure of the sensitivity of
a stock’s return to downside risk in the market and/or other competing stocks (Ahelegbey
et al., 2020). We summarize the downside reactions among major stock markets via a net-
work model - the use of graphs to represent statistical relationships (Lauritzen, 1996). The
network summarizes the complex channels of reactions by using nodes to represent companies
and edges to describe the statistical relationships between pairs of companies. By ranking
companies via network centrality measures, we identify the safest from the riskiest companies,
as well as the “transmitters” and “receivers” of risk in a downturn.

In modeling financial contagion via networks, the underlying structure of interactions
is often unknown and must be estimated from observed data. This is related to (graph)
structural learning problem. To infer networks from multivariate financial time series, the
widely applied competing methods include: Granger-causality (Billio et al., 2012); Lasso
regularization methods (Basu and Michailidis, 2015; Kock and Callot, 2015); forecast error
variance decomposition (Diebold and Yilmaz, 2014); and Bayesian graph structural learning
methods (Ahelegbey et al., 2016a,b; Carvalho and West, 2007). In this study, we derive
the downside risk interconnectedness among stock markets via a Bayesian graph structural
learning approach as in Ahelegbey et al. (2016a).

This paper relates to at least three streams of literature. The first is the network economet-
rics literature that applies network models to summarize contagion channels among financial
institutions and markets using stock market data (Ahelegbey et al., 2016a; Billio et al., 2012;
Diebold and Yilmaz, 2014). The second contribution relates to research on the impact of
tail risk on asset returns (Ahelegbey et al., 2020; Almeida et al., 2017; Chabi-Yo et al., 2018;
Harris et al., 2019; Mojtahedi et al., 2020; Van Oordt and Zhou, 2016). Van Oordt and Zhou
(2016) studied a systematic tail risk measure that captures the sensitivity of asset returns to
market returns conditional on market tail events. Almeida et al. (2017) analyzed a tail risk
measure based on the risk-neutral excess expected shortfall of a cross-section of asset returns.
Chabi-Yo et al. (2018) studied lower tail dependence (LTD) systematic tail risk based on
estimating the sensitivity of an individual asset to a market crash. The third contribution
relates to the application of the Bayesian graph-based network for estimating the downside
risk interconnectedness.

We apply our proposed model to study the equities market by considering the 20 major
stock market indices, selected for their market capitalization, covering countries across the
Americas, Asia-Pacific, and Europe. The dataset consists of daily prices from Bloomberg,
covering January 2000 to June 2020. The empirical application examines: 1) whether down-
side risk interconnectedness among the major stock markets are merely anecdotal or provide
evidence of contagion, and 2) the most central market for spillover propagation. The result
shows that periods of dense stock market downside risk interconnectedness increases global
market risk. We find evidence that both transmitters and receivers of downside risk spillover
propagation are mainly EU-centered markets.

The paper is organized as follows: Section 2 introduces the EDH model and the Bayesian
graphical estimation method; Section 3 presents a description of the data; Section 4 reports
the results; and Section 5 concludes the paper.
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2. Methodology

In this section, we briefly describe the extreme downside hedge (EDH) technique for mod-
eling downside risk sensitivity among assets. We also present the Bayesian and regularization
techniques for constructing the downside risk interconnectedness among stock indices.

2.1. Extreme Downside Hedge (EDH) Model
The extreme downside hedge (EDH) model has in recent times been applied to study the

sensitivity of returns to innovations in the tail risk of the market and/or of other counterparties
(Ahelegbey et al., 2020; Harris et al., 2019; Mojtahedi et al., 2020). The EDH approach
considered in this study is based on a well-known financial concept that in turbulent times
some stock markets usually perform badly while others have mild reactions. Therefore markets
that react mildly are often desirable. The variables of interest for the EDH model are the
return series of stock markets and a measure of their downside (tail) risk. The commonly
discussed measures for assessing the riskiness of assets/markets is the expected shortfall (also
referred to as conditional value at risk - CoVaR/CVaR) (Adrian and Brunnermeier, 2016).

Let Yt = (Y1,t, . . . , Yn,t) be n-variable vector of return observations at time t, where Yi,t is
the time series of asset-i at time t. Let Yτ,i denote the left-side τ -quantile of the distribution
on Yi, for τ ∈ (0, 1). Following Rockafellar and Uryasev (2002) and Gaivoronski and Pflug
(2005), we compute the CV aRτ (Yi) as a proxy for the tail risk by

CV aRτ (Yi) = 1
τ
FX(τ) E (Yi|Yi < Yτ,i) +

(
1− 1

τ
FX(τ)

)
Yτ,i (1)

where FX(τ) = Pr(Yi ≤ Yτ,i) is the cumulative density function (cdf) of Yi. CV aRτ (Yi)
calculates the weighted average of the losses that occur beyond Yτ,i, the value at risk point,
in a distribution. We denote with CV aRi,t, the CV aRτ (Yi) at time t. We employ ∆CV aR
as a proxy for the innovation in the tail risk.

The return of an asset/stock can be influenced by the innovations in the tail risk of other
asset/stocks that move with it. We model the sensitivity of the stock returns of market-i with
respect to the innovation in the tail risk of other stock markets as

Yi,t =
n∑

i,j=1
Bij ∆CV aRj,t + εi,t (2)

where ∆CV aRj,t = CV aRj,t−CV aRj,t−1, Bij is the sensitivity of the returns of market-i to
the downside risk of market-j. The vector of error term εt = (ε1,t, . . . , εn,t) is assumed to be
multivariate normal, N (0,Σε).

2.2. Network (Graphical) Model
A network model is a convenient representation of the relationships among a set of vari-

ables. They are defined by nodes joined by a set of links, describing the statistical relationships
between a pair of variables. The introduction of networks in regression models helps to in-
terpret the predictor-dependent variable relationships. To analyze (2) through networks, we
assign to each coefficient Bij a latent indicator Gij ∈ {0, 1}, such that for i, j = 1, . . . , n,:

Bij =
{

0 if Gij = 0 =⇒ ∆CV aRj,t 6→ Yi,t
βij ∈ R if Gij = 1 =⇒ ∆CV aRj,t → Yi,t

(3)
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where ∆CV aRj,t 6→ Yi,t means that downside risk of market−j does not influence the returns
of market-i. Defining a sparse structure on (G,B) induces parsimony of the model and
produces explainable downside risk models.

2.3. Bayesian Estimation Of Downside Risk Networks
Estimating network models have an intrinsic uncertainty with regards to the model struc-

ture and parameters, and it is well known that the number of valid configurations increases
super-exponentially with the number of variables in the model. It is usually difficult to find
one best network that can explain the data approximately well. In this study, we derive the
downside risk interconnectedness among markets via a Bayesian graph structural learning
approach as in Ahelegbey et al. (2016a).

2.3.1. Prior Specification
The objective of EDH network model is to estimate (G,B,Σε) using the available data.

Estimating these parameters jointly is a challenging problem and a computationally intensive
exercise for high dimensional models. We complete the Bayesian formulation with prior
specification and posterior approximations to draw inference on the model parameters. We
specify the prior distributions as follows:

[Bij |Gij = 1] ∼ N (0, η), Gij ∼ Ber(πij), Σ−1
ε ∼ W(δ, S0) (4)

where η, πij , δ, and S0 are hyper-parameters. The specification for Bij is conditionally Gaus-
sian distributed with zero mean and variance η. Thus, relevant explanatory variables that
predict a response variable must be associated with coefficients different from zero and the
rest (representing not-relevant variables) are restricted to zero. We specify Gij as Bernoulli
distributed with πij as the prior probability, and consider Σ−1

ε as Wishart distributed with
prior expectation 1

δS0 and δ > n the degrees of freedom parameter. In this application, we
set πij = 0.5 which leads to a uniform prior on the graph space, i.e., P (G) ∝ 1. Following
standard applications, we set η = 100, δ = n+ 2 and S0 = δIn.

2.3.2. Posterior Approximation
Let Zt = (∆CV aRj,1, . . . ,∆CV aRj,n) be an n × 1 vector of downside risk observations,

denote with Y = (Y1, . . . , YN ) a N × n matrix collection of all return indices, and Z =
(Z1, . . . , ZN ) be an N × n matrix collection of Zt. Let Vy = (yi, . . . , yn) be the vector of
indices of response variables, and Vz = (z1, . . . , zn) the indices of the variables in Z. The
network relationship from zψ ∈ Vz to yi ∈ Vy can be represented by (Gyi,zψ = 1).

The Bayesian framework of Geiger and Heckerman (2002) can be applied to integrate out
the structural parameters analytically to obtain a marginal likelihood function over graphs.
The closed-form expression of the local marginal likelihood is given by

P (Y |Gyi,zψ) = π−
1
2N ν

1
2ν0
0

ν
1
2νn
n

Γ
(ν0+N−nx

2
)

Γ
(ν0−nx

2
) ( |Z ′ψZψ + ν0Inv |

|X ′iXi + ν0Inx |

) 1
2νn

(5)

where Γ(·) is the gamma function, Xi = (Yi, Zψ), Id is a d-dimensional identity matrix, nψ is
the number of covariates in Zψ, nx = nψ + 1, ν0 > nx is a degree of freedom hyper-parameter
of the prior precision matrix of (Y,Z), and νn = ν0 +N .
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The above function allows us to apply an efficient Gibbs sampling algorithm to sample
the graph structure in blocks (as in Roberts and Sahu, 1997). We approximate the graph and
the parameters posterior distribution via a collapsed Gibbs sampler that proceeds as follows:

1. Sample via a Metropolis-within-Gibbs [G|Y ] (see Algorithm 1)
2. Sample from [B,Σε|Y,G] by iterating the following steps:

(a) Sample [Bi,πi |Y,G,Σε] ∼ N (B̂i,πi , Dπi) where

B̂i,πi = σ−2
u,iDπiZ

′
πiYi, Dπi = (η−1Idz + σ−2

ε,i Z
′
πiZπi)

−1 (6)

where Zπi ∈ Z which corresponds to (Ĝyi,zπ = 1), σ2
ε,i is the i-th diagonal element

of Σ̂ε, and dz is the number of covariates in Zπi .
(b) Sample [Σ−1

ε |Y,G,B] ∼ W(δ +N, SN ) where

SN = S0 + (Y − ZB̂′)′(Y − ZB̂′) (7)

Algorithm 1 Sampling [G|Y ]
1: Require: Set of responses Vy = (yi, . . . , yn) and predictor attributes Vz = (z1, . . . , zn)
2: Initialize G(1) = ∅
3: for yi ∈ Vy do
4: for zj ∈ Vz do
5: Compute φa = P (Y |G(1)

yi,∅) and φb = P (Y |G(1)
yi,zj )

6: if φb > φa then G
(1)
yi,zj = 1 else G

(1)
yi,zj = 0

7: for h = 2 : H, (MCMC Iteration by performing local network update) do
8: for yi ∈ Vy, set G(∗)

yi = G
(h−1)
yi do

9: Randomly draw zk ∼ Vz
10: Add/remove link from zk to yi: G(∗)

yi,zk = 1−G(h−1)
yi,zk

11: Compute φ = exp [ logP (Y |G(∗)
yi )− logP (Y |G(h−1)

yi ) ]. Draw u ∼ U(0, 1).
12: if u < min{1, φ} then G

(h)
yi = G

(∗)
yi else G

(h)
yi = G

(h−1)
yi

We examine the mixing of the chains generated by the Gibbs sampler for the samples of
G. We monitor the mixing of the MCMC by computing the local log-likelihood score. We
use the score to compute the potential scale reduction factor (PSRF) and multivariate PSRF
(MPSRF) of Gelman and Rubin (1992). Following standard application, the MCMC chain
is considered as converged if the PSRF and MPSRF are less than 1.2. With 50,000 sampled
networks, we ensure that the convergence and mixing of the MCMC chains are tested with
both PSRF and MPSRF satisfying the above condition.

We estimate the posterior probability of the edges by averaging over the sampled networks,
i.e., γ̂ij = 1

H

∑H
h=1G

(h)
ij , where H is the total number of posterior samples of the graph.

Due to the uncertainty in the network link determination, we consider a one-sided posterior
credibility interval for the edge posterior distribution. Following Ahelegbey et al. (2016a), we
parameterize the ij-th entry of the estimate of Ĝ via a link function:

Ĝij = 1(qij > 0.5), qij = γ̂ij − z(1−α)

√
γ̂ij(1− γ̂ij)

neff
, neff = H

1 + 2
∑∞
t=1 ρt

(8)
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where neff is the MCMC effective sample size of the network graph, ρt is the autocorrelation
of the graph scores at lag t, and z(1−α) is the z-score of the normal distribution at (1 − α)
significance level. A default value for α is 0.05 and z(1−α) = 1.65.

3. Data Description

Our study makes use of daily data from Bloomberg, covering between January 2000 to
June 2020, and includes 15 major stock market indices, including all G10 economies. We
consider only one index per country, which typically contains the stock prices of the largest
companies listed in the nation’s largest stock exchange. The countries can be grouped into
three regions: the Americas (Brazil, Canada, Mexico, and the United States), Asia (China,
Hong Kong, India, Japan, and South Korea), and Europe (France, Germany, Italy, Russia,
Spain, and the United Kingdom). A description of the market indices chosen for the selected
countries is presented in Table 1. The data cover January 3, 2000, to June 30, 2020.

Region No. Country Code Description Index

Americas 1 Brazil BR Brazil Bovespa IBOV
2 Canada CA Canada TSX Comp. SPTSX
3 Mexico MX Mexico IPC MEXBOL
4 United States US United States S&P 500 SPX

Asia 5 China CN China SSE Comp. SHCOMP
6 Hong Kong HK Hong Kong Hang Seng HSI
7 India IN India BSE Sensex SENSEX
8 Japan JP Japan Nikkei 225 NKY
9 Korea KR South Korean KOSPI KOSPI

Europe 10 France FR France CAC 40 CAC
11 Germany DE Germany DAX 30 DAX
12 Italy IT Italy FTSE MIB FTSEMIB
13 Russia RU Russia MOEX IMOEX
14 Spain ES Spain IBEX 35 IBEX
15 United Kingdom UK UK FTSE 100 UKX

Table 1: Detailed description of stock market indices of countries classified according to regions.

We report in Figure 1 the daily series of closing prices on a logarithmic scale. We scale the
prices to a zero mean and unit variance and add the absolute minimum value of each series to
avoid negative outcomes. This standardizes the scale of measurement for the different series.
The figure shows that over the past two decades, global financial markets have experienced
several catastrophic events within and across different markets. Among these events is 1)
the dotcom “tech” and September 11 induced crisis of 2000–2003 which was fuelled by the
adoption of the internet in the late 1990s, triggering inflated stock prices that gradually
went downhill and disrupted global market operations; 2) the global financial crisis of 2007–
2009 which was triggered by the massive defaults of sub-prime borrowers in the US mortgage
market; 3) the European sovereign debt crisis of 2010–2013 which emanated from the inability
of a cluster of EU member states to repay or refinance their sovereign debt and bailout heavily
leveraged financial institutions without recourse to third party assistance; and 4) the ongoing
distress to the world economy and global financial markets caused by the novel coronavirus
pandemic in 2020.
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Figure 1: Daily closed prices of major stock market indices (January 3, 2000 – June 30, 2020).

We compute daily returns as the log differences of successive daily closing prices, that is,
Yi,t = 100 (logPi,t − logPi,t−1), with Pi,t the daily closing price of market i on trading day t.
Table 2 reports a set of summary statistics for the index returns over the period from January
4, 2000 to June 30, 2020. From the summary statistics, we notice that almost all index returns

Country Code Mean SD Min Max Skew Ex.Kurt

Brazil BR 0.0330 1.8019 -15.9930 13.6783 -0.3833 6.8904
Canada CA 0.0117 1.1381 -13.1758 11.2945 -0.9122 16.9927
Mexico MX 0.0320 1.2745 -8.2673 10.4407 -0.0359 5.4752
United States US 0.0145 1.2519 -12.7652 10.9572 -0.3683 11.2619
China CN 0.0149 1.5213 -9.2561 9.4010 -0.3230 5.4697
Hong Kong HK 0.0065 1.4394 -13.5820 13.4068 -0.1162 8.2032
India IN 0.0358 1.4589 -14.1017 15.9900 -0.3454 9.6959
Japan JP 0.0031 1.4659 -12.1110 13.2346 -0.3708 6.7584
Korea KR 0.0137 1.4738 -12.8047 11.2844 -0.5658 7.4086
France FR -0.0035 1.4510 -13.0983 10.5946 -0.2163 6.2911
Germany DE 0.0115 1.4902 -13.0549 10.7975 -0.1621 5.8342
Italy IT -0.0144 1.5436 -18.5411 10.8742 -0.5908 9.1267
Russia RU 0.0553 1.9757 -20.6571 25.2261 -0.2033 16.5010
Spain ES -0.0091 1.4773 -15.1512 13.4836 -0.3162 7.9056
United Kingdom UK -0.0022 1.1950 -11.5117 9.3843 -0.3431 8.0884

Table 2: Statistics of daily returns for stock market indices (January 4, 2000 – June 30, 2020).

have a near-zero mean and a relatively high standard deviation, which ranges between 1.14
(Canada) and 1.98 (Russia). The highest standard deviations, indicating individual market
volatilities, are those of the emerging markets of Russia and Brazil. The markets of Russia,
Italy, and Brazil have the lowest minimum returns, while Russia, India, and Brazil have the
highest maximum returns. The skewness of the returns ranges between -0.9122 (Canada) and
-0.0359 (Mexico), indicating that all of them have fairly symmetric distributions with mostly
small but consistent positive gains and, occasionally, large negative returns. The excess
kurtosis varies between 5.470 (China) and 16.993 (Canada), which confirms the stylized facts
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of leptokurtic behavior of daily return series.
We compute the daily CV aR as in (1) via a 22-day horizon rolling estimation of daily

returns. We used the Monte Carlo sampling approach to draw 1000 samples of the loss vector
given the mean and standard deviation of the loss distribution. We replicate the simulation
10 times to estimate the CV aR series. Table 3 reports the statistics for the daily ∆CV aR
of the major stock market indices over the period from February 3, 2000, to June 30, 2020.
From the Table 3, all the daily changes in the tail risk of the stock market returns have a zero

Country Code Mean SD Min Max Skew Ex.Kurt

Brazil BR 0.0004 0.2544 -3.0731 3.0865 -0.2242 28.9082
Canada CA 0.0001 0.1747 -3.2112 2.1436 -1.0532 62.4697
Mexico MX 0.0003 0.1769 -1.9235 1.3912 -0.3488 16.5186
United States US -0.0001 0.1787 -1.8684 2.5973 0.1191 27.8126
China CN 0.0004 0.2471 -2.3572 2.6526 -0.1331 18.7071
Hong Kong HK 0.0006 0.1998 -2.1350 2.3510 0.0941 20.2883
India IN 0.0003 0.2220 -2.8665 3.1965 0.0254 43.3356
Japan JP -0.0002 0.2198 -2.8952 3.2137 -0.1819 32.0863
Korea KR 0.0004 0.2260 -4.0167 3.4559 -0.5046 48.1533
France FR 0.0000 0.2038 -2.6499 2.3645 -0.3510 24.9952
Germany DE -0.0000 0.2037 -3.0490 2.1356 -0.5367 24.4382
Italy IT -0.0002 0.2394 -4.4044 4.3535 -0.4472 81.1054
Russia RU 0.0013 0.3039 -4.2120 3.3696 -0.8048 40.6139
Spain ES -0.0001 0.2271 -3.9767 4.4879 -0.0505 78.4251
United Kingdom UK 0.0000 0.1685 -2.4683 1.8634 -0.4774 23.9300

Table 3: Statistics of daily ∆CV aR for stock market indices (February 3, 2000 – June 30, 2020).

mean and a relatively low standard deviation. Except for the US, Hong Kong, and India,
which recorded fairly positive skewness, the rest have fairly negative symmetric distributions.
The excess kurtosis confirms a leptokurtic behavior of daily changes in the tail risk.

4. Empirical Findings

We study the dynamics of the downside interconnectedness among the 15 major stock
market indices via a yearly (approximately 240 trading days) rolling window. Our choice
of window size is to capture the annual (12-months) dependence among the basis. We set
the increments between successive rolling windows to one month. The first window covers
February 2000 – January 2001, followed by March 2000 – February 2001, and the last from
July 2019 – June 2020. In total, we have 234 rolling windows. First, we summarize the
interconnectedness by studying the evolution of network density and market turbulence. We
summarize the network topology via network centrality measures.

4.1. Network Density and Financial Market Risk
Here we address our first research question: Does downside risk interconnectedness among

the major stock markets are merely anecdotal or provide evidence of contagion?
We characterize through numerical summaries the dynamic interconnectedness among the

15 major stock markets by monitoring the network density against the VIX index - a measure
that reflects the market’s expectation on the monthly volatility based on the S&P 500 index.
Let G be an n-node unweighted adjacency matrix without self-loop. The network density is
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given by the number of links in the estimated network divided by the total number of possible
links. The network density is given by the number of links in the estimated network divided
by the total number of possible links.
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Figure 2: Network Density and VIX Index.

Figure 2 shows the time series of the network density against the VIX. The figure shows
a strong positive relationship between Net-density and the VIX. Both indices indicate spikes
during the tech-bubble crisis (2000–2003), the global financial crisis (GFC, 2007–2009), the
Eurozone crisis (2010–2013), and the recent Covid-19 pandemic (2020:1H). The spikes in
both indices at the onset of crisis periods indicate elevated levels of unusualness in the equity
markets, a rise in financial market risk, and downside risk interconnectedness among stock
markets. The historical highest Net-density recorded during the first half of 2020 shows that
the COVID-19 induced downside risk exposure is much greater than any period of market
crisis in the last 20 years.

In the interest of analyzing the relationship between downside risk interconnectedness
and global market risk, we study the lead-lag relationship between the Net-Density and VIX.
We stationarize each series via first differencing. Figure 3 presents the results of the cross-
correlation of the first difference of Net-Density and VIX. The figure shows that the most
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Figure 3: Correlation of ∆Net-Densityt+h with ∆VIXt.
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significant cross-correlation between the Net-Density and the VIX occurs at lag 0. We also
find evidence that the Net-Density preceded the VIX by 2-lags. This suggests that higher
levels of downside risk interconnectedness preceded higher levels of financial market risk.
Thus, the above findings show that the relationship between the network density of stock
market downside risk interconnections and financial market risk is not a mere coincidence
but rather evidence of contagion. That is, periods of dense stock market downside risk
interconnectedness increases global market risk. This is in line with the findings of Billio
et al. (2012) and Blume et al. (2013), among others, for which dense interconnectedness does
amplify financial market risk.

4.2. Network Topology and Centrality
We turn our attention to the second research question: In the event of contagion, which

stock market is central to downside risk propagation?
To address this question, we first analyze the topological structure of downside risk inter-

connectedness among the world stock markets. We divide the full sample into six sub-periods
of tranquil (non-crisis) periods and turbulent times: (2001–2006), (2007–2009), (2010–2013),
(2014–2016), (2017–2019) and 2020:1H. We report in Figure 4 the network topology over
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Figure 4: Sub-period networks. Red nodes denote markets in the Americas, blue for European countries, and
green for Asian countries. The size of the nodes are based on a weighted out-degree.

the sub-periods. Each network is represented with color-coded links and nodes. Red-links
indicate negative weights and green-links denote positive weights. Red-color nodes represent
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American markets, blue-nodes for European markets, and green-nodes for markets in Asian
countries. The size of the nodes is proportional to their hub scores. The links in the sub-
period networks are predominately green suggesting a strong positive relationship between
stock market returns and the downside risk of other markets.

We address the question of the most central market to downside risk propagation by
studying node centrality of the networks. Commonly discussed centrality measures include
in-degree (number of in-bounds links), out-degree (number of out-bound links), authority,
and hub scores. The authority score of node-i is a weighted sum of the power/hub score
of the vertices with directed links towards node-i. The hub score of node-j is the weighted
sum of the power/authority score of vertices with a directed link from node-j. A hub node
usually has a large out-degree and authority has a large in-degree. From a financial viewpoint,
nodes with high authority scores/in-degree are highly influenced by others, while high hub
scores/out-degree nodes are the influencers.

Rank Hub Auth

Sub-Periods: Top Three Most Influential

2001 – 2006
1 DE ( 0.345 ) FR ( 0.360 )
2 IT ( 0.240 ) ES ( 0.315 )
3 FR ( 0.229 ) UK ( 0.300 )

2007 – 2009
1 IN ( 0.253 ) DE ( 0.381 )
2 BR ( 0.246 ) UK ( 0.356 )
3 CA ( 0.217 ) FR ( 0.347 )

2010 – 2013
1 DE ( 0.526 ) FR ( 0.372 )
2 BR ( 0.237 ) UK ( 0.362 )
3 IT ( 0.204 ) IT ( 0.268 )

2014 – 2016
1 IT ( 0.470 ) FR ( 0.294 )
2 ES ( 0.260 ) KR ( 0.283 )
3 DE ( 0.156 ) US ( 0.251 )

2017 – 2019
1 US ( 0.315 ) FR ( 0.392 )
2 BR ( 0.255 ) UK ( 0.352 )
3 DE ( 0.227 ) DE ( 0.247 )

2020:1H
1 IT ( 0.492 ) UK ( 0.434 )
2 DE ( 0.461 ) ES ( 0.399 )
3 FR ( 0.280 ) CA ( 0.386 )

Full-Sample: Top Five Most Influential

Core

1 DE ( 0.098 ) FR ( 0.381 )
2 FR ( 0.011 ) UK ( 0.345 )
3 IT ( 0.001 ) ES ( 0.280 )
4 BR ( 0 ) DE ( 0.232 )
5 CA ( 0 ) IT ( 0.213 )

Table 4: Centrality ranking of markets according to hub and authority scores.

Table 4 reports the centrality of the markets based on the median hub and authority
scores. The table shows the top three ranked markets for the sub-periods and the top five
over the full sample. Over the last two decades, Germany, France, and Italy are by far the
most dominant markets in terms of stock market downside risk propagation according to
the hub score ranking. Indeed, these European markets are integrated into Euronext - a
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unique marketplace connecting many European economies. Thus, the most central markets
to downside risk propagation are EU-centered markets, like Germany and France.

The authority score shows the most affected markets are France, the UK, Spain, Germany,
and Italy. Again, these are European markets, which implies that the most affected markets
as a result of downside risk spillover propagation are mainly also European-centered markets.

Overall, we observe that both the transmitters and receivers of downside risk spillover
propagation are mainly European-centered markets that are integrated into Euronext.

5. Conclusion

This paper establishes the dynamic nature and extent of downside risk interconnectedness
among major equity markets, including G10 economies. Our result shows strong evidence of
tail risk interconnectedness among stock markets both in the tranquil period and during the
crisis and post-crisis periods. We show that during crisis periods (when markets are more
vulnerable), the degree of interconnectedness is particularly stronger and more persistent,
which implies losses for investors already with long stock exposures. We also find that the
level of downside risk spillovers induced by Covid-19 records the highest network density,
suggesting stronger evidence of contagion in the recent coronavirus pandemic than during the
global financial crisis and eurozone crisis. Central to the downside risk interconnectedness
is the finding that most of the transmitters and recipients of tail risk spillovers propagate
among EU-centered markets.
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