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Abstract

We introduce a new definition of probabilistic forecasts’ coherence based on the divergence
between forecasters’ expected utility and their own models’ likelihood function. When
the divergence is zero, this utility is said to be local. A new micro-founded forecasting
environment, the “Scoring Structure”, where the forecast users interact with forecasters,
allows econometricians to build a formal test for the null hypothesis of locality. The test
behaves consistently with the requirements of the theoretical literature. The locality is
fundamental to set dating algorithms for the assessment of the probability of recession in
U.S. business cycle and central banks’ “fan” charts
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1 Introduction

Should expert opinions that forecast an uncertain event be trusted? Are these opinions coherent

with the prediction of an economic/statistical model or are they biased by personal judgments?

Any user of such forecasts must deal with the forecasters’ subjective evaluations of the un-

certainty and, as a logical consequence, with the laws of probability. However, the ability to

trust such forecasts requires having an effective understanding of the forecasting process. These

considerations are the fundamentals of the modern decision-theoretical approach to economic

forecasting that were settled by De Finetti (1937) almost a century ago. (See also Elliott and

Timmermann (2008)). According to this framework, the forecaster maximizes its own expected

utility (minimizes its own expected loss) when it correctly (incorrectly) provides its forecast

before the event occurs, inducing a systematic bias1. Hence, estimating the forecaster’s utility

(or reward) function implies the need to check the coherence of his forecast.

According to De Finetti (2017, pp. 62-64), a forecast is coherent if it is additive and bounded.

This definition is based on the forecast’s coinciding with random probability (or “gain”) and then

being evaluated by another (but similar) entity. However, in the real world, and specially in

economic institutions like central banks, forecasting is a complex procedure that involves many

agents, each with its own information and/or utility-maximizing (loss-minimizing) behaviors

that produce often widely diverse opinions (“quotations”, henceforth) to be evaluated and com-

bined. As a consequence, an official announcement requires a considerable amount of time and

often differs from a simple average (or any other aggregated form) of each expert’s opinion. In

this scenario, De Finetti’s definition seems weak. The non-Bayesian literature assumes that the

forecasts’ coherence coincides with forecasts’ optimality (or rationality). In line with the strand

of literature that focuses on optimal properties of asymmetric loss functions and in opposition

to classical mean absolute/square error, Elliott et al. (2005) obtains by inverse-engineering the

forecasters’ loss from observed sequences of forecasts2 and suggests an instrumental variable es-

timator to overcome this problem. However, Elliott et al. (2005) do not consider any interaction

between forecasters and the forecasts’ users, so they need an axiomatic approach to identify the

conditions of optimality.

This paper introduces a more effective definition of coherence and provides a statistical tool

that can help the decision-maker determine whether a quotation is coherent with professional

forecasters’ utility, in other words, whether the forecasters’ judgment bias is statistically rele-
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vant. Unlike Elliott et al. and the literature they have generated, we separate the coherence by

optimality, even if the optimality is obtained via flexible, asymmetric utility functions. The next

section, Section 2, motivates this innovation by running a simple experiment that demonstrates

that the standard econometric methodology of predictive density assessments may not be able to

recognize the “true” forecasting model. Then Section 3 introduces a novel theoretical framework

in response to this critique that is is based on a peculiar mathematical function, the scoring rule

(SR, henceforth), which assigns a numerical score to several competing (model-based) density

forecasts. The score corresponds to the forecaster’s utility for his or her correct forecasts of the

event. The forecaster has no incentive to quote a forecast q of an observation x, which is drawn

from the (estimated) distribution Q, if the reward for such quotation is bigger or equal to the

reward that is associated with the forecast p under P 6= Q. A SR with this property is called

“proper”. (See Gneiting and Raftery (2007) and the aforementioned literature.) A proper SR

incents the forecaster to be honest3, but this “honesty” does not ensure that the forecast’s final

user will announce a value that differs from that of the estimated model for external reasons. In

other words, proper SRs are not robust to judgment bias4. Hence, we need a different SR that

is robust to judgement bias and can avoid the forecaster’s identification problem. We overcome

this idiosyncrasy by adopting (m-)local SRs, a peculiar class of utility functions that depend

only on the realization x, its predictive density, and its first (m)-derivative(s).

The algebraic properties of local SR have been studied recently (See, in particular, Parry et al.

(2012), Dawid et al. (2012) and Ehm and Gneiting (2012)). Here, the focus is on the forecasting

environment and particularly on the assumption that the forecast’s final user interfaces actively

with professional analysts. This environment, called the “Scoring Structure” (SS, henceforth),

corresponds to the game-theoretic framework introduced by Vovk and Shafer (2005). To the

best of our knowledge, this study contains the first attempt to apply it. We distinguish three

types of forecasters:

(i) Forecasters who maximize their (expected) utility based on an improper SR. These fore-

casters are improperly incented to announce their opinions or, more simply, use some

“rule-of-thumb” to arrive at their predictions. For example, a forecaster who uses an

asymmetric loss function would be systematically induced to be highly conservative in

announcing a boost in the GDP in order to preserve his or her reputation in case of a

recession. Such an improper incentive might change based on the phase of the cycle –
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that is, their quotations tend to be state-dependent. As a consequence, if the forecast’s

user does not adopt the forecaster’s (biased) opinion, there is “news” (or “surprises”) that

affects the market. See Gürkaynak et al. (2005) and Blanchard et al. (2013) for empirical

evidence and macroeconomic theory.

(ii) Forecasters who maximize their (expected) utility based on a proper but non-local SR,

such as the Continuous Rank Probability Score (CRPS). These forecasters quote their true

opinions, conditional on their information sets, and it is this delimitation that becomes

the real issue, as some of these forecasters – usually a huge number – might incorporate

colleagues’ quotations in their own information sets, resulting in herding behavior. Such

herding could influence the final announcements from the forecast’s user with the con-

sequence that the same forecasters will modify their own quotations in the next period.

Therefore, it is not possible to determine whether the professional forecasters drive the

forecasts’ users or vice versa. This scenario explains the recent empirical findings that

both survey-based forecasts and market measures are informative sources with which to

ascertain the future value of inflation and that the efficiency of these measures is not

constant in the long run (Trehan, 2015).

(iii) Forecasters who maximize their (expected) utility based on a local SR. These forecasters

ignore confidential information and “rules-of-thumb” and generate their opinions with an

econometric/statistical model, which is the provided to the forecast’s user. The user

arrives at the same conclusion as the forecaster if the user obtains the same likelihood

function, in which case the forecast is coherent. However, the user may still disregarding

the forecast if, for example, the model is poor or is affected by measurement error.

We assume a forecast environment that is populated by this last type of agents, so our research

question is “Are forecast user’s announcements obtained by inverse-engineering the forecasters’

utility from observed sequences of forecasts that are coherent with their own quotations? ” Section

4 answers this question by providing a formal test for the null hypothesis of the locality (that

is, coherence) of the estimated predictive density generated by the SS.

The small-sample properties and their relevance to the theoretical literature are investigated

and discussed in Section 5. Section 6 provides two case studies. The first one introduces a

modification of a standard algorithm for detecting the U.S. economy’s turning points, and the

second one assesses the density forecasts of Norway’s output gap (OG, henceforth) published by
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the Bank of Norway (BoN, henceforth). Our results reveal that improper SRs affect the dating

algorithm of recession events and the BoN’s forecasts, thus justifying the assumption of non-

coherent forecasting environments. Finally, Section 7 summarizes and concludes. An Appendix

provides details on mathematical details, while a separate Supplement gives additional results.

2 Motivating Example: the “Hamill’s Paradox”

Central banks must have a correct view of the evolution of the main macroeconomic variables to

set their monetary policy. These institutions ask a pool of professional forecasters to quote the

expected probability distribution of the variable(s) under consideration. Then they collect and

summarize these variables via “fan” charts that correspond to the offcial announcement of their

future levels. The evaluation of these forecasts is preliminary and necessary to central banks’

decision-making. The following experiment shows how easily one can fail in this fundamental

step.

We simulate the dynamics of U.S. Industrial Production (IP, henceforth) using four data gen-

erating processes (DGPs, henceforth):

y
(i)
1,t = 0.9y(i)

1,t−1 − 0.795y(i)
1,t−2 + ε

(i)
1,t, ε

(i)
1,t ∼ N(0, 1);

y
(i)
2,t = 0.9y(i)

2,t−1 − 0.795y(i)
2,t−2 + (0.02− 0.4y(i)

2,t−1 + 0.25y2,t−2)(i)G(i)(Ξ) + ε
(i)
2,t, ε

(i)
2,t ∼ N(0, 1);

y
(i)
3,t = ε

Unfocused,(i)
t , εUnfocusedt ∼ 0.5 · [N(µt, 1) +N(µt + τt, 1)];

y
(i)
4,t = ε

Hamill,(i)
t , εHamillt ∼ N(µt + δt, δ

2
t );

where: G(i)(Ξ) =
(
1 + exp

{
−
[
h(ηt)(i)I(ηt≤0)(y

(i)
t−1− ȳ

(i)
t ) +h(ηt)(i)I(ηt>0)(y

(i)
t−1− ȳ

(i)
t )
]})−1, and

h(ηt)
.=


γ−1

1 exp(γ1|ηt| − 1) if γ1 > 0,

0 if γ1 = 0,

−γ−1
1 log(1− γ1|ηt|) if γ1 < 0,

(1)

for ηt ≥ 0 and

h(ηt)
.=


−γ−1

2 exp(γ2|ηt| − 1) if γ2 > 0,

0 if γ2 = 0,

γ−1
2 log(1− γ2|ηt|) if γ2 < 0,

(2)

5



for ηt < 0, where G(Ξ) is a function of two parameters (γ1 and γ2) that govern the transition

between the two extreme states G = 0 and G = 1, a scale parameter c and a link-function

h(·); here, we adopt the more compact notation Ξ = [γ1, γ2, c]; more in detail, h(·) is function

of γ1 = 50, γ2 = −20, c = ave(yt), ηt = (y(i)
t−1 − ȳ

(i)
t ), ȳt = 1

T

∑T
t=1 yt and yt−1 being the

transition variable, T = 265 is the length of the time series and i = {1, . . . , I} the number of

draws, with I = 1, 000; the sequences µt, τt and δt, δ2
t are identically distributed and mutually

independent and (δt, δ2
t ) = 0.33 · (0.5, 1) + 0.33 · (−0.5, 1) + 0.33 · (0, 167/100). Model 1 is a

simple autoregression of order 2; Model 2 is a GSTAR model of the same order, which is similar

to the true DGP5; Models 3 and 4 are the “Unfocused” and “Hamill’s” forecasters, respectively

(Hamill, 2001).

Then we compute the PITs that correspond to these forecasts and plot them in Figure 1.

Under a perfect forecast, the histogram is perfectly rectangular, but in our experiment, all

four histograms are almost rectangular, so none of the alternative forecasters is distinguishable.

Such a situation, called Hamill’s Paradox, complicates decision-making because each model can

correspond to a different policy. Does the IP follow a linear asymmetric law of motion (where

cyclical phases are equally possible) or a nonlinear asymmetric one, where future downturns have

low probability to happen? From another perspective, is the professional forecaster’s quotation

the output of a poor model (Unfocused), so no policy should be implemented? Another source

of uncertainty in the evaluation of density forecasts that are generated by nonlinear models

is that these forecasts are often multimodal. (See Figure 3 in Zanetti Chini (2018)). In fact,

these densities might be driven by a mixture of distributions – hence, of utilities – like the

“Hamill’s” forecaster. Is such multi-modality symptomatic of a change in the forecaster’s utility

or does it indicate a more complex scenario, such as a cooperative strategy? This experiment

offers no answer because, while the literature on PIT has evolved6, nothing is known about the

forecaster’s utility that corresponds to the quotation.

An alternative strategy, which originates from Bates and Granger (1969), is to compare and

combine the loss functions estimated by alternative model(s) by using some information criterion

or encompassing test. (See Geweke and Amisano (2011) and their aforementioned literature.)

The only way to overcome the Hamill’s Paradox is to use the approach proposed by Gneiting

et al. (2007), which uses SRs that satisfy the Savage (1971) representation, which is based on

the Brègman (1967) distance. (See Laurent et al. (2013) for a multivariate equivalent.) Mitchell
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and Wallis (2011) criticize Gneiting et al.’s approach because they see the DGP that Hamill uses

as not robust to some basic time-series features, which implies that traditional diagnostic tools

can be applied successfully. However, our example overcomes their critique by showing that

Hamill’s paradox is still an issue when a standard and sufficiently general specification is set.

The number of functions enclosed in this family is considerable (Table 1 of the Supplement),

which justifies our new theoretical framework, as explained in Section refsec:theory.

3 Theoretical framework

3.1 Set up

We assume that the probabilistic forecast of an economic event is the output of a one-period

game with three players: the Forecaster, the Forecast User (or Skeptic), who has capital K to

preserve; and Reality (or Nature). The Skeptic seeks always to refuse the Forecaster’s quotations

and eventually cooperates with Reality; however, no matter how the Skeptic plays, Reality acts

as though the Skeptic does not win the game (called the “excluded gambling system hypothesis”

or Cournot’s Principle). These players act according to the following Forecasting Protocol:

1. K0 := 1;

2. Forecast User announces a bounded function S : [0, 1]→ R;

3. Forecaster announces his quotation Q ∈ R;

4. Reality announces X ∈ {0, 1};

5. K1 = K0 + S (X – Q),

where the binary event by which Reality materializes and the [0, 1]-support of S are used only

for ease of illustration. The restriction on the Skeptic is that she or he must choose S so her

or his capital remains non-negative (K ≥ 0) no matter what values the Forecaster and Reality

announce for Q and X. The winner is the Skeptic if K1 >> K0. Otherwise, the Forecaster

wins.

Remark 1. The game illustrated here is a simplified version of the “Forecasting (Sub-)game” in

Vovk and Shafer (2005, p. 753). With respect to these authors, to ease the statistical treatment

in Section 4, we avoid the recursion corresponding to the n = 1, 2, . . . times that the game is
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re-iterated. This simplification can be removed by assuming a properly calibrated algorithm,

which ensures the main restrictions and assumptions about the players for each recursion.

Remark 2. Step 2 of the Protocol is essentially an application of one of Patton (2017)’s main

conclusions. He demonstrates that the forecast rankings are generally sensitive to the choice

of a proper SR, and, correcting Gneiting (2011) main result, asserts that forecasters should be

told ex-ante what utility functions will be used to evaluate their quotations7.

Remark 3. Step 5 of the Protocol is a test on the forecast’s coherence in terms of the Skeptic’s

utility, which implies that the Forecaster’s reward cannot be augmented after his or her quo-

tation. In principle, the assumption that Reality can cooperate with the Skeptic implies that,

when the game is repeated n times, the sequences of outcomes Sn Qn, Xn do not necessarily co-

incide with realizations of a classical stochastic process. As a consequence, classical hypothesis

testing and inference are not available. Nevertheless, the excluded gambling system hypothesis

allows both of them to be used. (See Shafer and Vovk (2001, Chapter 8.1).)

We are interested in forecasting the economic variable Y, which is observed by time series

Yt = {yt}Tt=1 = {y1, . . . , yt, . . . , yT }T, with upper index “T” denoting the transposition, being

fully represented by an information set Ft = {yt−1, yt−2, . . .} and a probability density P (Yt),

and having a probability density P (Yt). Let us denote the (one-step-ahead) probability forecast

of Yt as P (Yt+1), the best Forecaster’s judgment of the distributional forecast of Yt as Q(Yt)

(we omit Yt for notational convenience), and y a draw of Q that materializes in T + 1 and the

predictive cumulative distribution function that is associated with the materialization of y as

F (y). Let the parameters of the Skeptic’s and Forecaster’s distributions be denoted as P and

Q, respectively, and let L(Θ) and L(Ψ) denote their likelihood functions and the associated

parameters vectors, respectively. A hat indicates estimates. A rolling window consisting of

the past m observations is used to fit a density forecast for a future observation that lies k

time steps ahead. Suppose that T = m + n. At times t = m, . . . ,m + n − k estimated

density forecasts P̂ (Yt+k) and Q̂(Yt+k) for Yt+k are generated, each of which depends only

on Yt−m+1, . . . , Yt. Let X be a set of the possible forecaster’s outcomes, P the family of

distributions on X in which P belongs, and A an algebraic subset of X representing the set

of actions. In particular, if the sample space is discrete (that is, dichotomous for events like

the probability of a recession, or categorical for, say, the ranking position of a firm or State),

P is defined by P = {p ∈ A :
∑

x px = 1}, the set of all real vectors corresponding to strictly
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positive probability measures; if the sample space is continuous (like the conditional mean of an

economic time series), P is defined byM, the set of all distributions on X that are absolutely

continuous with respect to a σ−finite measure µ. The same applies to q. The Forecaster seeks

to solve a decision problem defined by the triple
{
X ,A,U(P, a)

}
, where: X is as previously

defined; A is the action space; and U(P, a∗) is a real-valued utility function that represents the

reward obtained by the Forecaster as the result of minimizing the discrepancy in his or her own

quotations and of action of the action a∗ ∈ A, which maximizes the expected utility computed

using the density P , which is believed to be the true DGP, with the expected loss denoted as

EU :=
∫
U(P, a)P (Yt)dYt.

3.2 Main Definitions and Representation of the Forecasting Environment

Let R = [−∞,+∞] denote the extended real line and the functions H(P ) : P → R and

D(P,Q) : P × Q → R be associated with any U(P, ·). The resulting objects are defined as

follows:

Definition 1 (SRs, entropy/divergence functions, scoring structure). We define:

i. SR the function S(x,Q) := U(P, aQ). Namely:

(a) A SR S : X × P → R is local of order m (or m-local) if it can be expressed in the

form of:

S(x,Q) = s(x, q(x), q′(x), q′′(x), . . . , q(m)(x)), (3)

where s = X ×Qm → R is the scoring function (or “q-function”) of S(x,Q), Qm :=

R+×Rm is a real-valued, infinitely differentiable function, q(·) is the density function

of Q, m is a finite integer, and the prime (’) denotes the differentiation with respect

to x.

(b) A SR S(x,Q) is (strictly) proper relative to the class of probability measures P if

S(P, P ) ≤ S(P,Q) ∀ P,Q ∈ P (4)

with equality if (and only if, for strict properness) Q = P ;

ii. The entropy function is the function H(P ) := S(P, P ) ≡ supQ∈P S(P,Q);

iii. The divergence function is the function D(P,Q) := H(P )− S(P,Q);
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iv. The Scoring structure is the 7-ple SS :=
{
Yt,Ft,X ,P, S(·, ·), H(·), D(·, ·)

}
.

Remark 4. All of the functions S(·, ·) in Definition 1 can be interpreted in terms of utility:

S(x, P ) is the Forecaster’s reward if event x (truly) materializes. Since S(·) is defined on

the extended real line, the expected forecaster’s utility, conditional to Q, can be denoted as

S(P,Q) ≡
∫ +∞
−∞ S(P, x)dQ(x). H(P ) can be interpreted as the maximum possible of the utility

that the Forecaster can achieve using Reality’s true DGP to predict P . The divergence function

is the difference between the maximum utility and the utility achieved by predicting the quoted

predictive distribution Q, given the true distribution P . Hendrickson and Buehler (1971)pro-

vide the necessary and sufficient conditions under which D(P,Q) admits a Brègman-Savage

representation.

Remark 5. This definition of SS is highly general and is used only to consider Reality’s, the

Forecaster’s, or the Skeptic’s point of view. Several assumptions about each of them must be

made to define the type of interaction that occurs among these three players and to delineate

the econometric methodology to be used. (See Appendix A.1.) If the variable of interest is a

continuous function, P is substituted byM.

Definition 2 (Structural Coherence). The (h-step ahead) forecast yt+h obtained by P (Θ̂;xt) ∈

P (orM) is coherent relatively to the scoring structure (or, more simply, is structurally coherent)

if there is one-to-one mapping between L(Θ̂;xt) and L(Ψ̂;xt).

Proposition 1. The Forecaster’s reward S(P,Q) is a proper SR if and only if A1 – A5 are

satisfied.

Proof. This is essentially the Theorem 1 in Gneiting and Raftery (2007).

Remark 6. A1 – A3 are necessary (but not sufficient) to define the Forecaster’s reward as SR.

In particular, A1 encompasses the three “basic assumptions” discussed in Dawid (2007)8 and

suggests that the reward is measurable with respect to A and quasi-integrable with respect

to all P ∈ P. A2 and A3 are convenience assumptions that are necessary only to have a

unique maximizing action. A4 characterizes the general representation of SRs. A5, justified by

Theorem 1 in Bernardo (1979), stresses that the Forecaster has no loss only if his or her DGP

coincides with that of Reality. A6 is fundamental to characterizing a general family of SRs for

the case that every Q ∈ P = A = M has a density q(x) with respect to µ ∈ X , that is the
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Brègman score:

S(x,Q)B .= ψ′
[
q(x)

]
+
∫ {

ψ
[
q(x)

]
− q(x)ψ′

[
q(x)

]}
dµ(x) (5)

with associated Brègman divergence:

d(P,Q)B .=
∫ {(

ψ
[
p(x)

]
+
[
p(x)− q(x)

]
ψ′
[
q(x)

])
− ψ[p(x)]

}
dµ(x), (6)

where ψ is a (strictly) concave function and ψ′ a subgradient of ψ. This is a very general class of

non-metric distance that can characterize most of the SRs described in Table 1 of Supplement.

We are particularly interested in the special case that

ψx = k(x)− λ log(x), (7)

where k is set to zero without loss of generality. Under (7) the forecasts generated by M are

coherent with a given SS. Finally, A7 is necessary to apply Amisano and Giacomini (2007)’s

predictive ability test on the SS’ outputs.

The next result identifies the testable hypothesis of forecasting coherence and constitutes the

basis for the rest of the analysis:

Proposition 2. Let S(x,Q) be an SR, possibly the Brègman-Savage representation, with q-

function s. Then, S(x,Q) is local and strictly proper if and only if s is such that:

Ls = 0, (8)

where: L :=
∑

k≥0(−1)kDkq0
∂
∂qk

, D := ∂
∂x +

∑
j>>0 qj+1

∂
qj
, D and L are total derivative and

linear differential operators, respectively.

Proof. This is essentially the condition (i) in Theorem 6.4 in Parry et al. (2012).

Equation (8) is called the Key Condition. For purely theoretical reasons, the same theorem

requires two other conditions concerning the representation of s via Lagrange operators (Ap-

pendix A.2). Nevertheless, the Key Condition is sufficient (and, to the best of our knowledge,

it is the only one available) to identify an empirically testable hypothesis for the assessment of

the logarithmic form of the Forecaster’s utility.
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The connection between forecast coherence and the SRÕs locality is ensured by the following

Theorem 1. A density forecast Q is structurally coherent if and only if S(x,Q) is local.

Proof. See Appendix A.2.

4 The Locality Test

To test the hypothesis that the equation (8) is verified by the data, we assume that the time-

invariant q-function s generating; and S(x;Q) is part of a smooth transition auto-regressive

scoring structure (SS-STAR, henceforth) and is treated as observed transition variable (Chan

and Tong, 1986)9. This treatment is necessary to set up the null hypothesis and introduce

an LM-type test using a linearization of the SS-STAR, which leads to an equivalent auxiliary

model with augmented regressors, the number of which depends on the type of non-linearity of

the same structure. This artificial model can be investigated by standard inference.

The process {yt} observed at t = 1− p, 1− (p− 1), . . . ,−1, 0, 1, . . . , T − 1, T is assumed to have

the following parametrization:

yt = φTzt +G(γ,wt, ck))θTzt + εt, εt ∼ iid(0, σ2)

G(γ,wt, ck) =
(

1 + exp
{
− γ

K∏
k=1

(wt − ck)
)})−1

, γ > 0, c1 < · · · < ck, < · · · < cK ,
(9)

where: zt = (1, yt−1, . . . , yt−p)T are the autoregressive covariates; φ = (φ0, φ1, . . . , φp)T are

the linear part parameters; θ = (θ0, θ1, . . . , θp)T are the nonlinear part parameters; γ is the

slope parameter; ck = (c1, . . . , cK) denoting the (eventually, multiple) location parameters;

wt = aTzt � s is a composite transition variable, with a = [a1, . . . , ap]T, ai =

0 if i = d

1 if i 6= d

indicating that delay parameter d, which is such that 1 ≤ d ≤ p, is unknown; s = vec(s
⊗

i)

with s is a scalar denoting a generic proper SR as in Definition 1 and i is a one-vector of

the same dimensions of zt. The most common choices for K are K = 1, in which case the

parameters φ + θG(γ,wt, ck) change monotonically as a function of wt from φ to φ + θ and

K = 2, in which case the parameters φ + θG(γ,wt, ck) change symmetrically at the point

where the function reaches its own minimum. A peculiar form of this latter case is when K = 2

and c1 = c2 and the transition function defines the SS-Exponential STAR (SS-ESTAR) model.

When γ →∞, the equation (9) becomes a two-regime threshold auto-regressive SS (SS-TAR).
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(Wee Tong (1983)).

Remark 7. The (nonlinear) SS so defined is an algorithm that applies the forecasting protocol

defined in Section 3. Its use requires three steps: (i) the Skeptic specifies the form of s that

will be adopted to evaluate the Forecaster; (ii) the Forecaster estimates Q(ŷt+h), which is the

estimated h-step-ahead forecast of conditional density of variable y and applies s to it, which

is the step in which wt is computed; and (iii) the evaluated quotation is compared with the

realizations yt via (9).

Remark 8. The mechanics of the forecasting exercise implemented by the Forecaster is inde-

pendent of the form of the SS: no restrictions or assumptions in the forecasting model or in

the methodology adopted to obtain Q(yt+h) is needed. Equation (9) is necessary only as a

convenient way to test the null hypothesis of locality.

The null hypothesis of locality can be investigated as follows:

Proposition 3. Let yt be a stochastic process generated by a SS-STAR represented by (9).

Then:

(i) The locality can be tested via the hypothesis system

H0 : γ = 0 vs H1 : γ 6= 0 in (9), (10)

which can be measured by the following LM statistics:

S(Ξ)LM = σ̂−2Û′D̂2(D̂′2D̂2 − D̂′2D̂1(D̂′1D̂1)−1D̂′1D̂2)−1D̂′2Û ∼ χ2
n (11)

where Û , D̂1, D̂2 denote properly defined matrices; σ̂−2 is an estimator of the uncondi-

tional variance of SS; n is the length of the vector of nonlinear parameters.

(ii) Alternatively, the system (10) can be measured by one of the following LM statistics:

LM1 = (SSR0 − SSR)/σ̂v2 ∼ χ2
3p if K = 1 in (9)

LM2 = (SSR0 − SSR)/σ̂2
v1 ∼ χ2

2p if K = 2 and c1 = c2 in (9)

LM3 = (SSR0 − SSR)/σ̂2
v2 ∼ χ2

p if K = 2 and c1 6= c2 in (9),

(12)

where SSR0 and SSR are the sum of the squared residuals of SS-STAR (9) linearized via

the Taylor expansion, σ̂v2, σ̂2
v1, and σ̂

2
v2 are estimators of unconditional variance of the
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same linearized SS-STAR(p); p is the autoregressive order of the same SS-STAR. F -type

tests equivalent to LM statistics in (12) are preferable in small samples.

Proof. The proof, a re-proposition of the existing results by Luukkonen et al. (1988) and

Teräsvirta (1994), is shown in Supplement.

Remark 9. The SR, assumed as a transition variable of a SS-STAR, is necessary to avoid the

investigator’s (possibly, the same Skeptic) assuming erroneously any functional form of SR when

doing ex-post evaluation (as represented in step 5 of the Forecasting Protocol).

5 Simulation Study

5.1 Simulation Design and Results

We consider two different DGPs:

y
(i)
1,t = 0.4y(i)

1,t−1 − 0.25y(i)
1,t−2 + (0.01− 0.9y(i)

1,t−1 + 0.795y1,t−2)(i)G(i)(γ,wt, c) + ε
(i)
1,t , (13)

and

y
(i)
2,t = 0.8y(i)

2,t−1 − 0.7y(i)
2,t−2 + (0.01− 0.9y(i)

2,t−1 + 0.795y(i)
2,t−2)G(i)(γ,wt, c) + ε

(i)
2,t , (14)

where G(i)(γ,wt, c) = (1 + exp{−γ(wt − c)})−1 , ε(i)t ∼ N(0, 1), i = {1, . . . , I} denoting the

i-th draw of the process {yt}Tt=1 with c = 1
T y

(i)
t , I = 1, 000.

y
(i)
1,t (henceforth “DGP 1”) is an additive nonlinear model with accentuated nonlinear behavior

because of the high autoregressive parameters that drive G(·), which gave high sensitivity to

the size of the slope parameters. Such can be the case of a macroeconomic indicator that is

affected by an unexpected shock that pervades the time series dynamics. On the other hand, y(i)
2,t

(henceforth “DGP 2”) describes a mixed scenario. To simulate the function G(·), we use a set

of values to investigate the cases of null, small, and high nonlinearity in the SS, corresponding

to a local, near-to-local, and non-local forecast scenario, respectively. We also consider three

hypotheses for T and three sample sizes – T = {75, 150, 300} for very small, small, and medium-

sized samples, respectively – and α = {0.01, 0.05, 0.10}.

Table 1 reports the results of the Monte Carlo simulation of the locality test for the statistics

F1 and F2 from the hypothesis system (12) discussed in Section 4. The performances of the
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F3 statistic are poor, so it is omitted. The two test statistics behave well for what concerns

the empirical size. Conversely, the empirical power is poor if an almost-linear specification of

the SS is used, and in general for DGP 1. Moreover, the empirical power is highly sensitive

to the values of the slope. For example, under DGP1 and T=75 and α = 0.10, the power

of the F1 statistic passes from almost 0.02 when γ = 0.5 (hence, an almost linear model) to

0.6 when γ = 500. Therefore, the increase is proportional but less than linear, as is similar

for statistic F2. When DGP2 is considered, the range is more abrupt: ceteribus paribus, F1 is

0.05 when γ = 0.5 and 0.88 when γ = 500. The role of γ becomes almost inflationary as T

increases. For example, when T = 300, and α = 0.05, the range of the power of F1 in DGP1 is

[0.001 – 0.892] and is still more in DGP2. Therefore, there is strong evidence of a relationship

between the SS’s degree of nonlinearity and the locality test’s empirical power. Thus, the test

correctly accepts the hypothesis of locality more easily when the SS is highly nonlinear than

it does in the opposite case of quasi-linear behavior, a feature we call structure linearity bias.

This finding is counter-balanced by the functional form of the SRs’ having no role in the test’s

empirical power. Table 2 reports the results of a simulation of the same two DGPs, where we

fixed γ = 10 and all the scoring functions mentioned in Table 1 of the Supplement, apart from

the logarithmic score previously investigated. The value of each F -statistic is the same for all

nineteen SRs adopted (e.g., the power of F1 in DGP1 at the nominal size of 5% is 0.35 with

T=75, 0.57 with T=150, and 0.63 with T=300). The empirical power of the test under DGP2

(i.e., the mixed scenario) is high in general – in particular, higher than the nonlinear scenario.

Ceteribus paribus, the power of the F1 statistic is 0.67 with T = 75, 0.72 with T = 150, and 0.85

with T = 300, and the equivalent F2 power values are slightly lower – at least in case of middle

sample dimensions. In other words, when the SS parameters are fixed, the empirical power of

the locality test is invariant to the form of the SR that is assumed to drive the Forecaster’s

quotation. This second feature is called score invariance and, as theoretically demonstrated by

Paragraph 11.2 in Parry et al. (2012), it holds also for D(·, ·) and H(·, ·).

5.2 Discussion

This simulation experience provides several lessons. First, the role of the SR locality hypothesis

is not trivial nor easy to understand. The structure’s linearity bias means the power of the

locality test depends on the type of model that the SS assumes. In this sense, the magnitude
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of γ is proportional to the degree of bias that the Forecaster is suspected to have when he or

she produces quotations.

The score’s invariance is a direct consequence of Vovk and Shafer (2005) excluded gambling

system hypothesis. The forecasts (drawn by the Forecaster) and the observations (drawn by

Reality) are not correlated if the functional form of the SR is elicited before the event occurs,

which is one of the most critical assumptions of Lindley (1982)’s generalized theory on the

admissibility of the Forecaster’s utility. According to Lindley (1982), the score invariance is

a necessary and sufficient condition for treating the scores as finitely additive, probability-

behaving objects – that is, for being coherent in the sense of De Finetti (2017). In particular,

Lindley’s Lemma 4 demonstrates the equivalence between two scores that correspond to two

quotations that are conditional on the same event, thus enhancing the status of the probability

transform of the obtained value x10. In this sense, the results of our simulations are fully

consistent with the De Finetti–Lindley theory. No less important, our simulations confirm

that the SRs’ consistency – so axiomatically determined – is a non-sufficient condition for the

coherence of the forecasts’ evaluation, as suggested by Patton (2017). Although some of the

nineteen scoring functions used in this experiment have Brègman–Savage representation, the

test’s empirical power coincides with that of the test statistics corresponding to SRs. Therefore,

when the Skeptic deals with Forecasters, even if the Skeptic specifies (axiomatically) ex-ante

the exact utility function that will be used to evaluate the Forecasters, as required by Step 2

of Forecasting Protocol, the Skeptic will never know, ex-post, if the same utility function is

the one the Forecasters used. This sort of “undeterminancy” is the motivation for adopting

the locality as a criterion for assessing the forecasts. The locality tells the Skeptic whether

Barnard et al. (1962) likelihood principle, according to which all the evidence in a sample that

is relevant to the model parameters is contained in the likelihood function, holds. In this case,

the forecast must necessarily be driven by some function derived from the likelihood. Since the

Skeptic is supposed to have sound knowledge about the estimation methods used to verify the

Forecaster’s work, any deviations from likelihood are likely represented by judgments, that is,

opinions that are not justified by any statistical model.
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6 Applications

6.1 Assessing Recession Probability in the U.S. Business Cycle

We evaluate the U.S. business cycle using a new version of the Bry-Boshan Quarterly (BBQ,

henceforth) algorithm introduced by Harding and Pagan (2002) and Engel et al. (2005). The

BBQ is an advancement of Bry and Boschan (1971) algorithm for detecting turning points in

the U.S.’s GDP. (See also Artis et al. (2004)). This new version is here defined Scored BBQ

(SBBQ, henceforth). Our objective is to explain the role of SS in its multiple specifications

and, just as important, to identify the problems that occur when improper and/or non-local

SRs and SS are assumed.

We use the IP in quarterly data that covers from 1947Q1 to 2013Q1 as a proxy variable in log-

arithmic transformation. We measure the effects of adopting a local SR in the BBQ algorithm

using a simple AR(5) model to estimate the predictive density evaluated via logarithmic (that

is, local) SR. This model corresponds to an SS in equation (9), where γ = 0. Several findings

emerge from the results (reported in Table 3). First, the Logarithmic Score (LogS) conveys the

minimum value between the set of SRs adopted, so it is the optimal one11. In addition, not

surprisingly, the associated descriptive statistics coincide with the statistics in which no SR is

adopted – that is, when there is no evaluation. Therefore, in this scenario the Forecaster’s quo-

tations are structurally coherent with the Skeptic’s quotations, the latter of which correspond

to the results obtained by running the standard BBQ algorithm. A second finding is that,

according to the score invariance principle, most of the indicators’ values do not vary when the

functional form of the SR varies. Figure 2 shows many of these results. When log-level data

are used, the estimated recessions are almost always coincident with the National Bureau of

Economic Research (NBER, henceforth) recession dates, with the exception of the 1975-6 oil

crisis, which is recognized only by LogS and the weighted power Score (WPwrS). The LogS is

also sensitive to stagnation events like those at the of the 1960s and anticipates the Gulf-War

recession in 1991-2. Growth rates convey slightly different results and, in particular, lead to

over-evaluation of the recessions: the standard (unscored) BBQ overreacts in the first part of

the sample, where the number of recession episodes is doubles the NBER recession dates. On

the opposite side, the BBQ does not recognize the first episode in the 1980s and over-evaluates

the cyclical movements after 1992. This pattern holds also for many cases of the SBB algo-

rithm. Nevertheless, under LogS, the recessions of the early 1980s are recognized, albeit with
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a large lead. Then we repeat the analysis by assuming an SS where γ = 5.0 and Forecasters

use a STAR(5) model with d = 4 and three regimes based on the General-to-Specific modelling

strategy in Teräsvirta et al. (2010). Table 4 shows that, under nonlinear (that is, non-local) SS,

more SRs convey the same descriptive statistics as the “no score” case – namely, the LogS as in

the previous analysis, the quantile score (QuantS), and the censored likelihood score (CsLS). All

three of these SRs are proper. Figure 3 shows that nonlinear SSs are more compatible with the

Forecaster’s quotation than linear ones are: in fact, when recession probabilities are driven by

a nonlinear SS, the SBB is less likely to consider years of stagnation to be recessions, as shown

by the indicator’s having been 1 from 1962 to 1971. In general, the LogS respects the NBER

recession dates almost everywhere, apart from the end of 1989 to 1990. Non-Brègman-Savage

SRs like CRPS are not sensitive to any recession since the first oil crisis (1973-74) until 1991.

On the opposite side, WPwrS and WPSph over-estimate the recession episodes after 1982, as

they remain at 0 until 2000. The LogS is less biased than other measures are, although the

1982 recession remains over-estimated.

These findings are supported by the formal LM locality test on the log-level series, the results of

which are reported in Table 5: the locality hypothesis is strongly rejected for all specifications

of nonlinear functions G(·). Finally, we perform a robustness check by running Amisano and

Giacomini (2007) test for the null hypothesis that linear and nonlinear SS specifications for the

same variable per-form equally well according to a rolling window forecasting scheme. Table

6 shows that the SS-LSTAR is preferred when Brègman-Savage SRs are adopted, although

only LogS strongly rejects the null hypothesis. On the opposite side, no evidence of superior

forecasting ability is found when non-Brègman-Savage families of scores are used.

6.2 Assessing the Bank of Norway’s Fan Chart

The OG is one of the most important variables used in macroeconomics because it measures

the percentage deviation between the actual level of GDP and the projected GDP. According

to the most widely used macroeconomic models and practices, this measure is a proxy for the

need for a central planner’s intervention via the monetary channel. Correct assessments of

the OG forecasts are part of each central bank’s duties. The BoN’s Monetary Policy Report

(BoNMPR) issued probabilistic forecasts of OG from March 2008 to December 2017, using fan

charts to visualize the deciles of the predictive distributions. The time series of quarterly OG
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investigated here is stated in percentage changes over twelve months; the first quarter extends

from March 31 to May 30, while the second quarter extends from July 1 to September 30,

and so on. Using our framework, and differently from the previous application to the U.S. IP,

we take the BoN forecasts as primitive observations, so these are yt in equation (9). On the

other side, the BoNMPR forecasts are the product of the bank’s internal econometric model,

such as the System Averaging Model (SAM) or the Norway Economic Model (NEMO). (See the

BoN models web page for references.) The last ones take the role of the composite transition

variable wt, representing the Forecaster’s quotations. In terms of the theoretical framework,

γ = 0, the final BoN announcements correspond to the estimated fan charts; that is, the latter

are perfectly coherent with internal forecasts. Similar to the previous application on IP, Table

5 rejects this hypothesis, so we must assume a non-negligible amount of bias in the BoN’s fan

charts. In line with this finding, we assume that the Forecaster adopts a Logistic STAR model,

which has to be compared with the final announcement, represented by downloadable BoN fan

charts. Therefore, we run the Amisano-Giacomini test for many SRs computed in a rolling-

windows forecasting scheme, where the window has length of m = 6 quarters. (Among others,

and despite some differences in theoretical and empirical framework, see Gneiting and Ranjan

(2011).) Under LogS, the t-statistic indicates whether the distance between the BoNMPR

forecasts and a forecast obtained by an econometric model is significant.

Table 7 reports the results of this approach for a prediction horizon of k = 1 quarters ahead

and a test period ranging from the first quarter of 2008 to the first quarter of 2017, for a total

of n = 34 density forecast cases. The values and p-values show that the superiority of the BoN

approach is not unambiguously clear. Under LogS and other proper functional forms, such as

Quantum (qS), Conditional Likelihood (CLS), and Interval Scores (IntS), the test rejects the null

hypothesis of no equal predictive ability of SS versus the benchmark model, thus confirming the

statistical coherence of the quotation. On the other side, it does not reject the null hypothesis if

any of several other improper functionals, such as the WPwrS, most Weighted Pseudo-Spherical

(WPseudoSph) scores, and Log-Cosh (LCS) scores, are used. The Supplement provides details

on each of these functionals.
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6.3 Discussion

What do we learn from these applications? Concerning the evaluation of business cycle down-

turns, our results show that the dating algorithms – and, thus, the probability of recession –

are sensitive to the locality hypothesis, as different SRs convey the same cycle indicator. This

result seems counterintuitive: since most of these estimated SRs differ (and, in some cases,

they are consistently different), we would expect that each of these functionals corresponds to a

unique value. On the other side, the score invariance principle that is empirically demonstrated

in Section 4 supports Patton (2017)’s conclusion that an ex-ante selection of SRs for evaluation

according to their axiomatic properties is not sufficient to obtain a coherent forecast. In fact,

all the three of the SRs that are associated with the “coherent” descriptive statistics (Table 4)

and forecast (Table 6) of the U.S. business cycle have Brègman-Savage representation. This

apparent contradiction with our original goal of obtaining a unique and coherent evaluation of

economic forecasts is a basis on which to motivate the use of conditional predictive ability tests

when the null hypothesis of locality of forecasting environment is rejected: there would no need

to compare two density forecasts if one of them were known to be coherent.

Concerning the assessment of the BoN’s fan charts, we have to assume that the measure of the

Forecaster’s coherence can be done by simply averaging a time series of each quotation. More

general combination schemes have recently become available: Kapetanios et al. (2015) suggest

a sieve estimator of weighted means, where weights are allowed to be nonlinear combinations

of density functions, and Billio et al. (2013) develop a combination method that assigns time-

varying weights to competing densities via a Markov-Switching state-space model. In principle,

all these methods can be nested in our framework.

The proposed methodology is a stylized way to address the elicitation of the Forecaster’s true

utility. For example, we assumed the SR is known (because of the ex-ante elicitation in Step

2 of the Forecasting Protocol) and observed that it exploits the properties of the STAR family

of models. Nevertheless, in the real world, the Skeptic can never be sure that the Forecaster

is considering the same utility function, which requires that the observability assumption be

relaxed. In this sense, a state-space representation of the SS could be a useful development.

Moreover, the game-theoretic framework that constitutes the skeleton of the SS adopted in this

paper is a simple version of more general games in that we assumed that there is no uncertainty

in the Forecaster’s activity, whereas the Forecasting Game II in Vovk and Shafer (2005) seminal
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paper assumed it acts as a fourth player. (See Vovk and Shafer (2005, p. 754).) Moreover, no

dynamics in the game underline the assumed Forecasting Protocol, suggesting from a theoret-

ical perspective that the Forecaster cannot use any further information he or she receives, nor

can the Skeptic account for the Forecaster’s past behavior. This implication limits many of the

applied contexts because the Skeptic would be able to test whether a Forecaster’s quotation is

biased but would not know in what direction the bias acts. Finally, we assumed that the Fore-

caster is a single entity (or, equivalently, a set of entities with perfectly homogeneous behavior

that can be represented by a single agent) so, when different types of SR were adopted in the

course of our applications, there were no interactions between them. Hence, further research is

necessary to generalize the SS approach in these (and, possibly, other) directions.

7 Conclusions

We introduced a novel frequentist framework named the Scoring Structure that assumes in-

teractions between a Forecaster, a Forecast User, and Reality to make coherent evaluations

of econometric forecasts. This framework allows econometricians to build an LM-type test to

verify the hypothesis of locality of the Forecaster’s expected utility. The test’s empirical power

properties are consistent with the fundamental requirements stated in the literature on decision

theory. Because of its generality and flexibility, the Scoring Structure is a fundamental tool with

which to elicit the Forecaster’s utility in several economic applications. The specification used

in this paper is simple with respect to real-world needs, so we suggest using the new approach

in companion with standard predictive ability tests and encourage further research efforts to

refine this methodology by relaxing the Scoring Structure’s theoretical assumptions and related

operational methods.

Notes

1 In what follows, we prefer to use the notion of “utility” rather than that of “loss”, which is more frequently

used in the econometric literature, to emphasize our connection with the Bayesian literature that, despite

our frequentist approach, inspired this paper

2 See also Christoffersen and Diebold (1996, 1997); Patton and Timmermann (2007a), among others. Patton

and Timmermann (2007b) consider the case in which the utility functions are unknown, but this last strand

of literature considers only point forecasting.
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3 According to De Finetti (1962, p. 359), “the scoring rule is constructed according to the basic idea that the

resulting device should oblige each participant to express his true feelings, because any departure from his

own personal probability results in a diminution of his own average score as he sees it”.

4 Moreover, as documented in Table 1 of the Supplement, the number of proper SRs explicitly built for density

functions is high. Just as important, many of them are nested, so identifying the true incentive that drives

the Forecaster’s forecast is not easy; see also Table 1 in Jose et al. (2008).

5 The true DGP is Model 2, but with γ1 = 20 and γ2 = −5 and the autoregressive parameter of the nonlinear

part augmented to 0.6 and 0.45 (instead of 0.4 and 0.25). For details on this peculiar generalization of the

smooth transition autoregressive family of models, we refer the reader to Canepa and Zanetti Chini (2016)

) and notice that both DGP2 and the true DGP are similar to those used in Teräsvirta (1994), equation

(4.1). A large strand of literature demonstrates that this variable is typically nonlinear. See Anderson and

Teräsvirta (1992), among others.

6 See Rossi and Sekhposyan (2013) for statistical inference with unstable forecast environments and González-

Rivera and Sun (2017) and the aforementioned literature for a generalization of PITs.

7 According to Patton (2017, p. 3), “[. . . ] Specifying the target functional is generally not sufficient to elicit a

forecaster’s best (according to a given, consistent, loss function) prediction. Instead, forecasters should be

told the single, specific loss function that will be used to evaluate their forecasts.”

8 In our simplified notation: a) there exists exactly one p ∈ A for any P ∈ P; b) distinct distributions in P

have distinct actions in A; c) Every a ∈ A is a Bayes act for some P ∈ P; see Dawid (2007), p. 80.

9 This test was built in previous versions of this paper to assume the generalized version of the STAR model

presented in Canepa and Zanetti Chini (2016). However, this complication does not improve the results

presented here. The equivalent tables with the result of the simulations with STAR model can be provided

under request.

10 According to Lindley (1982, p. 4) “It follows that a person could proceed by choosing his probability p

in advance of knowing what score function was to be used and then, when it was announced, providing x

satisfying P (x) = p.”

11 In this peculiar example, the SRs with negative value are not meaningful because they are associated with

the probability of recession events and do not allow the application of the algorithmic procedure.
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Figure 1: The Hamill’s paradox

(a) PIT under linear forecast
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(b) PIT under GSTAR forecast
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(c) PIT under unfocused forecast
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(d) PIT under Hamill’s forecast
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NOTE: This figure displays the output of the motivating example described in Section 2. Panel plots
the PIT that corresponds to a forecast obtained by a linear AR(5) model; panel (b) plots the PIT that
corresponds to a forecast obtained by Zanetti Chini’s 2018 GSTAR model of the same order; panels (c)
and (d) plot the two Hamill (2001) specifications: the Unfocused and Hamill Forecasters, respectively.
The bars represent the histogram that corresponds to each Forecaster’s quotation. If the Forecaster has
the same information that Reality has (that is, under perfect forecast), the histogram would be perfectly
rectangular.
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Figure 2: The effects of different SR in BBQ algorithm under linear (local) Scoring Structure

(a) Analysis of data in (log-)levels

1950 1960 1970 1980 1990 2000 2010

50
10

0

Index of US Industrial Production

L
ev

el
s

Unscored 
LogS 

QS 
 

1950 1960 1970 1980 1990 2000 2010

0.
5

1.
0 (Scored) BryBoshan algorithm(s) in AR models with BrègmanSavage class SR

In
di

ca
to

r

Unscored 
LogS 

QS 
 

WPwrS CRPS 

1950 1960 1970 1980 1990 2000 2010

0.
5

1.
0 Scored BryBoshan algorithm(s) in AR models with nonBrègmanSavage class SR

In
di

ca
to

r

Date

WPwrS CRPS 

(b) Analysis of data in quarterly growth rates
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NOTE: This figure shows the output of the (S)BB algorithm introduced in Section 6.1 for data in (log-
)levels (panel (a)) and growth rates (panel (b)) when the SS is assumed to satisfy the “Key Equation”
or, equivalently, γ = 0 in equation (9). In both panels, the upper part of the panel shows the series
in levels, while the output of the algorithmic procedures in the remaining ones is obtained using a
logarithmic transform. According to our theoretical framework, the data are Reality, and the Indicators
represent five Forecasters (i.e., the indicator labeled “Unscored” is the original Bry-Boshan algorithm,
which simulates an unbiased evaluation, and the other four indicators are the SBBs whose evaluations
of recession probability are via quadratic (QS), logarithmic (LogS), weighted power score (WPwrS), and
continuous-ranking probability score (CRPS). The official NBER recession dates (the bands in yellow)
represent the Forecast User’s final evaluation. The Forecasters are grouped based on whether they meet
the criterion of being Brègman divergence-minimizers (central sub-panel of both panels (a) and (b)) or
not (lower sub-panel of the same). Software used for computation: MATLAB R2009b; image editing:
OxMetrics.
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Figure 3: The effects of different SR in BBQ algorithm under nonlinear Scoring Structure

(a) Analysis of data in (log-)levels
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(b) Analysis of data in quarterly growth rates

1950 1960 1970 1980 1990 2000 2010

0
10

Index of US Industrial Production

G
ro

w
th

 R
at

es

Unscored 
LogS 

QS 
 

1950 1960 1970 1980 1990 2000 2010

0.
5

1.
0 (Scored) BryBoshan algorithm(s) in STAR models with BrègmanSavage class SR

In
di

ca
to

r

Unscored 
LogS 

QS 
 

WPwrS CRPS 

1950 1960 1970 1980 1990 2000 2010

0.
5

1.
0 Scored BryBoshan algorithm(s) in STAR models with nonBrègmanSavage class SR

In
di

ca
to

r

Date

WPwrS CRPS 

NOTE: This figure plots the output of the (S)BB algorithm introduced in Section 6.1 for data in
(log-)levels (panel (a)) and growth rates (panel (b)) when the SS is assumed not to satisfy the “Key
Equation” , or, equivalently, γ 6= 0 in equation (9). In both of the panels, the upper sub-panel shows
the series in levels, while the output of the algorithmic procedures in the remaining ones is obtained
using a logarithmic transform. According to our theoretical framework, the data are Reality, and the
Indicators represent five Forecasters (i.e., the indicator labeled “Unscored” is the original Bry-Boshan
algorithm, which simulates an unbiased evaluation, and the other four indicators are the SBBs that
evaluate recession probability via quadratic (QS), logarithmic (LogS), weighted power score (WPwrS),
and continuous-ranking probability score (CRPS). The official NBER recession dates (the bands in
yellow) represent the Forecast User’s final evaluation. The Forecasters are grouped according to whether
they meet the criterion of being Brègman divergence-minimizers (central sub-panel of both panels (a)
and (b)) or not (lower sub-panel of the same). Software used for computation: MATLAB R2009b; image
editing: OxMetrics.
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Table 5: LM locality test for real data

IP

LM1 LM2 LM3

F -statistic P -value F -statistic P -value F -statistic P -value

220.5872 <0.01 220.0645 <0.01 623.50 <0.01

OG

LM1 LM2 LM3

F -statistic P -value F -statistic P -value F -statistic P -value

99.3900 <0.01 97.5790 <0.01 251.32 <0.01

NOTE: This table reports the test statistics (12) in their F-variant, with corresponding p-values for data
on the U.S. Industrial Production Index and the Norges Bank Output Growth is estimated according
to the fan charts published in the release of January 2014. Data Source: Federal Reserve Bank of St.
Louis, Research Division (IP) and Bank of Norway’s web page (OG).

Table 6: Relative predictive ability of Forecaster’s quotations for IP.

S(Q, y) S̄f S̄g σ t P -value

Brègman-Savage type

LogS 1.0073 0.0269 0.0040 19.7831 <0.01
QuantS 0.5530 0.4082 0.0887 1.6594 0.0485
CsLS 0.0961 0.0340 0.0345 1.8841 0.0297

Non Brègman-Savage type

WPowerS 0.8147 0.9534 0.6110 -0.1575 0.5625
WPseudoSph 1.0849 1.0857 0.0251 -0.0329 0.5131
CRPS 0.1320 0.1431 0.0273 -0.0216 0.5086

NOTE: This table reports the result of the Amisano and Giacomini’s 2007 test for the U.S. index
of industrial production at a prediction horizon of 12 months for different SRs corresponding to the
predictive density functions f and g, respectively, where f is the Forecaster’s nonlinear specification
(corresponding to the same STAR model used in Table 4) given a non-local SS, and g is a linear
specification given a non-local SS. The average scores S̄fn = 1

n−k−1

∑m+n−k
t=m S(f̂t+k, yt+k) and S̄gn =

1
n−k−1

∑m+n−k
t=m S(ĝt+k, yt+k) was computed by aggregating the sequences of forecasts generated by the

pseudo-out-of-sample forecasting experiment described via the Monte Carlo method in Zanetti Chini
(2018, pp. 718). The null hypothesis that ∆∗ = S̄fn − S̄gn = 0 is measured by statistic tn =

√
n∆∗

σ̂n
∼

N(0, 1), where σ̂2
n = 1

n−k+1

∑k−1
j=−(k−1)

∑m+n−k−|j|
t=m ∆t,k∆t+|j|,k, and ∆t,k = Sfn − Sgn. In this exercise,

the LogS in positive orientation is adopted, so f is preferable to g if and only if Sf > Sg. Statistics that
lead to rejection of the null hypothesis are reported in bold.
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Table 7: Relative predictive ability of Forecaster’s quotations for OG

S(Q, y) S̄f S̄g σ t P -value

LogS 0.0273 0.0275 0.0070 -2.5601 0.9949
QSR 0.5582 0.5390 0.0961 -0.3251 0.3820
WPowerS 2.8147 2.9534 0.1011 -3.3575 0.9991
" (α = −1) 527.6771 2.9534 1.08e05 -0.0032 0.5012
" (α = 0) 527.5193 670.8714 1.08e05 -0.0032 0.5012
" (α = 1/2) -1,062.301 -1,352.7636 4.43e05 0.0016 0.4993
" (α = 1) 1.1986 1.4481 0.3275 -1.8662 0.9653
" (α = 2) -262.6019 -333.8081 2.66e03 0.0065 0.4974
PseudoSph 2.9817 2.9817 0.0000 0.0000 0.5000
WPseudoSph 1.9916 1.9931 1.2709e-05 -299.5681 1.0000
" (α = −1) 0.4999 0.5000 7.8768e-12 -3.8e05 1.0000
" (α = 0) 1.0000 1.0000 0.0000 0.0000 0.5000
" (α = 1/2) -1,927.5277 1.0000 3.8e06 0.0005 0.4997
" (α = 1) 1.1986 1.4481 0.3275 -1.8662 0.9653
" (α = 2) -0.8559 -0.8361 0.0020 -23.4613 1.0000
IntS 3.5000 3.5000 0.0000 0.0000 0.5000
TsallisS 1.2229 1.2229 0.0000 0.0000 0.5000
ES -0.1237 -0.0834 0.0085 -11.5709 1.0000
GES 1.1626 1.2485 0.0388 -5.4196 1.0000
PseudoSpectrumS -7.8530 -7.8530 0.0000 0.0000 0.5000
CRPS 0.0132 0.0120 7.2746e-06 395.9622 <0.01
QuantS -0.1909 -0.1835 0.0002 -63.5174 1.0000
CLS -0.1467 -0.4232 0.4021 1.6841 0.0499
CsLS 0.0088 0.0076 8.0784e-06 375.7488 <0.01
LCS 0.0552 0.0569 0.0105 -0.2100 0.5831

NOTE: This table reports the result of the Amisano and Giacomini’s 2007 test for the BoN’s fan chart
of OG at a prediction horizon of 12 months for different SRs of two density forecasts, f and g, re-
spectively, where f is the BoN announcements and g is a non-linear specification (corresponding to the
same STAR(5) of Table 3) given a non-local SS. The average scores S̄fn = 1

n−k−1

∑m+n−k
t=m S(f̂t+k, yt+k)

and S̄gn = 1
n−k−1

∑m+n−k
t=m S(ĝt+k, yt+k) was computed by aggregating the sequences of forecasts gen-

erated by the pseudo-out-of-sample forecasting experiment via Monte Carlo procedure described in
Zanetti Chini (2018, pp. 718). The null hypothesis that ∆∗ = S̄fn − S̄gn = 0 is measured by statistic
tn =

√
n∆∗

σ̂n
∼ N(0, 1), where σ̂2

n = 1
n−k+1

∑k−1
j=−(k−1)

∑m+n−k−|j|
t=m ∆t,k∆t+|j|,k, and ∆t,k = Sfn − Sgn.

In this exercise, the LogS is in negative orientation, so f is preferable to g if and only if Sf < Sg.
Counterintuitive results are marked in bold. Data source: Bank of Norway’s web page, release of 2014.
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A Appendix

A.1 Assumptions

A 1. P is assumed such that EU exists for all a ∈ A, P ∈ P.

A 2. A is compact.

A 3. U(P, aQ) is strictly convex in a.

A 4. The entropy H(P ) associated to S(·) is (strictly) convex in P , integrable with respect to

P ∈ P and quasi-integrable with respect to all Q ∈ P and such that H∗ is a sub-tangent of H

at point P .

A 5. S(P,Q) is affine, real-valued for all P,Q ∈ P and minimized in Q at Q = P .

A 6. D(P,Q)−D(P,Q0) is affine in P , and D(P,Q) ≥ 0, with equality achieved at Q = P

A 7. P̂t+k and Q̂t+k are measurable functions of the data in a rolling estimation window.

A.2 Proof of Theorem 1

Let L and D be the same operators defined in Section 3, Λ =
∑

k≥0(−1)kDk∂/∂qk the Lagrange

operator defined in equation (25) of Parry et al. (2012), and I the identity operator.

To prove the “if” part of the statement we need to show that, if (i) Ls = 0, (ii) s = (I− L)s, s

being a generic 0-homogeneous q-function, and (iii) s = Λφ, where φ is a generic 1-homogeneous

q-function, then L(Θ) ≡ L(Ψ). The Key Condition (i) is a consequence of the fact that, in

P = Q, S(·) is a stationary point under an infinitesimal variation δq(·) of q(·) (if assuming that

q(·) + δq(·) is still a density function); in turn, this leads to use classical variational analysis

arguments by Parry et al. (2012), pages 569–71. (ii) is a consequence of Corollary 6.3 by Parry

et al. (2012). (iii) is a consequence of Theorem 5.3 and Corollary 6.3 by the same authors.

Since each single conditions (i)–(iii) holds, Proposition 1 can be applied. Now, we need show

only that if two S(·) are key local, their likelihood functions coincide; to this aim, it is sufficient

to notice that Key Equation (8) is the only binding condition because it must be satisfied for

any S(·) function, even if (ii) and (iii) are not satisfied. Now L(·) is, by definition, a simple

linear (product) transform of log(p(·) – that is, the same LogS; see Ehm and Gneiting (2012).

The operators D and L here adopted are linearly invariant by Theorem 11.3 and 11.4 of Ehm

and Gneiting (2012). Hence the statement.
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To prove the “only if” part of the statement we need to show that if L(Θ) ≡ L(Ψ), then S(·)

is key local. This is trivial when P (x) ≡ Q(x), in which case there is no evaluation. In the

non-trivial case that P (x) 6= Q(x), the forecast is coherent when the expected score of Skeptic

coincides with Forecaster’s one; in turn, this condition is ensured by Theorem 1 in Bernardo

(1979), where the Expected Information of Skeptic (that is, the “distance” between changing its

opinion from pΘ(·) to pΘ(·|x) after that data materializes and maintaining pΘ(·) without any

regard to data) can be written as a Kullback-Liebler divergence. By definition, this expected

information zero only when this expected utility of having such insight for Skeptic coincide with

Forecaster, that is, the difference between expected information for Skeptic and Forecaster is

zero. Hence the statement.
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