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Abstract

Epidemic outbreaks are extreme events that become less rare and more severe.

They are associated with large social and economic costs. It is therefore impor-

tant to evaluate whether countries are prepared to manage epidemiological risks.

We use a fully data-driven approach to measure epidemiological susceptibility risk

at the country level using time-varying and regularly reproduced information that

captures the role of demographics, infrastructure, governance and economic activ-

ity conditions. Given the nature of the problem, we choose both principal compo-

nent analysis (PCA) and dynamic factor model (DFM) to deal with the presence

of strong cross-section dependence in the data due to unobserved common factors.

We conduct extensive in-sample model evaluations of 168 countries covering 17

indicators for the 2010-2019 period. The results show that the robust PCA method

accounts for about 90% of total variability, whilst the DFM accounts for about

76% of the total variability. Our framework and index could therefore provide the

basis for developing risk assessments of epidemiological risk contagion after the

outbreak of an epidemic but also for ongoing monitoring of its spread and social

and economic effects. It could be also used by firms to assess likely economic

consequences of epidemics with useful managerial implication.
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1. Introduction

During the past year, the Covid-19 pandemic has infected more than 100 mil-

lion people and caused more than 2 million deaths in more than 200 countries

around the world. The associated economic and social costs are huge. Some es-

timates raise the global economic cost of the Covid-19 pandemic for the next few

years to several USD trillion (The International Monetary Fund, 2020). A great

concern has been the virus’ potential to spread to countries with weaker health

systems and disease exacerbating conditions. Thus, knowing how countries with

different degrees of preparedness have responded to the pandemic is important for

assessing cross-country epidemiological risk and optimally deploying resources in

support of this global health emergency. These policy questions have remained

valid during all phases of the Covid-19 pandemic and especially during the process

of gradual removal of lockdown restrictions since the opening of the economies

risks again of further spreading the disease. The question of country preparedness

has re-emerged following the recent mutation of the virus (The World Health Or-

ganization, 2020d). This is critical knowledge of a globally susceptible population,

with several countries reporting infection levels far above the average levels in their

recent histories.

The question of countries’ preparedness to manage epidemiological risk must

be addressed from a long-term perspective. It is likely that the world will continue

to face epidemic outbreaks, which many countries are ill positioned to manage.

In addition to climate change and urbanization, global people displacement and

migration—now happening in nearly every corner of the world—create ideal con-

ditions for the emergence and spread of pathogens. Countries also face an increas-

ing potential threat of accidental or deliberate release of some deadly engineered

pathogen, which could cause even greater harm than a naturally occurring pan-

demic. The same scientific advances that help in fighting epidemic diseases also

have allowed pathogens to be engineered or recreated in laboratories. Meanwhile,

disparities in capacity and inattention to biological threats among some countries
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have exacerbated preparedness gaps. Measuring country preparedness emerges as

a key economic policy challenge for both countries and firms.

We contribute to addressing this policy challenge by creating an index of epi-

demiological susceptibility risk (ESR) at the country-level for 168 countries. There

are various economic and non-economic factors affecting the extent to which a

country is prepared to manage or, alternatively, is susceptible to epidemiological

risk. We produce a new preparedness measure that relies on objective information

that can be readily reproduced to facilitate policy choices. We build on relevant

previous work and our index information accounts for the role of policy-relevant

factors, such as environmental safety infrastructure; health infrastructure; transport

and communications infrastructure; economic activity; demographics; and gover-

nance institutions (Mertzanis and Papastathopoulos, 2021). However, to deal with

the complexity of these factors, we implement a fully data-driven approach to mea-

suring epidemiological susceptibility risk. In contrast to previous studies, our fully

data-driven approach produces results that provide a better evidence basis to sup-

port reasoning and decision. Given the complexity of the epidemiological system,

the data-driven approach may lead to more optimal assessments. While there are

no data-driven algorithms that can lead to fully optimal assessments of the risk

of a country’s epidemiological susceptibility, this approach has considerable ad-

vantages, such as avoiding the subjective weight determination and the need for

post-hoc rationalization. Evidence shows that data-driven models offer better pre-

dictive accuracy in epidemiological research than knowledge-based ones (Rajabi

et al., 2014). Given the nature of the problem, we choose different versions of

principal component analysis (PCA) as well as dynamic factor model (DFM) to

deal with the presence of strong cross-section dependence in the data due to unob-

served common factors. We conduct extensive in-sample model evaluations of 168

countries covering 17 indicators during the period 2010-2019. The results show

that the robust PCA method explains more than 90% of total variability, whilst the

DFM explains about 76% of the total variability.
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Our paper contributes to the literature in the following ways: it builds on pre-

vious studies by proposing a substantially improved index of epidemiological sus-

ceptibility risk at the countrylevel that is fully model-based and data-driven, tested

and validated according to the most recent statistical techniques and objective (not

perceptive) information regularly reproduced. We use alternative versions of an

unsupervised statistical learning techniques, which make neither a priori assump-

tions on the relationship among the input variables nor a subjective decision on

the variables to be possibly dropped. Further, our data-driven model does not need

to define a target variable, thereby avoiding a further level of subjectivity. The

only model assumption lays on the number of components built on the original

variable space reflecting the desired level of captured variability and predictive

ability. Moreover, the new coordinates must by construction lie on a linear space

and be mutually orthogonal (i.e., uncorrelated). Uncorrelation ensures that each

new principal component or dynamic factor describes a specific and not known

in advance latent phenomenon through the linear combination of the initial vari-

ables. The index is produced in different forms, which provide policy makers with

different tools to assess country preparedness according to specific needs and ob-

jectives. Moreover, it contributes to the limited literature on the conceptualization

and measurement of epidemiological risk (Gupta et al., 2018). The key novelty of

our ESR measure is the consideration of key long-term policy-relevant conditions,

and not merely of the temporary incidence of diseases, affecting the contagion of

an epidemic. It reflects the role of diverse economic and non-economic factors that

may accelerate or decelerate the contagion effects of epidemics and therefore it

could potentially be a useful instrument for managing their repercussions. We take

a modest position: the ESR index is a prima facie effort intended to predict not

the epidemic outbreak itself but rather the post-outbreak risk of contagion, largely

reflecting the effect of policy considerations. Given the dire economic effects of

the COVID19 pandemic, we believe that epidemiological risk management will

emerge as a key financial policy consideration in the future. Further, our paper is
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also related to the new wave of studies on predicting epidemiological outbreaks

(Rivers et al., 2019, Polonsky et al., 2019). However, these studies mainly fo-

cus on forecasting and they do not explicitly consider the preparedness question.

Finally, our analysis complements recent risk assessments based on the use of ma-

chine learning methods (Lin et al., 2012). Indeed, the authors stress that, beside

the efficiency of the machine learning algorithm (often ensemble models do the

job), the dataset, the selection of leading variables and the preprocessing phase in

general play a key role in producing accurate assessments. We have placed special

emphasis on these aspects in our analysis.

We organize the paper in the following parts: section 2 analyzes the related

literature; section 3 describes the methodological framework, the sources of data

and the dimensionality reduction strategy; section 4 presents the analytical results

and introduces some robustness checks and finally section 5 concludes the analysis

of the paper.

2. Relevant literature

2.1. Prediction and preparedness

Most efforts to contain the spread and effects of epidemics use the results of

prediction models. The prediction of epidemics is indeed a critical research en-

deavor with major public and global health relevance (Rivers et al., 2019, Polonsky

et al., 2019). The prediction of the Covid-19 behavior has requested sophisticated

methods that include big data, social media data, stochastic theory/mathematical

models and data science/machine learning techniques along with medical (symp-

tomatic and asymptomatic) parameters (Shinde et al., 2020, Nikolopoulos et al.,

2021). However, their prediction accuracy is limited due to the short period of data

availability, data suitability, lockdown policies, difficulties in tracking the move-

ment of people, changes in the incubation period and mutation of the virus, but

also inappropriate algorithms and models.
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The prediction of an epidemic establishes an alarm, which calls for a decision

on what policy measures to undertake. The decision must be based on appropriate

optimization of the prediction parameters, the likelihood of epidemic spread and

its potential impact. Thus, it can be very complex and difficult, especially for

regions having large and dense populations or critical infrastructure. Epidemics

managers must factor prediction uncertainty into their decision-making models.

However, while prediction methods have improved considerably and can handle

increasing levels of complexity thereby enhancing routine handling of infectious

diseases (Reich et al., 2019, Spreco et al., 2018, Debellut et al., 2018), prediction

is essentially a short-term research enterprise. Instead, the overall preparedness of

a country is a crucial long-term factor that conditions the optimal decisions to be

made in response to an epidemic prediction. The latter requires appropriate trade-

offs and parameter optimization in aiding the management of potential outbreaks.

The emergence of various epidemic outbreaks in the recent years led to the

formulation of various country preparedness approaches that use different infor-

mation and data aggregation methods. We briefly survey the most important ones.

The Global Health Security Index (GHSI) represents a comprehensive assessment

and benchmarking of health security and related capabilities of the countries that

participate in the WHO’s International Health Regulations. The GHSI is a joint

project of the Nuclear Threat Initiative, the Johns Hopkins Center for Health Se-

curity, and The Economist Intelligence Unit (Johns Hopkins University Centre for

Health Security, 2019). The GHSI provides a measure of a country’s preparedness

based on the capacity gaps of countries in their potential response to epidemics

(T.Craig et al., 2020). However, the GHSI has been first published in 2019 and

therefore it does not provide historical data to be used in thorough economic re-

search. Further, the GHSI is too broad and includes global catastrophic and biolog-

ical hazards, which on the one hand endows it with a broad coverage capacity but,

on the other hand, makes it less suitable as a tool of prediction of epidemic-driven

economic outcomes. The multi-level and complex construction of the index also
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make it less flexible and therefore less suitable as a policy tool. Finally, in a prima

facie effort to test its predictive power, Najmul (2020) find insignificant correla-

tion between the GHSI and the incidence of Covid-19. After multiple testing, they

suggest the inclusion of information on demographics and the reappraisal of its ag-

gregation methodology. Razavi et al. (2020) argue that, while very comprehensive

in its construction, the GHSI scoring may not be suitable for determining priorities

and comparing countries with one another, calling for a further refinement of the

index process that rationalizes the index’s extensive focus on developed countries

and health-related variables and adjusts the weighting methodology.

A related effort to assess country preparedness is the Joint External Evalua-

tion (JEE) assessment tool. The latter is an externally validated, voluntary and

collaborative assessment of 19 technical blocs necessary to validate the countries’

capacity to detect and respond to public health risks (The World Health Organiza-

tion, 2017). Unlike the GHSI, which allows inter-country comparisons, the JEE

is a formal component of the WHO’s IHR Monitoring and Evaluation Framework,

which all UN member states must implement. The JEE is not designed for making

inter-country comparisons but instead it is a technical tool for providing support

to WHO member countries in setting quantified baseline thresholds against which

countries can assess their own IHR core preparedness capacity as a guide for future

progress. Shahpar (2019) use the average of the JEE’s 19 technical areas for bench-

mark/comparison and argue that the JEE, provides a first opportunity for coordi-

nating policy efforts that requires higher domestic and international collaboration

and prioritization of intervention. Garfield et al. (2019) tested the effectiveness of

the JEE tool in a few African countries and found a high level of correspondence

between score and policy text at the country level but also considerable differences

in actual country responses relative to the prescribed JEE scores. They propose

a better alignment of the JEE measures with the timing and depth of the country

responses, which also reflect the contribution of international assistance in these

areas.
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Another comprehensive effort to develop a preparedness index was expended

by the U.S. Center for Disease Control and Prevention (CDCP). Following the

emergence of various hazards, the CDCP produced the National Health Security

Preparedness Index at the U.S. state level (NHSPI, 2015). To the best of our knowl-

edge, the NHSPI is the only tool currently available to measure the preparedness of

each of the states in the U.S. The index uses information from six broad domains

of national health security (NHSPI, 2015, CDCP, 2014). The domains are the

management of incident and information, the delivery of health-care services, the

improvement of occupational and environmental health conditions, the manage-

ment of countermeasures, community engagement and planning conditions, and

the surveillance of health security conditions. After reviewing the occupational

and environmental health domains of the index, we observe no inclusion of indica-

tors of occupational health and safety but only measures of environmental health.

Overall, while the NHSPI is comprehensive, it covers only one country (the U.S.)

for only a few years. Moreover, we do not find evidence of using the NHSPI to

predict economic outcomes in the US economy.

Moreover, the Joint Research Centre (JRC), the European Commission’s sci-

ence and knowledge service, has cooperated with the World Health Organization

to produce the Index for Risk Management (INFORM) (Doherty et al., 2018). The

latter is a composite indicator that identifies countries at risk of humanitarian crisis

and disaster that would overwhelm national response capacity and would be more

likely to require international assistance. The INFORM model is based on risk

concepts published in scientific literature and envisages three dimensions of risk:

hazards and exposure, vulnerability, and lack of coping capacity. Risk components

factored into the analysis include natural disasters, socioeconomic factors such as

inequality and aid dependency, and institutional capacity such as built environment

and access to health care. However, the INFORM framework does not adequately

capture the effect of biological hazards (i.e., epidemic outbreaks). While these

hazards can have a large impact not only on mortality and morbidity but also on
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travel and trade as well as socioeconomic effects, they are difficult to assess and

therefore not explicitly accounted for. To consider their potential threat, there is

a need for data on the probability of re-emerging diseases with certain level of

impact, which cannot be easily made available. The INFORM Annual meeting

2017 in Rome agreed to proceed by incorporating ancillary information from the

WHO epidemiological risk initiative relating to health components to improve the

overall INFORM index (The INFORM Annual Meeting Report, 2017). The index

measures a wide variety of hazard risks and less so epidemiological ones and its

multi-level and complex construction also makes it less flexible and suitable for

use as a policy tool.

Furthermore, E.Marcozzi et al. (2020) present a Hospital Medical Surge Pre-

paredness Index (HMSPI) that can be used to systematically evaluate health care

facilities across the U.S. states regarding their capacity to handle patient surges

during disasters. The index is poised to ensure that the US health care delivery

system is poised to respond to mass casualty events by assessing the ability of vic-

tims to access health care (Kaji et al., 2008) as well as resolving weaknesses and

reinforcing strengths in hospital and emergency management planning and capac-

ity (Simiyu et al., 2014). The HMSPI uses four domains of surge capacity: staff,

supplies, space, and integrated systems, and their subcomponents. However, the

HMSPI is a static measure and of interest mainly to the US researchers.

Finally, Mertzanis and Papastathopoulos (2021) propose a composite index of

epidemiological susceptibility risk, which they use to predict tourist flows around

the world. They use information on time-varying, policy-relevant factors, such as

infrastructure; demographics, economic activity and institutions, which they stan-

dardize and combine based on a standard PCA method to produce a continuous

value index for 144 countries, using equal weights. While their index proves a sig-

nificant predictor of tourist flows, their methodological approach is a rather simple

one depriving their index from its full predictive potential. The authors acknowl-

edge the need for using more sophisticated dimensionality reduction methods to
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achieve better results.

A common characteristic of the above preparedness measures is that they are

composite indicators (CIs). Their construction involves stages where subjective

judgments need to be made on the selection of indicators, the treatment of miss-

ing values, the choice of aggregation process and the weights of the indicators,

etc. The unavoidable subjectivity involved in their construction may undermine

their credibility and therefore it is important to identify the sources of subjectiv-

ity. However, the absence of an objective way to determine weights and choose

the aggregation methods should not compromise the validity of CIs provided that

the overall construction process is transparent (Nardo et al., 2005). This paper

proposes a data-driven approach, which overcomes potential subjectivity bias in

weight selection, takes into consideration dynamic effects and therefore provides

a better understanding of the complexity of CIs in approximating epidemic con-

sequences. After all, evidence-based evaluation of national epidemic management

programs is critical to their future success (Koplan et al., 1999).

2.2. Sources of information and our background approach

The conception of the ESR index produced in this paper originated in our obser-

vation that the spread of COVID-19 was different among countries. We observed

that some countries fared better than others in containing the spread, regardless of

their level of economic or institutional development. We observed that this was

mainly the result of policy choices. Our index construction reflects our effort to

include relevant policy measures or other relevant and time-varying factors. To

this end, the construction of the ESR index reflects the importance of diverse eco-

nomic and non-economic factors (Najmul, 2020, Razavi et al., 2020, Mertzanis and

Papastathopoulos, 2021).

The literature on epidemiological risk provides justification for those blocs of

factors. First, a quality health care infrastructure facilitates the monitoring, timely

detection and successful containment of infectious people at different conditions.

Capacity for health surveillance and the assessment of epidemic contagion patterns
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contribute to early detection by effectively tracking the spread of infectious popu-

lation and the associated surges of the epidemic in time and space (Morse, 2007).

This surveillance capacity is most effective if based on global cooperation regard-

ing the monitoring of population mobility across space. A recent WHO report

documents that an effective health care system helps improve economic resilience

and stability, social inclusion and inter-sectoral production sustainability through

its effect on productivity and employment (Boyce and Brown, 2019). Another The

World Health Organization (2014a) policy document prescribes the mechanisms

and infrastructure that hospitals must have put in place to manage the consequences

of epidemic outbreaks and ensure the effective management of the risks of internal

and external emergencies. Adequate financing of health care infrastructure con-

tributes decisively to its effectiveness (Kruk and Freedman, 2008).

Second, an effective communications infrastructure improves market surveil-

lance, raise public awareness of the risks of the epidemic and facilitates the swift

response of private people and the government by assembling and broadcasting

appropriate information and facilitating the mobility of epidemic management re-

sources and the efficiency of the supply-chain of medical equipment (Rainwater-

Lovett et al., 2016). The role of the internet is especially important. A new Pew

Research Center survey (Pew Research Center, 2020) finds that about 53 percent

of adults in the U.S. say that the internet has been essential for dealing with the

pandemic, whilst another 34 percent describe it as “important, but not essential.”

Subsequently a public debate has emerged on the role of the digital divide and

the digital “homework gap” in constraining any beneficial effects of the internet

on managing the repercussions of the pandemic (Garcia and Smith, 2020). Broom

(2020) argued that, among the many inequalities exposed by COVID-19, the digital

divide is not only the starkest, but also the most surprising one.

Third, an effective transportation infrastructure facilitates the monitoring and

control of infectious population but also the response and timely provision of nec-

essary care (Meyer and Elrahman, 2019). This is especially important with respect
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to passenger aviation that unavoidably contributes to the spread of an epidemic.

Hufnagel et al. (2004) found a significant association between heterogeneity in

airline connectivity networks and epidemic predictability.

Fourth, an effective infrastructure securing clean water and sanitation services

is necessary for containing the speed and spread of epidemics and induces the re-

sponse of the health care sector to adhere to high sanitary standards (D.Phelps

et al., 2017). During epidemic outbreaks, the transmission of diseases occurs

through both the short water cycle (availability of local water distribution facili-

ties) and the long water cycle (availability of man-made or natural water resources

and clean sanitation systems). The OECD (2020) argues that enhancing environ-

mental health through better air quality, water and sanitation, waste management,

along with efforts to safeguard biodiversity, will reduce the vulnerability of com-

munities to pandemics and thus improve overall societal well-being and resilience.

KWR (2020) found that screening for Covid-19 at municipal wastewater plants in

the Netherlands plays an important role in following the evolution of the pandemic

and even detecting outbreaks in advance.

Fifth, demographics is an important factor too. The increasing life expectancy

and decreasing fertility rates change the patterns of consumption of goods and

services thereby affecting the dynamics of epidemics. For instance, Geard et al.

(2015) argue that declining fertility rates are generally associated with both an

older average age of infection and a lower incidence of epidemic outbreaks. The

association depends on the extent of vaccination and other preventative measures.

Further, the rising congestion of social activity and degree of urbanization affects

epidemics in two ways (Neiderud, 2014): on the one hand, it leads to health in-

frastructure improvements in urban areas relative to rural areas and, on the other

hand, it provides a fertile ground for the emergence of new epidemics that due to

tighter human encounter in denser areas. Tarwater and Martin (2001) use the num-

ber of susceptible individuals per infectious individuals as a measure of population

density and a nonstationary stochastic process and document a positive association
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between population density and the spread of infectious diseases. After adjusting

population density for regional disparities, Li et al. (2018) also document a positive

association between population density and the size of epidemics.

Sixth, economic activity also encourages the spread of epidemics. In a re-

cent international workshop, Relman et al. (2020) report the views of different

experts on how trade, travel and armed conflict move people as well as animals,

plants, and products made from them, globally influencing the scale and patterns

of infectious disease transmission. Adda (2015) finds that during economic booms

people’s mobility is higher leading to a faster spread of epidemics. Higher levels

of economic activity increase the extent of personal interaction, especially in the

trading of goods and services, thereby expanding both the number of transmis-

sion venues (ports, airports, train/bus stations, etc.) and the speed of transmission.

Suhrcke et al. (2011) review the evidence and argue that most studies show that the

adverse effects of epidemic outbreaks increase during economic downturns, due

to the higher urbanization and congestion of people seeking employment and the

worsening conditions of living and accessing health care. Kafertein (1997) argued

that the rapid concentration of global food trade in a few multinational corporations

was associated with a rise in foodborne diseases, which have affected more than

10 percent of the population in developed economies. Mass production, changes

in logistics procedures, environmental factors and poor regulation are key causes

of the rise in infectious diseases in the developed world (Lang, 2001, Kafertein,

1997).

Finally, institutional governance matters. Quah (2007) collects the views of

world experts that document from different perspectives that the effectiveness of

managing epidemics and of other health crises in each country reflects the effective-

ness of that country’s overall governance exerted through a wide range of social in-

fluences that affect the spread of epidemics. Indeed, an effective capacity for insti-

tutional governance in the private and public domains facilitates the identification

of epidemics and the preparation and management of private and public responses,
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it helps allocate more efficiently the resources available to contain the epidemics

as well as coordinate the implemented responses (Pritchett et al., 2013). However,

effectiveness varies since the capacity of governance institutions develops slowly,

it is subject to political influence and it is associated with uncertainty or conflict

(Gayer et al., 2007). Ineffective institutional governance hinders the response and

control of epidemics and discourages the required coordination effort for guiding

consumers and producers into suitable actions. The OECD (2010) highlights the

important role of human capital for health outcomes, operating through stronger so-

cial capital networks, psychological responses and employment prospects. Based

on these building blocks, we proceed to construct our ESR index mindful of the

need to address policy considerations.

3. Methodological framework

3.1. Sources of data

The preceding literature provides the broad directions and information for con-

structing the epidemiological susceptibility risk index (ESR). The index broadly

captures the effects of the above-described building blocks of epidemiological risk.

Following previous studies, we select objective and periodically reproducible vari-

ables that, given the relevant literature, best capture the extent to which a coun-

try may be susceptible to epidemiological risk and for which there is adequate

and ongoing country coverage. The index does not model restrictions per se, but

the objective outcome of restrictions in terms of people and products. Our basic

dataset includes the values of 17 time-varying variables for 206 countries during

the 2010-2019 period, classified in seven groups to construct the ESR index. To

capture health infrastructure effects, we use (1) the value of health expenditure per

capita (current USD); (2) the index value of health care access and quality; (3)

the response rate to public health hazards; (4) the number of physicians per 1,000

people; and (5) the number of hospital beds per 1,000 people. To capture transport

infrastructure effects, we use (6) the (inverse of the) number of air passengers as a
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percent of total population. To capture demographic effects, we use (7) the number

of urban populations as a percent of total population; (8) the number of people per

Km2 of land (population density); and (9) the population of 65+ years of age as a

percent of total population. To capture environmental safety infrastructure effects,

we use (10) the number of people using safely managed drinking water services

as a percent of total population; (11) the number of people using safely managed

sanitation services as a percent of total population. To capture relevant economic

activity effects, we use (12) the value of trade in services as a percent of total trade

and (13) the value of trade in goods as a percent of total trade. To capture commu-

nications infrastructure, we use (14) the number of individuals using the internet as

a percent of total population. Finally, to capture institutional effectiveness, we use

(15) the extent of human capital development; (16) the value of government effec-

tiveness indicator and (17) the value of the rule of law indicator. The World Health

Organization (WHO)1 database provides the data for variables (1) to (4); the World

Development Indicators (WDI)2 database provide the data for variables (5) to (15);

the Penn Tables (PT)3 database provide the data for variable (16) and the World-

wide Governance Indicators (WGI)4 database provide the data for variables (17)

to (18). Tables A1 and A2 in the Appendix present the summary statistics of the

index’s constituent variables Var1 to Var17 and their pairwise correlations. In order

to ensure the adequate sample size suitable for the presented methodologies we run

the Kaiser–Meyer–Olkin test (Kaiser, 1970) resulting in the large score of 84.5%.

Moreover, we run the Im-Pesaran-Shin test (Im et al., 2003) obtaining p-values

p ≪ 0.01 for both model specifications, i.e. "individual intercepts" and "individual

intercepts and trends" for the underlying Augmented Dickey-Fuller test, imply-

ing the acceptance of alternative hypothesis of stationarity for the input variables

time-series.

1https://www.who.int/data/collections
2https://databank.worldbank.org/source/world-development-indicators
3https://www.rug.nl/ggdc/productivity/pwt/?lang=en
4https://databank.worldbank.org/source/worldwide-governance-indicators
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Higher values of these variables are associated with a lower risk of a country

being susceptible to epidemiological contagion or, alternatively, they indicate bet-

ter preparedness to manage these risks. While there are other relevant variables, the

selected variables reflect factors and conditions that the literature has highlighted;

they are objectively (not perceived) measured across countries, exhibit a low in-

cidence of missing values and they are reproducible on a periodic basis. We did

not include time-invariant factors (e.g., culture, religion, genetics) for we intend

the index to capture mainly policy-relevant dynamic influences. For the same rea-

son, we did not include time-varying factors relating to the environment conditions

(e.g., temperature, rainfall) and slowly changing institutional factors (e.g., legal

systems). We believe these factors should act as external controls mediating the

predictive effectiveness of the ESR index on economic behavior rather than be-

ing constituent elements of the index itself. We do acknowledge the limitation of

choosing certain variables than others or many more, but we had to draw the line

somewhere. We do believe there is room for future improvements in the index’s

conceptualization and construction. An advantage of this construction is that our

ESR index is mainly a policy-based and not a perceptions-based measure, which

allows us to explore its effects on economic behavior largely devoid of perceptions,

which would make it more severely prone to endogeneity.

3.2. Imputation of missing data

We next assess the data quality and completeness and address the problem of

missing data. There are various imputation methods that are suitable for different

data sets and conditions (Johnson and Young, 2011). There is a trade-off between

data availability and the construction of a comprehensive composite index. We

stress that the goal of our index construction is not to create artificial data series.

We do not use the individual series as standalone predictors. Instead, we combine

them to produce a single composite index that reflects consistently epidemiolog-

ical susceptibility risk, rather than data availability. King et al. (2001) argue that

imputation of missing data and their combination into aggregate indices is highly
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common in social sciences research because the nature of measured phenomena

is associated with incomplete records. Typically, more data is available for larger

countries and in recent years. We therefore restricted our sample to the 2010-2019

period and 168 countries in which the missing data tolerance rate does not exceed

40%, which gives a total of 28,560 country-year observations. Table A3 in the Ap-

pendix presents the full list of the sample countries and their rate of missing data.

Table A4 in the Appendix presents the missing data by year.

Since the presence of many missing values can extremely impact the quality

and the reliability of results, we set an operational protocol of missing values treat-

ment and imputation. In our final sample, 114 out of 168 countries show a rate of

missing data between 20-39%. To address the missing values problem that would

make possible the application of robust data aggregation methods, we test two dif-

ferent data imputation techniques: Matrix Completion with Low Rank SVD (MC-

SVD) proposed by Hastie et al. (2015) and Bayesian Tensor Factorization (BTF)

proposed by Khan and Ammad-ud-din (2016).

Briefly, MC-SVD solves the minimization problem 1
2
‖X −ABT‖2

F +
λ
2
(‖A‖2

F +

‖B‖2
F) for A and B where ‖·‖F is the Frobenius norm by setting to 0 the missing

values. Once estimated, ABT can approximate the original matrix X , including the

missing values. This is applied on the 2-dimensional "slice" of countries-variables

for each year. Subsequently, we apply the BTF method, which in addition uses

a tensorial decomposition of the 3-dimensional tensors that stack all the annual

“slices” together so that the imputation process involves information coming from

a temporal dimension as well.

We assess comparative imputation performance by testing the imputation algo-

rithm in three settings. In the first setting (named Original) we consider the whole

dataset made of 168 countries and the 17 constituents variables over 10 years for

a total of 28,560 entries. The full sample has 25% of missing values, thus we

randomly remove some additional values, representing 10%, 20% and 30% of the

initial dataset. In the second setting (named No missing) we drop all entries with
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missing values and apply the same incremental sampling procedure on the remain-

ing subset. In the last setting (named Some missing) we drop all countries with at

least 3 missing values for any year and apply again the incremental sampling proce-

dure on the remaining subset. Furthermore, we fit the two methods, MC-SVD and

BTF, on the previous 3 cases with different sampling percentages and we evaluate

the Mean Absolute Reconstruction Error (MARE) on the excluded observations as

follows:

MARE =
1

M

M

∑
i

|xexcluded − xreconstructed |

where M is the total number of excluded values. Moreover, we check the sensi-

tivity to the original percentage of missing values by comparing the MARE on No

missing and Some missing with the one on Original. Figure B.6 in the Appendix

presents the imputation results, which show that the BTF method is the most effi-

cient one for dealing with the missing value problem.

3.3. Normalization of data

We remove differences in magnitude between the input variables by standar-

dising the values, i.e. we subtract the mean and divide by the standard deviation.

Having all variables on the same reference scale is crucial for unbiased estima-

tion when applying dimensionality reduction techniques. Standardisation relates

country performance of a variable as a bounded (by unitary standard deviation)

variation from an average value (set to zero by definition) across all countries

and years, which facilitates variable aggregation expressed in different measure-

ment units. Further, when applying dimensionality reduction methods, component

weights can have a significant effect on the overall composite indicator and coun-

try rankings. Several weighting techniques exist (Nardo et al., 2005). Some are

based on statistical models (e.g., factor analysis), whilst others are based on par-

ticipatory methods (e.g., analytical hierarchy process). Regardless of the method

used, weights are essentially value judgments. However, our data-driven approach

overcomes the problem of arbitrary and subjective choice of weights that could
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constrain the index’s predictive efficacy.

3.4. Dimensionality reduction

The aim of our analysis is to extract a synthetic indicator that summarizes at

best the relationship among variables in a lower dimensional space. We apply two

alternative but complementary statistical methodologies to reduce dimensionality

and construct the index: Principal Component Analysis (PCA) and Factor Analysis

(FA). PCA aims at creating new variables from a larger set of observed covariates,

where each one is a linear combination of the Y original variables (see Figure 1a).

The model is represented by the equation C = w1Y1 + . . .+wiYp, where C is the

new principal component, Yi are the original variables and wi are the weights of the

linear combination for i = 1, . . . , p. FA, on the other hand, models the measurement

of latent variables, seen through the relationships they cause in a set of Y variables

(see Figure 1b). The model is represented by a set of equations Yi = biFi + ui, i =

1, . . . , p, where Yi are the original variables, Fi are the latent factors and bi, ui are

the parameters of the combination.

(a) PCA: the model is an equation

C = w1Y1 + . . .+wpYp

(b) FA: the model is a set of equations

Yi = biF1 +ui, i = 1, . . . , p

Fig. 1. Principal Component Analysis and Factor Analysis

Recalling that our dataset has three dimensions, Country, Variable and Time,

we use PCA to model country/variable interaction for each year whereas FA to

model country/time interaction, for all variables. Thus, using PCA, we create a low

dimensional (1 way) indicator, explaining the maximum variance of the data and

considering each year separately. Whereas, using FA, we estimate a single latent
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component able to capture the temporal interactions among the original variables.

We describe the application of each dimensionality reduction method below in

more detail.

We evaluate PCA on each year separately, producing T models. To ensure the

stability and robustness of results, we apply and compare three different PCA tech-

niques: regular PCA, Robust PCA and Robust Sparse PCA. PCA aims at finding a

new and wise linear combinations of the original data, in a way that the amount of

explained variance of the data is maximised. Those combinations are mathemat-

ically constrained to be mutually orthogonal (that is uncorrelated) and are called

Principal Components (PC) or loadings. Given a n× p data matrix X, where n is

the number of observations and p is the number of variables, we want to find the

k× p Principal Component matrix C, with usually k << p such that the projected

data matrix W = XCT , also called scores matrix, will have dimension n× k. The

maximization problem is stated as follows:

minimize
C

‖X−XCCT‖2
F

subject to CT C = I

where ‖·‖F is the Frobenius norm. We implement the model using R package

prcomp. Since we do not rely on the classical PCA but, rather, we seek for a robust

estimation of the Principal Components, we can decompose the data matrix X into

a low rank component L that represents the intrinsic low dimensional features and

an outlier component S that captures anomalies in the data. The maximization

problem is stated as follows:

minimize
L,S

‖L‖∗+λ‖S‖1

subject to L+S = X

where ‖L‖∗ is the nuclear norm and λ is a penalization term. Following the pro-
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cedure of Candes et al. (2009), once fitted, L can be used as a proxy for X with

the extreme values excluded. Finally, following Erichson et al. (2018), we produce

both a robust estimation and a sparse representation of the principal components by

adding a sparsity constraint on the matrix C. The associated maximization problem

is stated as follows:

minimize
C,W

‖X−WCT −S‖2
F +ψ(C)+φ(W)+λ‖S‖1

subject to CT C = I

ψ and φ are regularizing functions (i.e. LASSO or Elastic Net).

3.5. Factor Analysis

Moreover we evaluate a temporal dependent version of FA called Dynamic

Factor Model (DFM), using all the available years within the same model. Given

the matrix X, dimensions p× n, the model assumes that there exist some k × n

factors F such that their mutual interaction over time can be expressed by a k× k

interaction matrix A and the observed variable can be expressed as a linear function

of the factors themselves through a p× k loading matrix C. The problem can be

solved as a system of equations:





Ft = AFt−1 +N (0,Q)

Xt = CFt +N (0,R)

(1)

where N is the normal probability distribution and Q and R are the covariance

matrix of the residuals of each equation in (1), respectively. Due to the short time

series of the input variables, this model cannot be fitted considering all countries

together as the resulting system of equations (1) is under-determined. Thus, we

deal with the problem as follows: first, following Holmes et al. (2018), we fit DFM

for each country, obtaining the factor matrices Fi, the factor interactions Ai and the

factor loadings Ci, i = 1, . . . ,n. Second, we fit a Vector Auto Regressive (VAR)
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model in order to get ÂAA 1-year lag matrix that incorporates cross-countries interac-

tions of Ai. We implement the model using R package sparsevar because this

calibration problem has too many parameters to estimate relative to the number of

observations, thus requiring a sparse approach. Finally, we use Kalman Filter to

get smoothed factors F̂i using ÂAA and ĈCC = diag(CCCi) in order to get latent factors that

incorporates cross-countries interactions. Briefly, Kalman filter re-estimate the fac-

tor matrix F iterating the two equations in (1) until the error between the predicted

observed variables X̂XX and the true one is minimized. We implement the model

using R package FKF. We assume ĈCC to be diagonal in order not to double-count

correlations within the observed variables and because cross-country interactions

are already modelled through the VAR.

In both cases the final index, ESR, will be represented by the scores matrix

W and the factor matrix F respectively, both k-dimensional. One of the goal is

to select the optimal number of components k as a trade-off between the maximal

explained variance and the smallest value of components k.

3.6. Validation

Applying a dimensionality reduction technique by merely maximising the amount

of explained variance with the smallest set of components, could be misleading

and conduct to hardly interpretable results. Thus, once identified the most reliable

results, we compare the fitting power of the produced indexes to a baseline bench-

mark. We accordingly estimate several parametric and non-parametric regression

models to produce comparisons of the produced ESR index with the original set

of variables. We use, as target variable, the following macro-economic variables:

real GDP per capita, government consumption (percent of total), price level of cap-

ital formation, trade volume, unemployment rate, outstanding loans of commercial

banks. Our validation process aims at demonstrating the relevance of the new

index in representing the information conveyed by the original component vari-

ables. If the modeling ability of the composite ESR index, measured by the root

mean square error (RMSE), is comparable to the original one based on the initial
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variables, we can conclude that the produced indicator is not only satisfactory ac-

cording to the chosen dimension reduction technique but also effective in terms of

predictive power within a simplified framework.

4. Analysis of the results

We standardize the dataset for each year and then we apply first the PCA

method in all different versions, as previously described. Table 1 reports the re-

sults of the different PCA versions. We report the average variance explained by

loadings across all years, as well as the average R2 on both the whole dataset and

subsets with values trimmed for the 95th and 99th percentiles in order to check

for outliers impact. In our context R2 means the ratio of the amount of variance

explained by our retained components over the total variance contained in the orig-

inal variables. Moreover, we run the Im-Pesaran-Shin test on the PCA index and

p− values ≪ 0.01 for all model specifications ensure its stationarity. The station-

arity is important because we can infer that the changes over time, which the index

is expected to capture, can be statistically robust and not caused by any trend in

the data or mean-reversion effects. The results show that the robust PCA method

performed best regardless the employed data (full data set, 1% trimmed and %5

trimmed). Accordingly, we retain only the first principal component, which ex-

plains at its minimum a remarkable 87% of the total variance and therefore renders

the resulting ESR index visually interpretable. Figure 2 shows the screen plots of

the variance explained by the loadings using the robust PCA method only. Figures

C.7 through C.9 in the Appendix report the full comparison among all PCA meth-

ods as well as the relative importance of the loadings. This includes the percent of

variance explained by the first principal component of each PCA method per year.

23



Table 1

Results from Robust PCA. Mean is evaluated over years. Mean Explained Variance is evaluated

from the eigenvalues of PCA, R2 is reported for the full dataset and for the 99th and 95th

percentiles. Im-Pesaran-Shin test for stationarity on the ESR index as well.

Method
Number

of PC

Mean Explained

Variance
Mean R2 Mean R2

on 99th

Mean R2

on 95th

Im-Pesaran-

Shin test

PCA 1 49.9±0.9% 49.9±0.9% 57.3±1.1% 65.3±0.9% ≪ 0.01

RobPCA 1 87±0.9% 94.8±0.3% 95.4±0.2% 96.5±0.2% ≪ 0.01

RobSparPCA 1 50.2±0.9% 28.5±3% 33.6±3.6% 38.2±4.5% ≪ 0.01

Fig. 2. Scree plot for Robust PCA method.

2 clearly shows how important is the first component whatever year we take

into account. Such result has several important implications: PCA proves that

there exists a strong latent component which is highly connected to almost all the

variables. Moreover, the possibility of building up our ESR index on just one

component eases the interpretation, the relative employment and the subsequent

monitoring.

Then we apply the DFM method, as previously described, which depends upon

two hyper-parameters: the sparsity coefficient α of the VAR and the correlation

structure of the residuals for Kalman filter. Thus, we simulate synthetic factors

F̃ with different combinations of number of observed variables, countries, years,

latent factors F, and we generate the corresponding Xt given different combination

of A, defined by α , and C, randomly generated, using equation (1). Then, for each
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of the previous combination and correlation structure of residuals Q, we apply the

described algorithm and assess the reconstruction error on the fitted factors F̃ with

the simulated factors F. The optimal parameters found are α = 0.2 and a diagonal

structure. Afterwords, we evaluate the R2 on DFM model. Table 2 report the

DFM results. In this case, the poorer performance is due to the small size of the

dataset compared to the number of parameters, despite mitigated with sparseness.

Moreover, the estimated interactions factor in ÂAA turns out to be very small (values

range in [−0.06,0.05]), so we assume to be valid the no interactions setting, which

has produced the highest R2 (73.6%). We run the Im-Pesaran-Shin test also on the

DFM index obtaining p-values ≪ 0.01 for both model specifications and ensuring

its stationarity as for the PCA case. Figure D.10 in the Appendix shows the relative

importance of the loadings for the DFM model.

Table 2

Results for DFM. R2 is reported for the full dataset and for the 99th and 95th percentiles. We also

report Im-Pesaran-Shin test for stationarity on the ESR index.

Method
Number

of Factors
R2 R2 on 99th R2 on 95th

Im-Pesaran-

Shin test

DFM with interactions 1 −204.5% −43.8% 7.7% ≪ 0.01

DFM without interactions 1 −405.4% 38.6% 73.6% ≪ 0.01

As robustness check, we compare the two ESR index values generated by the

competing methods in terms of predictive power within a supervised analysis set-

ting. To this end, we use the following macro-economic variables: real GDP per

capita, government consumption (percent of total), price level of capital formation,

trade volume, unemployment rate and outstanding loans of commercial banks. We

standardize the target variables before fitting the algorithms to make the results

comparable. We use both linear and non-linear data-driven learning algorithms to

capture potential non-linearity effects in the data. We use alternatively the learn-

ing techniques of Random Forest, Regularized OLS (Elastic-Net), Support Vector

Machine (SVM) with Radial Basis Function (RBF) kernel, Multivariate Adaptive

Regression Spline (MARS) and a single layer Neural Network (NN). All the hyper-
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parameters are tuned with Bayesian Optimization and a 5-fold cross-validation.

When fitting Elastic-Net with a single regressor we use the OLS regression. Final

performances are evaluated using a further 5-fold cross-validation and the average

test set Root Mean Square Error (RMSE) is considered. The seed used to select

the cross-validation fold has been kept fixed for all algorithms in order to ensure

reproducibility of results.

We provide examples of the comparison results. Table 3 shows the RMSE per-

cent increase in predicting Unemployment rate with the single index as regressor

compared to the RMSE obtained with all 17 original variables. RMSE of mod-

els which are fitted considering ESR index solely tends to increase as we would

reasonably expect. However, RMSE increases are always within one standard de-

viation bound suggesting that a much simplified analysis based on 1 unique index is

significant and largely satisfies the parsimony principle. 3 clearly shows that Ran-

dom Forest has the lowest RMSE by employing the original 17 variables (0.079)

and further the ESR index based on the DFM approach presents the minimum

RMSE (0.447).

Complete results for all the fitted regression are reported in Appendix D.1.

Table 3

RMSE in predicting Unemployment rate using continuous index as regressor. RMSE for regression

with original variables is reported in parenthesis.

RMSE index (RMSE original)

Algorithm DFM Robust PCA

Elastic-Net 0.999(0.859) 0.995(0.859)
MARS 1(0.583) 0.924(0.583)
Random Forest 0.447(0.079) 0.7(0.079)
Single Layer NN 0.994(0.31) 0.932(0.31)
SVM-RBF 1.024(0.083) 0.936(0.083)

Further, we can provide useful visual insights by exploring values of the index

for each country in a world map. The animated Figures 3 and 4 report the global

distribution of the ESR index for both the PCA and DFM methods, respectively.
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Fig. 3. Robust PCA index evolution over years. Shades of red color refer to riskier countries, while

shades of blue to safer ones.

Fig. 4. DFM index evolution over years.Shades of red color refer to riskier countries, while shades

of blue to safer ones.

Indeed, the native characteristic of DFM of properly modeling the temporal

dynamics is reflected in the world map which presents more variability in the colour

change compared to PCA.
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Finally, Figure 5 shows the evolution over time of the ESR index for some

individual countries, comparing the PCA and DFM methods. The PCA index is

quite stable over time, whilst the DFM index captures the time dynamics of under-

lying latent factors. For example, Figure 5a shows that our index can capture the

abnormal increase of Influenza cases in 2018-19 in Australia. In Figure 5b ESR

index highlights the Zika virus outbreak of 2018 in Brazil. In Figure 5c the index

underlines the Cholera spread between 2016 and 2018 in Yemen. Cholera outbreak

in 2018 is captured for Algeria as well as shown in Figure 5d. Similarly Figure 5e

and Figure 5f show how the index is able to capture the abnormal Influenza spread

of 2018 and the increase of Measles case in 2018 in Spain and Romania respec-

tively. Figure D.17 to D.20 in the Appendix provide the detailed evolution of the

ESR index per country during the 2010-2019 period using both PCA and DFM

methods.
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(a) Australia. (b) Brazil.

(c) Yemen. (d) Algeria.

(e) Spain. (f) Romania.

Fig. 5. Index evolution over years for some countries. Disease outbreaks are shaded in red.

5. Conclusions

Epidemic outbreaks are extreme events that become less rare and more severe.

The COVID-19 pandemic is an extreme risk event that has unfolded with tremen-

dous speed and breadth. Epidemics cause huge economic costs for firms and coun-

tries. It is therefore important to evaluate the extent to which countries can identify

and manage epidemiological risks adequately. Despite significant improvements

in infrastructure and governance worldwide, many countries remain unprepared to

adequately identify and manage epidemiological risks. In this study, we have pro-

29



posed a country preparedness evaluation framework that countries and firms could

use to manage the contagion and consequences of epidemic risks. The framework

is based on the development of a composite indicator, which we call epidemiolog-

ical susceptibility risk index (ESR), for 168 countries during 2010-2019.

In constructing our ESR measure, we use objective and regularly reproduced

information that accounts for the role of infrastructure, economic activity, demo-

graphics and governance institutions. This integrated view of measuring epidemi-

ological risk is in line with the general directions proposed by the WHO. We com-

plement previous efforts at assessing country preparedness by proposing a method-

ological framework that makes the assessment of preparedness more policy-driven

and expanded around the world. Importantly, our proposed framework uses a data-

driven approach to constructing the index that utilizes both PCA and DFA methods

and their variants for achieving dimensionality reduction. The results show that, af-

ter accounting for data characteristics and missing values, the robust PCA method

shows very good performance whereby the first dimension explains about 90% of

total variability. However, the nature of its construction prevents it from capturing

properly the temporal latent dynamic of the data. We therefore use the alternative

DFA method for this purpose. Albeit somewhat less efficient in comparative terms

(the first component explains about 76% of the total variability), the DFA method

must be considered as the benchmark model since it properly models the tempo-

ral dynamics, which are important in capturing epidemic outbreaks across a wide

range of countries during the 10 available years. Our ESR index is fully data-driven

that does not allow for arbitrary and subjective choice of weights that could impair

its predictive efficiency.

This framework and index could provide the basis for developing risk assess-

ments of epidemiological risk contagion after the outbreak of an epidemic but also

for ongoing monitoring of its spread and social and economic effects. It would

also allow for useful comparisons in country preparedness and performance. This

framework and index could be used by firms to assess likely economic conse-
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quences of epidemics and could therefore have managerial implications. For ex-

ample, in addition to help managing epidemiological risk, the framework could

be useful in aligning country and corporate policy to environmental sustainability

considerations and responsible behavior. Further, it takes into consideration on-

going regulatory initiatives that stress the importance of non-financial risks due to

climate change.

Finally, our framework could be revised and extended towards various direc-

tions to support decision making. One way to improve it is to increase the data

series availability mindful of the missing data problem using more advanced tech-

niques. Another way to extend it includes the addition of new relevant dimensions

that may capture other aspects of epidemiological risk. As research on the sources

and spread of Covid-19 continues, new information is being revealed, which might

inform the re-construction of our ESR index. Another way would be to apply alter-

native data dimensionality reduction techniques and compare the predictive results.

The extensive check on the index’s predictive power remains to be accomplished

by applying it to diverse real-world situations.
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Appendix A. List of variables and countries

Table A1

List of used variable. Sources are World Health Organization (WHO), World Bank’s Development

Indicators (WDI), Penn Tables (PT) and World Bank’s Worldwide Governance Indicators (WGI).

Variable Description Source
Total

Obs.

Missing

Values
Min Max Mean Median

Standard

Deviation

var1 health care exenditure per capita WHO 1,680 523 (31%) 12.64 10,014.71 1,077.66 317.86 1,821.28

var2 health care access and quality WHO 1,680 20 (1.2%) 28.60 93.60 62.97 62.55 16.49

var3 response level (%) to public health hazards WHO 1,680 670 (40%) 0.00 100.00 66.15 73.00 30.61

var4 num of physicians per 1000 people WDI 1,680 941 (56%) 0.00 6.11 2.01 2.05 1.42

var5 num of hospital beds per 1000 people WDI 1,680 1175 (70%) 0.10 13.40 3.25 2.70 2.31

var6 num of air passengers to population ratio WDI 1,680 397 (24%) 0.00 34.53 1.18 0.29 2.87

var7 num of urban pop (% of total) WDI 1,680 168 (10%) 10.64 100.00 58.91 59.48 22.19

var8 num of people per Km2 (pop density) WDI 1,680 177 (11%) 1.75 7,953.00 231.38 81.13 808.73

var9 num of people age 65% (% of total) WDI 1,680 177 (11%) 0.69 27.58 8.38 6.20 5.93

var10
num of people using drinking

water services (% of pop)
WDI 1,680 340 (20%) 33.05 100.00 86.51 94.72 16.70

var11
num of people using safely-managed

drinking water services (% of pop)
WDI 1,680 952 (57%) 6.19 100.00 76.98 91.52 26.98

var12
num of people using safely-managed

sanitation services (% of pop)
WDI 1,680 1024 (61%) 7.45 100.00 66.76 76.01 28.97

var13 human capital index WDI 1,680 218 (13%) 0.00 4.01 2.51 2.64 0.84

var14 num of people using the internet (% of pop) WDI 1,680 257 (15%) 0.25 100.00 45.73 45.96 29.14

var15 value of trade (% GDP) PT 1,680 103 (6.1%) 0.20 442.62 91.30 79.51 58.12

var16 government effectiveness index WGI 1,680 20 (1.2%) -2.28 2.24 0.02 -0.08 0.97

var17 rule of law index WGI 1,680 20 (1.2%) -2.32 2.10 -0.03 -0.24 0.98

Table A2

Correlation matrix of input variables.

var1 is health care exenditure per capita, var2 is health care access and quality, var3 is response

level (%) to public health hazards, var4 is num of physicians per 1000 people, var5 is num of

hospital beds per 1000 people, var6 is num of air passengers to population ratio, var7 is num of

urban pop (% of total), var8 is num of people per Km2 (pop density), var9 is num of people age

65% (% of total), var10 is num of people using drinking water services (% of pop), var11 is num of

people using safely-managed drinking water services (% of pop), var12 is num of people using

safely-managed sanitation services (% of pop), var13 is human capital index, var14 is num of

people using the internet (% of pop), var15 is value of trade (% GDP), var16 is government

effectiveness index, var17 is rule of law index.

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16

var2 0.66*

var3 0.35* 0.5*

var4 0.57* 0.75* 0.44*

var5 0.32* 0.52* 0.27* 0.64*

var6 0.33* 0.32* 0.17* 0.21* 0.01

var7 0.48* 0.7* 0.39* 0.58* 0.31* 0.22*

var8 -0.04 0.15* 0.13* -0.04 -0.02 0.2* 0.19*

var9 0.61* 0.79* 0.38* 0.76* 0.67* 0.13* 0.46* 0.07*

var10 0.41* 0.79* 0.42* 0.65* 0.37* 0.22* 0.64* 0.12* 0.61*

var11 0.43* 0.53* 0.22* 0.5* 0.31* 0.26* 0.5* 0.14* 0.49* 0.36*

var12 0.38* 0.29* 0.22* 0.27* 0.28* 0.16* 0.29* 0.14* 0.27* -0.09* 0.72*

var13 0.53* 0.67* 0.43* 0.54* 0.46* 0.16* 0.5* 0.12* 0.62* 0.57* 0.35* 0.34*

var14 0.63* 0.86* 0.51* 0.66* 0.48* 0.36* 0.69* 0.15* 0.69* 0.73* 0.53* 0.31* 0.6*

var15 0.12* 0.31* 0.06* 0.16* 0.19* 0.32* 0.29* 0.55* 0.23* 0.26* 0.2* 0.14* 0.19* 0.32*

var16 0.71* 0.81* 0.47* 0.6* 0.39* 0.36* 0.58* 0.24* 0.72* 0.66* 0.4* 0.28* 0.63* 0.79* 0.37*

var17 0.73* 0.76* 0.42* 0.57* 0.37* 0.38* 0.53* 0.22* 0.69* 0.58* 0.41* 0.32* 0.56* 0.75* 0.37* 0.95*

∗ p-val < 0.05
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Table A3

Complete list of selected countries and relative missing values count and percentage over total

number of observations.

Country Missing Values

Nigeria 91 (6.7%)

Sri Lanka 92 (6.8%)

Armenia 103 (7.6%)

Lao PDR 105 (7.7%)

Mongolia 106 (7.8%)

Bolivia 113 (8.3%)

Honduras 117 (8.6%)

Moldova 122 (9%)

Nicaragua 123 (9%)

Sierra Leone 129 (9.5%)

Tanzania 130 (9.6%)

Mauritania 134 (9.9%)

Benin 138 (10.1%)

India 139 (10.2%)

Kenya 142 (10.4%)

Togo 141 (10.4%)

Cote d’Ivoire 146 (10.7%)

Cameroon 150 (11%)

Burundi 151 (11.1%)

Mozambique 151 (11.1%)

Tajikistan 152 (11.2%)

Georgia 159 (11.7%)

Burkina Faso 163 (12%)

Niger 163 (12%)

Bangladesh 165 (12.1%)

Angola 169 (12.4%)

Rwanda 169 (12.4%)

Zimbabwe 168 (12.4%)

Sudan 170 (12.5%)

Vietnam 170 (12.5%)

Senegal 175 (12.9%)

Bosnia and Herzegovina 179 (13.2%)

Central African Republic 185 (13.6%)

Lesotho 185 (13.6%)

Cambodia 194 (14.3%)

Ethiopia 197 (14.5%)

Sao Tome and Principe 198 (14.6%)

Kyrgyz Republic 200 (14.7%)

Pakistan 201 (14.8%)

Bhutan 210 (15.4%)

Nepal 209 (15.4%)

Ghana 214 (15.7%)

Guinea 223 (16.4%)

Uganda 223 (16.4%)

Zambia 230 (16.9%)

Cabo Verde 232 (17.1%)

Chad 236 (17.4%)

Myanmar 237 (17.4%)

Congo, Rep. 244 (17.9%)

Gambia, The 243 (17.9%)

Madagascar 250 (18.4%)

Haiti 254 (18.7%)

St. Lucia 265 (19.5%)

Congo, Dem. Rep. 268 (19.7%)

Mexico 274 (20.1%)

Colombia 276 (20.3%)

Country Missing Values

Philippines 276 (20.3%)

Costa Rica 277 (20.4%)

St. Vincent and the Grenadines 278 (20.4%)

Mali 280 (20.6%)

Yemen, Rep. 280 (20.6%)

Guinea-Bissau 283 (20.8%)

China 285 (21%)

Indonesia 285 (21%)

Liberia 286 (21%)

Croatia 288 (21.2%)

Ecuador 289 (21.2%)

Malaysia 288 (21.2%)

Chile 292 (21.5%)

Hungary 292 (21.5%)

Singapore 293 (21.5%)

Djibouti 296 (21.8%)

Malawi 298 (21.9%)

Sweden 300 (22.1%)

Peru 302 (22.2%)

Egypt, Arab Rep. 303 (22.3%)

Brazil 305 (22.4%)

South Africa 305 (22.4%)

Thailand 304 (22.4%)

Iran, Islamic Rep. 310 (22.8%)

Switzerland 310 (22.8%)

Dominica 311 (22.9%)

Canada 313 (23%)

Lithuania 313 (23%)

Argentina 316 (23.2%)

Jordan 315 (23.2%)

Uzbekistan 315 (23.2%)

Australia 317 (23.3%)

Czech Republic 317 (23.3%)

Guatemala 317 (23.3%)

Jamaica 318 (23.4%)

Japan 318 (23.4%)

Dominican Republic 320 (23.5%)

Iraq 320 (23.5%)

Morocco 319 (23.5%)

France 322 (23.7%)

New Zealand 322 (23.7%)

Panama 322 (23.7%)

Estonia 323 (23.8%)

Grenada 325 (23.9%)

United States 325 (23.9%)

Kuwait 326 (24%)

Netherlands 327 (24%)

Russian Federation 326 (24%)

Venezuela, RB 327 (24%)

Paraguay 329 (24.2%)

Poland 330 (24.3%)

Korea, Rep. 333 (24.5%)

Comoros 335 (24.6%)

Slovenia 335 (24.6%)

Bahrain 336 (24.7%)

Barbados 336 (24.7%)

Country Missing Values

Slovak Republic 336 (24.7%)

Latvia 337 (24.8%)

Serbia 337 (24.8%)

Spain 337 (24.8%)

Austria 341 (25.1%)

Trinidad and Tobago 342 (25.1%)

Belgium 347 (25.5%)

Tunisia 347 (25.5%)

Eswatini 348 (25.6%)

Romania 350 (25.7%)

Qatar 354 (26%)

Mauritius 355 (26.1%)

Kazakhstan 357 (26.2%)

Bulgaria 359 (26.4%)

Malta 359 (26.4%)

Fiji 362 (26.6%)

Turkey 362 (26.6%)

Luxembourg 363 (26.7%)

Uruguay 365 (26.8%)

Ukraine 367 (27%)

Finland 369 (27.1%)

Botswana 373 (27.4%)

Denmark 372 (27.4%)

Lebanon 372 (27.4%)

Israel 375 (27.6%)

Oman 376 (27.6%)

Portugal 376 (27.6%)

Norway 377 (27.7%)

Saudi Arabia 379 (27.9%)

Germany 381 (28%)

Iceland 382 (28.1%)

Algeria 386 (28.4%)

Ireland 386 (28.4%)

Namibia 391 (28.7%)

Suriname 390 (28.7%)

United Kingdom 392 (28.8%)

North Macedonia 396 (29.1%)

Cyprus 399 (29.3%)

Italy 403 (29.6%)

Gabon 410 (30.1%)

Azerbaijan 411 (30.2%)

Belarus 425 (31.2%)

Greece 430 (31.6%)

El Salvador 437 (32.1%)

United Arab Emirates 439 (32.3%)

Bahamas, The 444 (32.6%)

Belize 455 (33.5%)

Brunei Darussalam 464 (34.1%)

Seychelles 477 (35.1%)

Hong Kong SAR, China 482 (35.4%)

Montenegro 483 (35.5%)

Antigua and Barbuda 492 (36.2%)

Albania 507 (37.3%)

Equatorial Guinea 523 (38.5%)

Syrian Arab Republic 529 (38.9%)

Afghanistan 535 (39.3%)

In table A4 we report the distribution over time of the missing values quota, as

to evaluate the impact of missing data imputation. It clearly emerges the highest

quota for the last two available years.
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Table A4

Missing values over years.

Year Total Observations Missing Values

2010 22,848 4,367 (19.1%)

2011 22,848 3,959 (17.3%)

2012 22,848 4,273 (18.7%)

2013 22,848 4,072 (17.8%)

2014 22,848 4,019 (17.6%)

2015 22,848 4,494 (19.7%)

2016 22,848 4,404 (19.3%)

2017 22,848 4,245 (18.6%)

2018 22,848 7,478 (32.7%)

2019 22,848 8,218 (36.0%)

Appendix B. Missing values imputation methodology

To assess imputation performances and to choose the best method, we test the

algorithm in three settings. In the first (named Original) we consider the whole

dataset made of 168 countries by 17 variables for 10 years for a total of 28,560 en-

tries. It contains 25% of missing values, thus we randomly remove some additional

values representing 10%, 20% and 30% of the initial dataset. In the second (named

No missing) we drop all entries with missing values and apply the same incremen-

tal sampling procedure on the remaining subset. In the last (named Some missing)

we drop all countries with at least 3 missing values for any year and apply again the

incremental sampling procedure on the remaining subset. Furthermore, we fit the

two methods, MC-SVD and BTF, on the previous 3 cases with different sampling

percentages and we evaluate the Mean Absolute Reconstruction Error (MARE) on

the excluded observations:

MARE =
1

M

M

∑
i

|xablated − xreconstructed |

Moreover, we check the sensitivity to the original percentage of missing values by

comparing the MARE on No missing and Some missing with the one on Original.

Figure B.6 shows bar plot of MARE values for all settings for each increasing
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percentage of added missing values. Bar whiskers are scaled value of max(MARE),

defined as:

RM =
max(MARE)

Average value of Original matrix

In order to grasp the magnitude of the impact of MARE we also report its ratio R

with the average value of the non-missing entries of original matrix:

R =
MARE

Average value of Original matrix
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Fig. B.6. Testing missing values imputation methodologies. Blue bars report the Mean Absolute

Reconstruction Error (MARE), green/red bars report the percent decrease/increase of MARE

compared to the one evaluated on the Original setting.

Finally, for the No missing and Some missing setting we show the green/red bar

plot reporting the percent decrease/increase, respectively, of MARE compared to

the one evaluated in the Original setting so to evaluate the impact of missing data

in the matching entries subset. BTF has lower MARE and higher percent decrease

compared to MC-SVD implying a better data reconstruction ability and reliability.
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Appendix C. Scree Plot and Loadings Plot for PCA method

In this appendix we report scree plots and loadings of all the competing PCA

approaches: Original PCA, Robust PCA, Robust Sparse PCA. If we pay attention

to loadings results available in C.9, we can notice that Original PCA and Robust

PCA are very similar to each other, while Robust Sparse PCA appears different

for several variables (namely var2, var3, var6, var8, var12, var13, var14) because

by construction it aims to a sparse and parsimonious representation. In the Robust

PCA almost all the variables have a meaningful positive contribution to the first

Principal Component, that constitutes our ESR index (var8 (num of people per

Km2) and var15 (value of trade as % of GDP) appear to be less significant).

Fig. C.7. Scree plot for PCA method.
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Fig. C.8. Scree plot for Robust Sparse PCA method.

Fig. C.9. Loading plot for all PCA methods.
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Appendix D. Loadings Plot for DFM method

In this appendix we report loadings of the DFM approach. As described in

section 3.5 the loadings Ci for the i-th country are stacked into the diagonal matrix

C, whereas the cross-country interactions are introduced by the matrix ÂAA estimated

with VAR. Our setting force the Ci to be constant so we can estimate loadings for

each country-variable pair. Therefore, for ease of visualization, figure D.10 reports

the distribution of the loadings for each input variable over the 168 countries, rep-

resenting the average trend over the years. The bimodal shape of all distributions

implies a clear discriminative power of the index between less risky countries and

riskier ones.

Fig. D.10. Loading plot for DFM method. On x-axis is reported the logarithm of loading values.

Appendix D.1. Index Robustness Check

Our robustness check is performed by using the ESR index as an input variable

in supervised regressions. The aim is to evaluate the fitting power of the sum-

46



mary index compared to the original variables in modeling some relevant macro

economic indicators. From Figure D.11 through Figure D.16 we report percent

increase of RMSE in predicting macro economic indicators of interest (Unenploy-

ment, Real GDP per capita, Share of government consumption, Price level of cap-

ital information, Trade Volume, Outstanding Loans of Commercial banks) due to

the employment of the ESR index. The graphs report comparison between regres-

sions with the single continuous ESR index as regressor and the one with original

variables. In this way we assess how much the RMSE increases by substituting 17

variables with our summary index. In table A5 we report numerical results for the

regressions above described.

Fig. D.11. RMSE percent increase in predicting Unemployment rate. Comparison between

regression with the single continuous index as regressor and the one with original variables. Solid

lines show the single year metrics, dashed lines show the full dataset, i.e. average over years, metric.

47



Fig. D.12. RMSE percent increase in predicting Real GDP per capita. Comparison between

regression with the single continuous index as regressor and the one with original variables. Solid

lines show the single year metrics, dashed lines show the full dataset, i.e. average over years, metric.

Fig. D.13. RMSE percent increase in predicting Share of government consumption. Comparison

between regression with the single continuous index as regressor and the one with original

variables. Solid lines show the single year metrics, dashed lines show the full dataset, i.e. average

over years, metric.
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Fig. D.14. RMSE percent increase in predicting Price level of capital formation. Comparison

between regression with the single continuous index as regressor and the one with original

variables. Solid lines show the single year metrics, dashed lines show the full dataset, i.e. average

over years, metric.

Fig. D.15. RMSE percent increase in predicting Trade volume. Comparison between regression

with the single continuous index as regressor and the one with original variables. Solid lines show

the single year metrics, dashed lines show the full dataset, i.e. average over years, metric.
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Fig. D.16. RMSE percent increase in predicting Outstanding Loans of Commercial banks.

Comparison between regression with the single continuous index as regressor and the one with

original variables. Solid lines show the single year metrics, dashed lines show the full dataset, i.e.

average over years, metric.

Table A5

RMSE in predicting macro-economic variables with continuous index as regressor. RMSE for

regression with original variables is reported in parenthesis.

RMSE index (RMSE original)

Target variable Outstanding Loans of Commercial banks Price level of capital formation Real GDP per Capita

Algorithm DFM Robust PCA DFM Robust PCA DFM Robust PCA

Elastic-Net 0.998(0.962) 1(0.962) 1(0.705) 0.839(0.705) 1(0.492) 0.663(0.492)
MARS 0.995(0.409) 0.986(0.409) 1(0.502) 0.764(0.502) 0.987(0.155) 0.634(0.155)
Random Forest 0.854(0.163) 0.914(0.163) 0.432(0.137) 0.549(0.137) 0.479(0.04) 0.395(0.04)
SVM-RBF 1.001(0.081) 1(0.081) 1.005(0.089) 0.764(0.089) 1.027(0.07) 0.664(0.07)
Single Layer NN 0.991(0.321) 0.976(0.321) 0.994(0.347) 0.768(0.347) 0.997(0.099) 0.663(0.099)

Target variable Share of government consumption Trade volume

Algorithm DFM Robust PCA DFM Robust PCA

Elastic-Net 1(0.887) 0.999(0.887) 1(0.283) 0.935(0.283)
MARS 1(0.679) 0.948(0.679) 1(0.148) 0.909(0.148)
Random Forest 0.445(0.133) 0.719(0.133) 0.437(0.048) 0.637(0.048)
SVM-RBF 0.992(0.085) 0.977(0.085) 1.011(0.077) 0.954(0.077)
Single Layer NN 0.994(0.35) 0.973(0.35) 0.995(0.105) 0.926(0.105)

Appendix D.2. Index evolution over years

From D.17 through D.20 we report the evolution across time of the ESR index

based on the two competing techniques for the different considered countries. It

clearly emerges the higher sensitivity of the ESR index based on the DFM approach
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to the temporal dynamics which are explicitly modelled. PCA instead produces a

rather flat pattern in line with the no direct modelling of the available years.

Fig. D.17. Index evolution over years
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Fig. D.18. Index evolution over years
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Fig. D.19. Index evolution over years
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Fig. D.20. Index evolution over years
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