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Abstract. We give an overview, in finite-dimensioonal Euclidean spaces, of some classical directional

derivatives (usual directional derivatives, Dini directional derivatives, Hadamard directional derivatives) and of

some classical differentiability notions. We take into consideration some applications of the said concepts to

convex and generalized convex functions, to nonsmooth unconstrained optimization problems and to nonsmooth

constrained scalar and vector optimization pronlems. Also the axiomatic approach to nonsmooth analysis and

nonsmooth optimization problems, proposed by K.-H. Elster and J. Thierfelder, is briefly considered.
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1. Introduction
In this paper we give an overview on some classical directional derivatives (usual di-

rectional derivatives, Dini directional derivatives, Hadamard directional derivatives) and on
some basic notions about differentiability (Gâteaux, Fréchet, Hadamard). For simplicity the
treatment will be performed in the n-dimensional Euclidean space Rn.We point out some appli-
cations of the said concepts to optimization problems; indeed, in several practical optimization
problems the involved functions are not everywhere differentiable. Starting from the seventies
of the last century, the necessity of studying nonsmooth (i. e. non differentiable) functions,
within optimization theory, gave rise to a new mathematical theory, called Nonsmooth Analysis
(this term was introduced by the Canadian mathematician F. H. Clarke).

However, we shall not be concerned with “modern”directional derivatives, due to Clarke,
Rockafellar, Michel and Penot, Demyanov and Rubinov, etc., for which there is an abundant
literature. Only in Section 6 we give some definitions concerning these more recently proposed
directional derivatives.

The work is organized as follows. Section 2 gives an overview on some classical directional
derivatives and classical differentiability notions.
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Section 3 is concerned with the use of directional derivatives in convex and generalized
convex functions. Section 4 gives some applications of directional derivatives to unconstrained
optimization problems and constrained optimization problems with a set constraint, whereas
Section 5 takes into consideration directional derivatives in constrained optimization problems
with functional constraints. Section 6 gives an overview on the axiomatic approach to non-
smooth analysis, proposed by K.-H. Elster and J. Thierfelder. The final Section 7 gives some
insights on applications of directional derivatives to vector optimization problems.

2. An Overview on Some Classical Directional Derivatives and
Classical Differentiability Introduction Notions
In this section we want to recall progressively various notions of “classical”directional

derivatives and differentiability for real-valued functions of several real variables. Many authors
consider the possibility of “extended-valued functions”, i. e. functions which may assume also
infinite values; moreover, in Convex Analysis it is customary to consider functions defined on
the whole space Rn. In the present basic overview we consider real-valued functions defined on
an open set X ⊂ Rn. More generally, it is possible to consider a set X ⊂ Rn and a related point
x0 ∈ int(X).

Recall that a derivative is some kind of limit of line segments joining points on the graph
of a function. The simplest way to take such a limit is along a line segment containing a point
x0 ∈ X. This leads to the basic definition of one-sided (or radial) directional derivative. Let
us define a direction in Rn as a vector v ∈ Rn, v 6= 0 (in some cases it is useful to consider a
normalized direction, i. e. ‖v‖ = 1).

Definition 1. Let X ⊂ Rn be an open set, let x0 ∈ X and let f : X −→ R. We say that f
has the right-sided directional derivative at x0 in the direction v, if the limit

lim
t−→0+

f(x0 + tv)− f(x0)

t

exists (finite or not).

The result of the above limit is denoted by D+f(x0; v). Other notations are used in the
literature, such as f+(x0; v), D+

v f(x0), etc. For v = 0, D+f(x0; v) is assumed to be zero.
In order that this definition to make sense we implicitly require that there is some ε > 0

such that 0 5 t 5 ε implies that x0+tv ∈ X, so that f(x0+tv) is defined. This will be implicitly
assumed also in the other definitions of directional derivatives given further. Obviously, if X is
open or, more generally, if x0 ∈ int(X), this is always possible. The next result shows that the
set of the directions v for which D+f(x0; v) exists is a cone, and that D+f(x0; v) is positively
homogeneous on this cone.

Theorem 1. The right-sided directional derivative D+f(x0; v) is positively homogeneous of
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degree one in v. That is, if D+f(x0; v) exists, then

D+f(x0;αv) = αD+f(x0; v), ∀α = 0.

Proof. This follows at once from

f(x0 + tαv)− f(x0)

t
= α

f(x0 + βv)− f(x0)

β
,

where β = tα, and letting t, β −→ 0+. �
Similarly, we have the following definition.

Definition 2. Let X ⊂ Rn be an open set, let x0 ∈ X and let f : X −→ R. We say that f
has the left-sided directional derivative at x0 in the direction v, if the limit

lim
t−→0−

f(x0 + tv)− f(x0)

t
= D−f(x0; v)

exists (finite or not). For v = 0, D−f(x0; v) is assumed to be zero.

Finally, we give the following definition.

Definition 3. Under the same assumptions as before, we say that f has a (bilateral)
directional derivative at x0 ∈ X in the direction v or that f is directionally differentiable at
x0 ∈ X in the direction v, if the limit

lim
t−→0

f(x0 + tv)− f(x0)

t
= Df(x0; v)

exists.

It is quite immediate to note that f : X −→ R has a left-sided directional derivative at x0

in the dirrection v if and only if f has a right-sided directional derivative at x0 in the direction
(−v). In this case it holds

D−f(x0; v) = −D+f(x0;−v).

This explains the fact that in applications (mainly in Convex Analysis and in Optimization)
only D+f(x0; v) is considered. Furthermore, it is immediate that f : X −→ R is directionally
differentiable at x0 ∈ X in the direction v, if and only if

D−f(x0; v) = D+f(x0; v),

i. e.
−D+f(x0;−v) = D+f(x0; v),

i. e.
D+f(x0; v) +D+f(x0;−v) = 0.
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It follows also that if Df(x0; v) exists, then Df(x0;αv) = αDf(x0; v), ∀α ∈ R.
Example 1. Let be y ∈ Rn and let be f : Rn −→ R be defined by f(x) = ‖x− y‖ , ∀x ∈ Rn.
This function is right-sided directionally differentiable at every point x0 ∈ Rn, in every direction
v. The reader is invited to verify that

D+f(x0; v) =

{
‖v‖ , if x0 = y;
(x0−t)>v
‖x0−y‖ , if x

0 6= y.

Remark 1. Definition 3 is essentially based on a one-dimensional concept: if we put ϕ(t) =
f(x0 + tv), the functioon ϕ is the restriction of f to the straight line passing through x0 and
with direction v. It is immediate to note that the difference quotient

ϕ(t)− ϕ(0)

t

coincides with the difference quotient appearing in Definition 3. Hence, the quantity Df(x0; v),
if it exists, coincides with the usual derivative ϕ′(0).

Example 2. Compute the directional derivative of the function f : R2 −→ R defined by
f(x, y) = x2 + y2 + xy + x at x0 = (1;−1)>, in the direction v = (1/

√
2; 1/
√

2)>.
We have f(x0 + tv) = ϕ(t) = 2 + t√

2
+ 3

2
t2. Hence Df(x0; v) = ϕ′(0) = 1√

2
+ 3t |t=0 = 1√

2
.

Remark 2. The existence of the directional derivative at x0 in a certain direction, gives no
information on the existence of the directional derivatives at x0 in other directions.

Example 3. Consider the function f : R2 −→ R defined by

f(x, y) =

{
x2

x2+y2
, if (x, y) 6= 0;

0, if (x, y) = 0.

The reader is invited to verify that Df(0; e2) = 0, but Df(0; e1) does not exist. Here e1

and e2 are the two unit coordinate vectors of R2 : e1 = (1, 0)>; e2 = (0, 1)>.

If f : X ⊂ Rn −→ R is directionally differentiable at x0 ∈ int(X) in the direction ei, being
ei the i-th unit coordinate vector of Rn, i. e.

ei = [0, 0, ..., 1, 0, ..., 0]> ,

with 1 as the i-th element, we say that f is partially differentiable at x0 with respect to the
i-th variable xi, and the quantity

Df(x0; ei)

is the partial derivative of f at x0, with respect to the i-th variable xi, and denoted as

∂f

∂xi
(x0) or also fxi(x

0).
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If f : X ⊂ Rn −→ R admits at x0 all n partial derivatives, then the vector[
∂f

∂x1

(x0), ...,
∂f

∂xn
(x0)

]>
is called the gradient of f at x0 and denoted as ∇f(x0).

Note that f may have directional derivatives in all nonzero directions at x0, yet not be
continuous at x0. Note, moreover, that we may not be able to express the directional derivatives
of a given function at a point x0 as a linear function of the components of the direction v ∈ Rn.
Example 4. Let f : R2 −→ R be defined as

f(x, y) =

{
xy
x2+y

, y 6= −x2;

0, y = −x2.

Observe that f has directional derivatives at (0, 0) in every direction:

f(tx, ty)− f(0, 0)

t
=

(
t2xy

t2x2+ty

)
t

=
xy

tx2 + y
.

If y 6= 0, the the limit of this expression is x, as t −→ 0, and if y = 0, the limit is 0. Thus
the directional derivative exists for every direction (x, y), but the function is not continuos at
x0 = (0, 0).

Some authors call the quantity Df(x0; v) the “first variation”in the sense of Lagrange of
f at x0.

Definition 4. Let be f : X −→ R, with X open subset of Rn, and let x0 ∈ X. If D+f(x0; v)
exists for all v ∈ Rn, then f is said to be weakly Gâteaux differentiable at x0 or also Gâteaux
semidifferentiable at x0 or also, less frequently, hemi-differentiable at x0 or also Dini differen-
tiable at x0 or, simply, directionally differentiable at x0.

If f is weakly Gâteaux differentiable at x0 and the function v −→ D+f(x0; v) is linear, then
f is said to be Gâteaux differentiable at x0. The quantity D+f(x0; v) is also called “Gâteaux
differential”of f at x0 or “Gâteaux derivative”of f at x0.

If f is Gâteaux differentiable at x0, the Gâteaux differential of f at x0 is given by∇f(x0)>v
and we have therefore

D+f(x0; v) = ∇f(x0)>v, ∀v ∈ Rn.

In other words, it holds

f(x0 + tv) = f(x0) + t∇f(x0)>v + o(t),

for t −→ 0+.
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Some authors refer to Df(x0; v) the definitions of weak Gâteaux differentiability and
Gâteaux differentiability. This is, for example, the classical approach of Kolmogorov and Fomin
(1980), Kantorovič and Akilov (1980), Ortega and Rheinboldt (1970), Vainberg (1956), etc.
For what concerns Gâteaux differentiability, the two definitions are equivalent: indeed linearity
implies that D+f(x0; v) = −D+f(x0;−v) = D−f(x0; v) = Df(x0; v). We point out that there
is not uniformity of notations and definitions for what concerns the subjects of the present
section.

Note that Gâteaux differentiability of f at x0 does not imply continuity of f at x0.

Example 5. Define f : R2 −→ R by

f(x, y) =

{
y
x
(x2 + y2), x 6= 0,

0, x = 0.

Then, for x 6= 0,

f(tx, ty)− f(0, 0)

t
=

(
ty
tx
t2(x2 + y2)

)
t

=
ty

x
(x2 + y2) −→ 0.

Thus D+f(0, v) = 0 for every v, so f has a Gâteaux derivative at the origin, namely
the zero linear map. However, f is not continuous at the origin. Indeed, consider, e. g.,
v(ε) = (ε4, ε). Then v(ε) −→ 0 as ε −→ 0, but

f(v(ε)) =
ε

ε4
(ε8 + ε2) = ε5 +

1

ε
.

Thus f(v(ε)) −→ ∞ as ε −→ 0+ and f(v(ε)) −→ −∞ as ε −→ 0−, so lim
ε−→0

f(v(ε)) does

not exist and in any case f is not continuous at (0, 0).

Note, moreover, that the existence of all partial derivatives do not assure the existence of
D+f(x0; v) for all directions v ∈ Rn, nor the Gâteaux differentiability of f at x0.

Example 6. Consider the function f : R2 −→ R defined by

f(x1, x2) =

{
x1x2

(x1)2+(x2)2
, if (x1, x2) 6= (0, 0);

0, if (x1, x2) = (0, 0).

This function possesses at x0 = (0, 0) both partial derivatives (i. e. Df(x0; e1) and
Df(x0; e2)), but D+f(x0; e1 + e2) does not exist.

We now give the classical definition of Fréchet differentiability.

Definition 5. Let f : X −→ R, with X ⊂ Rn open set (or, more generally, X ⊂ Rn arbitrary
and x0 ∈ int(X)). We say that f is Fréchet differentiable at x0 (or, simply, differentiable at
x0), if there exists a vector a ∈ Rn, depending only from the point x0, such that

lim
v−→0

f(x0 + v)− f(x0)− a>v
‖v‖ = 0,
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i. e.

lim
x−→x0

f(x)− f(x0)− a>(x− x0)

‖x− x0‖ = 0.

It is well-known that the vector a is unique and that a = ∇f(x0). In this case the quantity
∇f(x0)>v is also called the Fréchet differential of f at x0. The previous definition is also
equivalent to the following condition:

f(x0 + v) = f(x0) +∇f(x0)>v + o(‖v‖),

for v −→ 0 ∈ Rn. Moreover, it can be shown that Fréchet differentiability at x0 is equivalent
to:

For every ε > 0, there exists δ > 0 such that for every v satisfying ‖v‖ < δ, it holds∣∣f(x0 + v)− f(x0)−∇f(x0)>v
∣∣ 5 ε ‖v‖ .

This relation will be useful to introduce (see further) the stronger notion of strict differ-
entiability.

Another equivalent condition of Fréchet differentiability at x0 is the following one (see, e.
g., Nashed (1971)).

Theorem 2. Let f : X −→ R, with X ⊂ Rn open set and x0 ∈ X. Then f is Fréchet
differentiable at x0 if and only if

lim
t−→0+

f(x0 + tv)− f(x0)

t
= ∇f(x0)>v

and the convergence is uniform, with respect to v, for v varying in a bounded set of Rn (for
example on B = {v : ‖v‖ = 1}).

The following results are well-known.

Theorem 3. Let be f : X ⊂ Rn −→ R, X open, and let x0 ∈ X. If f is Fréchet differentiable
at x0, then:

i) f is continuous at x0 (this is an immediate consequence of the definition of Fréchet differ-
entiability).

ii) f is directionally differentiable at x0 in every direction v ∈ Rn and it holds

Df(x0; v) = ∇f(x0)>v, ∀v ∈ Rn.

Consequently, f is Gâteaux differentiable at x0 (the vice-versa does not hold).

iii) If {tj} , j ∈ N, is a sequence on the interval (0,+∞) converging to zero, and {vj} , j ∈ N,
a sequence on Rn� {0} , converging to v ∈ Rn, then

lim
j−→+∞

1

tj

[
f(x0 + tjv

j)− f(x0)
]

= ∇f(x0)>v.
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iv) There exist two numbers r > 0 and c > 0 such that N(x0, r) ⊂ X and∣∣f(x0 + v)− f(x0)
∣∣ 5 c ‖v‖ , ∀v ∈ N(0, r).

We give now the definition of strictly differentiable functions, a property stronger than
Fréchet differentiability.

Definition 6. Let be f : X ⊂ Rn −→ R, X open, and let x0 ∈ X. Then f is strictly
differentiable at x0 if there exists a vector a ∈ Rn, which will be the gradient ∇f(x0), such that

lim
x̄ −→ x0

v̄ −→ v
t −→ 0+

f(x̄+ tv̄)− f(x̄)

t
= ∇f(x0)>v, ∀v ∈ Rn,

or. equivalently,

lim
x̄ −→ x0

x −→ x0

f(x̄)− f(x)−∇f(x0)>(x̄− x)

‖x̄− x‖ = 0, x̄ 6= x,

i. e.
f(x̄) = f(x) +∇f(x0)>(x̄− x) + o(‖x̄− x‖).

Some authors (e. g. Pourciau (1980), Nijenhuis (1974), Ortega and Rheinboldt (1970)) use
the term “strongly differentiable”. The above conditions are in turn equivalent to the following
one (see, e. g., Alexéev, Tikhomirov and Fomine (1982)):

• For every ε > 0 there exists δ > 0 such that for all x1 and x2 verifying the inequalities∥∥x1 − x0
∥∥ < δ,

∥∥x2 − x0
∥∥ < δ

we have the following inequality:∣∣f(x1)− f(x2)−∇f(x0)>(x1 − x2)
∣∣ 5 ε

∥∥x1 − x2
∥∥ .

The following implications are well known.{
Strict differentiability at x0

}
=⇒

{
Fréchet differentiability at x0

}
=⇒

=⇒
{
Gâteaux differentiability at x0

}
.

Moreover,{
Strict differentiability at x0

}
=⇒

{
Continuity of f on a neighborhood of x0

}
.
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{
Fréchet differentiability at x0

}
=⇒

{
Continuity of f at the point x0

}
.

The above implications cannot be reversed. See Example 5 and the following two examples,
taken from Alexéev, Tikhomirov and Fomine (1982).

Example 7. Consider the function f : R2 −→ R given by

f(x1, x2) =

{
1, if x1 = (x2)2, x2 > 0;

0, at all other points.

This function is Gâteaux differentiable at the origin (0, 0), but it is not continuous at the
same point.

Example 8. Consider the function f : R −→ R given by

f(x) =

{
x2, if x is rational;

0, if x is not rational.

At x0 = 0 this function is Fréchet differentiable, but it is not strictly differentiable at the
same point, as it is not continuous for x 6= 0.

Definition 7. Let be f : X ⊂ Rn −→ R, X open, and let x0 ∈ X.
i) The function f is said to be of C1-class at x0, and denoted by f ∈ C1(x0), if its gradient
∇f(x) exists in a neighborhood of x0 and is continuous at x0.

ii) The function f is said to be of C1-class on X, and denoted by f ∈ C1(X), if ∇f(x) is
continuous for all x ∈ X. In this case f is also said to be continuously differentiable on X.

The following suffi cient condition for Fréchet differentiability is well known.

Theorem 4. Let be f : X ⊂ Rn −→ R, X open, and let x0 ∈ X. If f ∈ C1(x0), then f is
Fréchet differentiable at x0 and also strictly differentiable at x0. If f ∈ C1(X), then f is Fréchet
differentiable on X.

The second part of the previous theorem can be made more precise, on the ground of the
following result (see, e. g., Rockafellar and Wets (2009)).

Theorem 5. Let be f : X ⊂ Rn −→ R, X open. Then f ∈ C1(X) if and only if f is strictly
differentiable on X.

Another classical notion, useful for further considerations, is the definition of Lipschitz
continuous functions and locally Lipschitz continuous functions.

Definition 8. Let X ⊂ Rn be a nonempty set and f : X −→ R. The function f is said to
be Lipschitz over X (or Lipschitz continuous over X) if there exists a real number k = 0 such
that, for every x1, x2 ∈ X we have∣∣f(x1)− f(x2)

∣∣ 5 k
∥∥x1 − x2

∥∥ . (1)

9



The smallest constant k for which the previous relation holds is called “the Lipschitz
constant”or “the Lipschitz rank”. If k = 1, then f is said to be non-expansive and if k < 1,
then f is said to be a contraction.

Note that if f is Lipschitz on X, then it is (uniformly) continuous on X, but the converse is
not true: take, e. g. the continuous function f(x) = 3

√
x, x ∈ R; with x2 = 0 we see that there

is no constant k = 0 satisfying (1). To understant the meaning of (1), rewrite it as follows

|f(x1)− f(x2)|
‖x1 − x2‖ 5 k, ∀x1 6= x2 ∈ X.

Hence. a function is Lipschitz on the set X ⊂ Rn if and only if all its difference quotients
are bounded.

Example 9.
i) The function f(x) = ‖x‖ , x ∈ Rn, is Lipschitz on Rn, with k = 1.

ii) The function f(x) = ‖x‖2 is not Lipschitz on the whole space Rn. Indeed, by choosing
x2 = 0, we have ∥∥x1

∥∥2 5 k
∥∥x1
∥∥

which holds only if ‖x1‖ 5 k.

A suffi cient condition for f to be Lipschitz on a set contained in its domain, is given by
the following proposition.

Theorem 6. Let be f : X ⊂ Rn −→ R, with X convex set. If f is differentiable on X and
if all its partial derivatives are bounded on X, then f is Lipschitz on X. Moreover, for every
M = 0 such that ∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ 5M, ∀x ∈ X, ∀i = 1, ..., n,

then relation (1) holds with k =
√
nM.

Definition 9. Let X ⊂ Rn be a nonempty open set and f : X −→ R. For a point x0 ∈ X,
if there exist a neighborhood N(x0) of x0 a nonnegative number k such that∣∣f(x1)− f(x2)

∣∣ 5 k
∥∥x1 − x2

∥∥ , ∀x1, x2 ∈ N(x0),

then f is said to be locally Lipschitz at x0 or Lipschitz near x0 or Lipschitz around x0, with
constant k.

We say that f is locally Lipschitz on X is f is locally Lipschitz at each x ∈ X.

Thus a function which is locally Lipschitz at a point means that the function satisfies the
Lipschitz condition in a neighborhood of that point. However, it is important to note that the
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value of the Lipschitz constant k in general could change as we change the point. Obviously
we have the implication

f Lipschitz on X ⊂ Rn (X open) =⇒

=⇒ f locally Lipschitz at each point of X,

but the converse is not in general true. If however a locally Lipschitz function has a uniform
Lipschitz constant k at every point x0 ∈ X, then f is Lipschitz on X in the sense of Definition
8. A suffi cient condition for f to be locally Lipschitz at a point x0 of its domain is given by the
following proposition.

Theorem 7. If a function f : X ⊂ Rn −→ R is continuously differentiable (i. e. of C1 class)
in a neighborhood of x0 ∈ int(X), then f is locally Lipschitz at x0.

Proof. Continuous differentiability around x0 means that all n partial derivatives of f are
continuous on a neighborhood of x0. It follows that there exist constants ε > 0 and k = 0 such
that

‖∇f(x)‖ 5 k, for all x ∈ N(x0, ε).

Suppose that x1, x2 ∈ N(x0, ε). Then, by the classical Mean-Value Theorem, there is
z ∈ (x1, x2) ⊂ N(x0, ε) such that

f(x1)− f(x2) = ∇f(z)>(x1 − x2).

We now have ∣∣f(x1)− f(x2)
∣∣ 5 ‖∇f(z)‖

∥∥x1 − x2
∥∥ 5 k

∥∥x1 − x2
∥∥ ,

i. e. f is Lipschitz continuous at x0. �
Theorem 7. can be weakened: it can be proved (see, e. g., Nijenhuis (1974)) that if f is
strictly differentiable at x0 ∈ int(X), then f is locally Lipschitz at x0.

Other classical directional derivatives used in optimization are the Dini directional deriva-
tives, introduced by U. Dini (1878) for real functions of one variable. For various considerations
and applications of Dini directional derivatives, see, e. g. Bector, Bhatia and Jain (1993),
Crouzeix (1981, 1988), Diewert (1981), Giorgi and Komlosi (1993a, b, 1995), Glover (1984),
Komlosi (1983, 1995, 2005).

Definition 10. Let be f : X ⊂ Rn −→ R, X open and x0 ∈ X. The quantities

fD
+

(x0; v) = lim sup
t−→0+

f(x0 + tv)− f(x0)

t
; (2)

fD+(x0; v) = lim inf
t−→0+

f(x0 + tv)− f(x0)

t
, (3)
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are, respectively, called the (right-sided) upper Dini directional derivative of f at x0 in the
direction v ∈ Rn and the (right-sided) lower Dini directional derivative of f at x0 in the
direction v ∈ Rn.

Obviously, it is possible to define also the left-sided Dini directional derivatives fD−(x0; v)
and fD−(x0; v).

If the limit

lim
t−→0+

f(x0 + tv)− f(x0)

t
= D+f(x0; v) (4)

exists, then
fD

+

(x0; v) = fD+(x0; v) = D+f(x0; v).

Note that the limits in (2), (3) always exist (finite or not), whereas the limit in (4) not
always exists. It is easy to see that, for any v ∈ Rn,

fD
+

(x0; v) = fD+(x0; v).

We must also note that Dini derivatives are positively homogeneous (of degree one) in
their second argument, i. e. with respect to the direction v and for all λ > 0 we have

fD
+

(x0;λv) = λfD
+

(x0; v)

and
fD+(x0;λv) = λfD+(x0; v).

Other “classical” directional derivatives were introduced by the French mathematician
Jacques Hadamard.

Definition 11. Let be f : X ⊂ Rn −→ R, X open and x0 ∈ X. The quantities

fH
+

(x0; v) = lim sup
t−→0+, v̄−→v

f(x0 + tv̄)− f(x0)

t
;

fH+(x0; v) = lim inf
t−→0+, v̄−→v

f(x0 + tv̄)− f(x0)

t

are called, respectively, the Hadamard (right-sided) upper directional derivative of f at the
point x0 in the direction v ∈ Rn and the Hadamard (right-sided) lower directional derivative of
f at the point x0 in the direction v ∈ Rn.

Some authors call the above quantities “Dini-Hadamard directional derivatives”; Aubin
and Cellina (1984) speak of “contingent derivatives”, whereas Penot (1978) uses the term
“semiderivatives”. See also further. We are not sure that there are not other denominations in
the literature. Also in this case it is obviously possible to define Hadamard left-sided directional
derivatives fH

−
(x0; v) and fH

−
(x0; v). Note that the limits of Definition 11 always exist but

are not nwecessarily finite. Note also that in the one-dimensional case, i. e. Rn = R, the
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Hadamard directional derivatives coincide with the corresponding Dini directional derivatives.
If we have that the limit

lim
t−→0+, v̄−→v

f(x0 + tv̄)− f(x0)

t
≡ DHf(x0; v)

exists, then f is called Hadamard directionally differentiable at x0 in the direction v ∈ Rn
(many authors require that the above limit must exist finite). Some authors (e. g. Delfour
(2020), Rockafellar and Wets (2009)) speak in this case of the semiderivative of f at x0 in the
direction v ∈ Rn and say that f is semidifferentiable at x0 in the direction v ∈ Rn. If this
holds for every v ∈ Rn, we say that f is Hadamard directionally differentiable at x0 or that f
is semidifferentiable at x0. If DHf(x0; 0) exists, then it holds DHf(x0; 0) = 0.

It is possible to show (see, e. g., Shapiro (1990)) that the above definition of Hadamard
directional differentiability is equivalent to the following proposition:

• For any mapping ϕ : R+ −→ Rn such that

ϕ(0) = x0 and such that
ϕ(t)− ϕ(0)

t
−→ v for t −→ 0+,

the limit

lim
t−→0+

f(ϕ(t))− f(x0)

t

does exist. Then it holds

DHf(x0; v) = lim
t−→0+

f(ϕ(t))− f(x0)

t
.

The above characterization gives the Hadamard directional derivative DHf(x0; v) along
a curve tangential to v. Indeed, some authors speak also, for the case under examination, of
tangential directional derivative. Other authors (Craven (1986), Craven and Mond (1979))
speak of arcwise directionally differentiable functions. Obviously the Hadamard directional
derivative DHf(x0; v) can also be expressed in terms of sequences:

DHf(x0; v) = lim
n−→∞

f(x0 + tnv
n)− f(x0)

tn
,

where {vn} ⊂ Rn and {tn} ⊂ R+ are any sequences such that vn −→ v and tn −→ 0+.
Robinson (1987) introduced the concept of Bouligand differentiability (he called this prop-

erty “B-differentiability”). However, for real-valued functions on Rn, this property is equivalent
to Hadamard directional differentiability, as defined before (see Rockafellar and Wets (2009),
page 294).

Note that if DHf(x0; v) exists, then also the directional derivative D+f(x0; v) exists and

DHf(x0; v) = D+f(x0; v).

13



The converse is not necessarily true.

Example 10. Consider the function f : R2 −→ R defined by

f(x1, x2) =

{
0, if either x2 = (x1)2 or x2 5 0;

1, in all other cases.

Let be x0 = (0, 0)>.We have D+f(x0; v) = 0, ∀v ∈ R2.Moreover, we have DHf(x0; v) = 0,
∀v = (v1, v2)> ∈ R2, with v2 6= 0. DHf(x0; v) does not exist for v = (v1, 0)>, v1 ∈ R.

An important property of locally Lipschitz functions, which guarantees the converse of the
above result, is contained in the following proposition.

Theorem 8. Let be f : X ⊂ Rn −→ R, X open and x0 ∈ X; if f is locally Lipschitz
at x0 and D+f(x0; v) exists, then f is also Hadamard directionally differentiable at x0 in the
direction v and it holds

D+f(x0; v) = DHf(x0; v).

Also the Hadamard directional derivatives are positively homogeneous of degree one with
respect to the direction v ∈ Rn.

Definition 12. Let be f : X ⊂ Rn −→ R, X open and x0 ∈ X. We say that f is Hadamard
differentiable at x0 if DHf(x0; v) exists (finite) for all v ∈ Rn and this quantity depends linearly
on v ∈ Rn.

In the above case we have

DHf(x0; v) = ∇f(x0)>v, ∀v ∈ Rn,

and as a consequence, in finite-dimensional spaces, such as Rn, we have that Hadamard differ-
entiability coincides with Fréchet differentiability.

Theorem 9. Let be f : X ⊂ Rn −→ R, X open and x0 ∈ X. Then f is Fréchet differentiable
at x0 if and only if, for all v ∈ Rn, it holds

lim
t−→0+, v̄−→v

f(x0 + tv̄)− f(x0)

t
= ∇f(x0)>v.

We have to note that some authors call “Hadamard differentiable”what we have called
“Hadamard directionally differentiable”, perhaps because in finite-dimensional spaces Hadamard
differentiability coincides with Fréchet differentiability. Also for Hadamard directional deriva-
tives there is not uniformity of notations and definitions. Often, in the literature, instead of
the limits written in the form

t −→ 0+, v̄ −→ v

14



(for the Hadamard directional derivatives), the same limits are taken in the form

(t, v̄) −→ (0+, v).

The two forms not necessarily coincide. See the paper of F. Giannessi (1995).

Theorem 10. If DHf(x0; ·) exists (finite) in a neighborhood of v̄ ∈ Rn, then DHf(x0; ·) is
continuous at x0.

Proof. By assumption there exists ρ0 > 0 such that DHf(x0; v) exists for all v ∈ B(v̄; ρ0).
Let be given ε > 0. Then there exists ρ ∈ (0, ρ0) such that for all t ∈ (0, ρ) and all v ∈ B(v̄, ρ)
it holds ∣∣∣∣f(x0 + tv)− f(x0)

t
−DHf(x0; v̄)

∣∣∣∣ 5 ε.

For t −→ 0+ it follows, for all v ∈ B(v̄, ρ),∣∣D+f(x0; v)−DHf(x0; v)
∣∣ 5 ε.

Since D+f(x0; v) = DHf(x0; v), the thesis follows. �
We have seen (Theorem 8) that if f is locally Lipschitz at x0, then the existence of

D+f(x0; v) implies the existence of DHf(x0; v) and the equality D+f(x0; v) = DHf(x0; v). As
a consequence we have the following important result.

Theorem 11. Let be f : X ⊂ Rn −→ R, X open, x0 ∈ X and f locally Lipschitz at x0.
Then the following properties are equivalent.

(a) f is Gâteaux differentiable at x0;

(b) f is Hadamard differentiable at x0.

We recall that, being X finite-dimensional, under the assumption of Theorem 11 we have
also the equivalence between Gâteaux differentiability and Fréchet differentiability. Obviously,
for f : R −→R Fréchet, Hadamard and Gâteaux differentiability at x0 are equivalent concepts
and coincide with the usual classical derivative of f at x0. It is worth noting, furthermore, that
if f : X ⊂ Rn −→ R, X open and x0 ∈ X, has a (finite) directional Hadamard derivative at x0

in all directions v ∈ Rn, i. e. DHf(x0; v) exists (finite) for all v ∈ Rn, then f is continuous at
x0, but not necessarily locally Lipschitz continuous at x0 (see, e. g., Demyanov and Rubinov
(1995), Delfour (2020)).
We recall that a Gâteaux differentiable function is not necessarily continuous (Example 5).

Obviously, if f : X ⊂ Rn −→ R is Hadamard differentiable at x0 ∈ X, X open, i. e. it is
Fréchet differentiable at x0, then it is continuous at x0.

For directionally differentiable functions and Hadamard directionally differentiable func-
tions there exist calculus rules (sum, difference, product and quotient): if f1 and f2 are, for
example, Hadamard directionally differentiable at a point x, then their sum, difference, product
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and quotient (if f2(x) 6= 0) are also Hadamard directionally differentiable at x and the following
formulas hold.

DH(f1 ± f2)(x; v) = DHf1(x; v)±DHf2(x; v);

DH(f1f2)(x; v) = f1(x)DHf2(x; v) + f2(x)DHf1(x; v);

DH

(
f1

f2

)
(x; v) = − 1

(f2(x))2

[
f1(x)DHf2(x; v)− f2(x)DHf1(x; v)

]
.

Unfortunately, formulas similar to these ones are no longer valid for Dini and Hadamard
upper and lower directional derivatives.

3. Directional Derivatives in Convex and Generalized Convex
Functions
Directional derivatives play an important role in Convex Analysis and Optimization

Theory. In the present section we give an overview of the main properties of convex and gener-
alized convex functions with regard to directional derivatives. We begin with convex functions;
for the related proofs, see, e. g., the fundamental book of Rockafellar (1970) and the books of
Bagirov, Karmitsa and Mäkelä (2014), Bertsekas (2009), Bertsekas, Nedic and Ozdaglar (2003),
Borwein and Lewis (2000), Dhara and Dutta (2012), Durea and Strugariu (2014), Giorgi, Guer-
raggio and Thierfelder (2004), Hiriart-Urruty and Lemarechal (1993), Holmes (1972, 1975),
Roberts and Varberg (1973), Shimitzu, Ishizuka and Bard (1997).

Also in the present section we consider real-valued functions defined on X, a subset of
Rn, even if it is customary in modern Convex Analysis to consider extended-valued functions,
defined on the whole space Rn and assuming also infinite values.

We recall that f : X ⊂ Rn −→ R, X open and convex, f differentiable on X, is convex on
X if and only if, for every x, x0 ∈ X

f(x)− f(x0) = ∇f(x0)>(x− x0).

If f is not differentiable on the open convex set X, then f is convex on X if and only if
there exists u0 ∈ Rn such that, for every x, x0 ∈ X

f(x)− f(x0) = (u0)>(x− x0).

These last considerations allow us to give the following basic definition.

Definition 13. Let X ⊂ Rn be a convex set and f : X −→ R a convex function on X. A
vector s ∈ Rn is called a subgradient of f at x0 ∈ X, if, for every x ∈ X it holds

f(x)− f(x0) = s>(x− x0).

The set of all subgradients of f at x0 is called the subdifferential of f at x0 and denoted
by ∂f(x0).
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Example 11. From the previous definition it follows at once that, for f(x) = |x| , x ∈ R,
∂f(0) = [−1, 1] .

The subdifferential may be also an empty set: non-subdifferentiability can however occur
on the boundary of the domain of f ; consider, e. g., f : [0, 1] −→ [0, 1] , with f(x) = −

√
x.

Then f is clearly convex, but ∂f(0) = ∅.

If the set ∂f(x0) is nonempty, we say that f is subdifferentiable at x0. We see now the
main properties of convex functions with regard to directional derivatives and subdifferentials.
We consider X ⊂ Rn as an open convex set, but all results hold also for X ⊂ Rn convex set
and x0 ∈ int(X).

Theorem 12. If X ⊂ Rn is an open convex set, f : X −→ R is convex and x0 ∈ X, then
f admits a finite right-sided directional derivative at x0, D+f(x0; v), and a finite left-sided
directional derivative D−f(x0; v), for any direction v ∈ Rn and it holds

D−f(x0; v) 5 D+f(x0; v), ∀v ∈ Rn.

Theorem 13. If X ⊂ Rn is an open convex set, f : X −→ R is convex and x0 ∈ X, then
D+f(x0; ·) : Rn −→ R is a sublinear function, i. e.

D+f(x0;λv) = λD+f(x0; v), ∀v ∈ Rn, ∀λ > 0;

D+f(x0; v1 + v2) 5 D+f(x0; v1) +D+f(x0; v2), ∀v1, v2 ∈ Rn.

Sublinear functions are a class of convex functions: sublinear functions are convex and a
convex function which is positively homogeneous (of degree 1) is a sublinear function.

Theorem 14. If X ⊂ Rn is an open convex set, f : X −→ R is convex and x0 ∈ X, then

D+f(x0;x− x0) 5 f(x)− f(x0), ∀x ∈ X.

Remark 3. The above result is indeed a necessary and suffi cient condition for a convexity of
a directionally differentiable function: see, e. g., Fenchel (1953), page 81, Roberts and Varberg
(1973), page 12, Diewert, Avriel and Zang (1981), page 410:

• Let f : X ⊂ Rn −→ R be a (right-sided) directionally differentiable function on the open
convex set X. Then f is convex on X if and only if, for every x, x0 ∈ X,

D+f(x0;x− x0) 5 f(x)− f(x0).

Theorem 15. If X ⊂ Rn is an open convex set, f : X −→ R is convex and x0 ∈ X, then
s ∈ Rn is a subgradient of f at x0 if and only if

D+f(x0; v) = s>v, ∀v ∈ Rn.
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Theorem 16. If X ⊂ Rn is an open convex set, f : X −→ R is convex and x0 ∈ X, then it
results

D+f(x0; v) = max
{
s>v : s ∈ ∂f(x0)

}
, ∀v ∈ Rn.

The next reult has already been stated at the beginning of the present section.

Theorem 17. Let X ⊂ Rn be an open convex set; then f : X −→ R is convex on X if and
only if for every x0 ∈ X there exists s ∈ Rn such that

s>(x− x0) 5 f(x)− f(x0), ∀x ∈ X.

In other words: f : X ⊂ Rn −→ R is convex on the open convex set X if and only if it is
subdifferentiable at every point x0 ∈ X.

The following result treats the differentiability properties of a convex function on an open
convex set X ⊂ Rn (or, more generally, on an arbitrary convex set X ⊂ Rn, with x0 ∈ int(X)).

Theorem 18. Let X ⊂ Rn be an open convex set, x0 ∈ X and f : X −→ R be convex Then
the following assertions are equivalent.

i) f is Fréchet differentiable at x0;

ii) f is directionally differentiable at x0 with respect to every direction v ∈ Rn;

iii) f is Gâteaux differentiable at x0;

iv) f admits all partial derivatives at x0, with respect to the variables x1, ..., xn.

v) f is C1(x0).

Finally, we point out an important property of convex functions.

Theorem 19. If f : X ⊂ Rn −→ R is convex on the open convex set X, then f is locally
Lipschitz on X.

A remarkable result due to H. Rademacher (1919) says that a function which is locally
Lipschitz on an open set X ⊂ Rn is differentiable almost everywhere on X. On the grounds of
Theorem 19 it holds that a convex function over an open convex set X ⊂ Rn is differentiable
on X excepts for points of zero (Lebesgue) measure.

Remark 4. We have seen (Theorem 18) that for convex functions defined on an open convex
setX ⊂ Rn, Gâteaux differentiability implies Fréchet differentiability (the reverse implication is
obviously always true). This holds (Theorem 11) also for locally Lipschitz functions on an open
set X ⊂ Rn. Another condition which assures that Gâteaux differentiability implies Fréchet
differentiability has been established by Chabrillac and Crouzeix (1987). Given I1, I2, ..., In, n
open intervals in R and given a real-valued function f defined on D = I1× I2× ...× In, we say
that f is nondecreasing on D if f(x) 5 f(y) whenever x, y ∈ D and xi 5 yi, i = 1, ..., n. The
said authors prove the following interesting result.
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• Let f : D ⊂ Rn −→ R be a nondecreasing function on D. If f is Gâteaux differentiable at
x0 ∈ D, then f is actually Fréchet differentiable at x0.

Directional derivatives have been used also in studying generalized (nonsmooth) convex
functions. We recall that Mangasarian (1965, 1969) has introduced, for differentiable functions,
the notion of pseudoconvex functions, a class of generalized convex functions lying between
convex functions and quasiconvex functions.

Definition 14. Let f : X ⊂ Rn −→ R be differentiable on the open convex set X; then f
is pseudoconvex on X if, for all x0, x ∈ X,

f(x) < f(x0) =⇒ ∇f(x0)>(x− x0) < 0,

or equivalently,
∇f(x0)>(x− x0) = 0 =⇒ f(x) = f(x0).

Subsequently, Ortega and Rheinboldt (1970) and Thompson and Parke (1973) have given
a definition pf pseudoconvex functions without differentiability assumptions.

Definition 15. Let be given f : X ⊂ Rn −→ R, with X nonempty convex set. Then f is
pseudoconvex on X if for every x, y ∈ X such that f(y) < f(x) there exist a number c > 0 and
a number α ∈ (0, 1] such that

f((1− a)x+ ay) 5 f(x)− ac, ∀a ∈ (0, α).

We now prove that, under Fréchet differentiability assumptions, the characterization of
Definition 15 coincides with the one of Definition 14.

Theorem 20. Let X ⊂ Rn be an open convex set and let f : X −→ R be differentiable on
X. Then if f is pseudoconvex on X, following the characterization of Definition 15, then f is
pseudoconvex on X, following the characterization of Definition 14, and vice-versa.

Proof.
a) Let be x0, x ∈ X such that f(x) < f(x0). Then, there exists a number c > 0 and a
number α ∈ (0, 1] such that

f((1− t)x0 + tx) 5 f(x0)− tc, ∀t ∈ (0, α).

Consequently, we have

1

t

[
f(x0 + t(x− x0))− f(x0)

]
5 −c, ∀t ∈ (0, α).

Taking in the above inequality, the limit for t −→ 0+, we obtain ∇f(x0)>(x − x0) 5 −c,
i. e. the characterization of Definition 14.
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b) Let be x, y ∈ X such that f(y) < f(x). On the ground of the assumptions we have
∇f(x)>(y − x) < 0. Let us choose c = −∇f(x)>(y − x)/2. From the equality

lim
a−→0+

1

a
[f(x+ a(y − x))− f(x)] = ∇f(x)>(y − x),

we have that there exists a number α ∈ (0, 1] such that∣∣∣∣1a [f(x+ a(y − x))− f(x)]−∇f(x)>(y − x)

∣∣∣∣ < 0

for every a ∈ (0, α). Hence we have

1

a
[f(x+ a(y − x))− f(x)] < −c,

for every a ∈ (0, α) and therefore f is pseudoconvex following the characterization of Defini-
tion 15. �

We invite the reader to prove that if f : X ⊂ Rn −→ R is convex on the nonempty convex
set X, then f is pseudoconvex, following the characterization of Definition 15.

The above notions have been studied also by means of Dini directional derivatives. The
pioneering paper is the one of Diewert (1981), followd by the paper of Komlosi (1983). See also
Giorgi and Komlosi (1993a, b, 1995), Komlosi (1995, 2005). It is possible to use lower Dini
directional derivatives and upper Dini directional derivatives.

Definition 16. Let be given f : X ⊂ Rn −→ R, where X is open and convex. Then f is a
lower Dini-pseudoconvex function on X (LDPC) if, for all x, x0 ∈ X, we have

f(x) < f(x0) =⇒ fD+(x0;x− x0) < 0,

or equivalently
fD+(x0;x− x0) = 0 =⇒ f(x) = f(x0).

Definition 17. Let be given f : X ⊂ Rn −→ R, where X is open and convex. Then f is an
upper Dini-pseudoconvex function on X (UDPC) if, for all x, x0 ∈ X, we have

f(x) < f(x0) =⇒ fD
+

(x0;x− x0) < 0,

or equivalently
fD

+

(x0;x− x0) = 0 =⇒ f(x) = f(x0).

It is obvious that
(UDPC) =⇒ (LDPC).

Diewert (1981) has proved that the reverse implication does not hold.
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Also quasiconvex functions have been studied in terms of Dini directional derivatives. Also
for this types of studies, the pioneering paper is the one by Diewert (1981). See also Crouzeix
(1981, 1998, 2005), Komlosi (2005). We recall that f : X ⊂ Rn −→ R, with X nonempty
convex set, is quasiconvex on X if

f(x) 5 f(y) =⇒ f(λx+ (1− λ)y) 5 f(y), ∀x, y ∈ X, ∀λ ∈ [0, 1] .

The following classical result, essentially due to Arrow and Enthoven (1961), is well known.

Theorem 21. Let f : X ⊂ Rn −→ R be differentiable on the open convex set X. Then f is
quasiconvex on X if and only if for all x, y ∈ X

f(x) 5 f(y) =⇒ ∇f(y)>(x− y) 5 0,

or equivalently,
∇f(y)>(x− y) > 0 =⇒ f(x) > f(y).

It is quite easy to prove that if f(x) is quasiconvex on the open convex set X ⊂ Rn, then
for all x, x0 ∈ X the following implications hold

f(x) 5 f(x0) =⇒ fD
+

(x0;x− x0) 5 0; (5)

f(x) 5 f(x0) =⇒ fD+(x0;x− x0) 5 0. (6)

We call upper Dini-quasiconvex (UDQC) a function satisfying (5) and lower Dini-quasiconvex
(LDQC) a function satisfying (6). For a function f defined on an open convex set X ⊂ Rn we
have

{f convex} =⇒ {f quasiconvex} =⇒ {f (UDQC)} =⇒ {f (LDQC)} .

In general the above implications cannot be reversed. It is well known that for differentiable
functions pseudoconvexity implies quasiconvexity. This is no longer true for Dini-pseudoconvex
functions.

Example 12. Consider the function f : R −→ R given by

f(t) =

{
0, if 0 < |t| 5 1;

1, if t = 0.

This function is (UDQC) and (LDQC) and also (LDPC) but fails to be quasiconvex.

Other interesting results on directional derivatives applied to quasiconvex functions are
due to Crouzeix. See Crouzeix (2005) and the bibliographical references there quoted.

Theorem 22. (Crouzeix). Assume that f : Rn −→ R is quasiconvex; then fD+
(x0; ·) is

quasiconvex.

21



The lower Dini directional derivative fD+(x0; ·) is not necessarily quasiconvex, even if f is
quasiconvex.

Theorem 23. (Crouzeix). Assume that f : Rn −→ R is quasiconvex and directionally
differentiable at x0, i. e. Df(x0; v) exists for all v ∈ Rn. Then f is also Gâteaux differentiable
at x0, i. e.

Df(x0; v) = ∇f(x0)>v, ∀v ∈ Rn.

We have seen that Gâteaux differentiability and Fréchet differentiability coincide for locally
Lipschitz functions f : X −→ R, X open set of Rn, and for convex functions on the open
convex set X. A nice result of Crouzeix states that the same property holds for quasiconvex
functions.

Theorem 24. (Crouzeix). Assume that f : Rn −→ R is quasiconvex on the open convex set
X ⊂ Rn. Then, if f is Gâteaux differentiable at x0 ∈ X, then f is Fréchet differentiable at x0.

On the ground of Theorems 23 and 24, we can summarize as follows the related results.

• Let f : X −→ R be quasiconvex on the open convex set X ⊂ Rn. Then it holds:{
f Fréchet differentiable at x0 ∈ X

}
⇐⇒

⇐⇒
{
f Gâteaux differentiable at x0 ∈ X

}
⇐⇒

⇐⇒
{
f directionally differentiable (in the bilateral sense) at x0 ∈ X

}
.

Another approach in applying directional derivatives in the study of convex and generalized
convex functions is suggested by Ewing (1977) and Kaul and Kaur (1982a).

Definition 18. A set X ⊂ Rn is said to be locally star-shaped at x0 ∈ X if corresponding to
x0 and each x ∈ X, there exists a maximum positive number a(x0, x) 5 1 such that

(1− λ)x0 + λx ∈ X, 0 < λ < a(x0, x).

If a(x0, x) = 1 for each x ∈ X, then X is said to be star-shaped at x0 and if X is star-shaped
at each x0 ∈ X, then X is a convex set. It may be noted that there exist sets which are
locally star-shaped at each of their points, but which are not convex. For example, the set
Γ = {x ∈ R : x3 5 1, x 6= 0} is locally star-shaped at each of its points but it is not convex.

Definition 19. A function f : X ⊂ Rn −→ R is said to be semilocally convex at x0 ∈ X
if X is locally star-shaped at x0 and if, corresponding to x0 and each x ∈ X, there exists a
positive number d(x0, x) 5 a(x0, x) 5 1 (refer Definition 18) such that

f((1− λ)x0 + λx) 5 (1− λ)f(x0) + λf(x), 0 < λ < d(x0, x).
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If d(x0, x) = a(x0, x) = 1, for each x ∈ X, then f is said to be convex at x0 (see also Mangasarian
(1969)). If f is semilocally convex at each x0 ∈ X, then f is said to be semilocally convex on
X. Obviously, every convex function is semilocally convex, but the converse does not hold.

Example 13. Consider the function f : R −→ R defined by

f(x) =

{
x2, for x < 0

0, for x > 0.

This function is semilocally convex on R� {0} , but it is not convex on the same set (which
is not convex!).

Theorem 25. (Ewing). Let f : X ⊂ Rn −→ R be semilocally convex at x0 ∈ X. Then
D+f(x0;x− x0) exists and

f(x)− f(x0) = D+f(x0;x− x0), ∀x ∈ X.

Kaul and Kaur (1982a) introduce also the notion of semilocally quasiconvex functions and
semilocally pseudoconvex functions and investigate some properties of these classes of functions.

Definition 20. Let be f : X −→ R, X ⊂ Rn; then f is said to be semilocally quasiconvex at
x0 ∈ X if X is locally star-shaped at x0 and corresponding to x0 and each x ∈ X, there exists
a positive number d(x0, x) 5 a(x0, x) 5 1 (refer Definition 18) such that{

f(x)− f(x0), 0 < λ < d(x0, x)
}

=⇒ f((1− λ)x0 + λx) 5 f(x0).

If d(x0, x) = a(x0, x) = 1 for each x ∈ X, then f is said to be quasiconvex at x0 ∈ X (see
Mangasarian (1969)) and if f is semilocally quasiconvex at every x0 ∈ X, then f is semilocally
quasiconvex on X.
Theorem 26. (Kaul and Kaur). Let be f : X −→ R, with X ⊂ Rn and x0 ∈ X. If
D+f(x0;x− x0) exists for all x ∈ X and if f is semilocally quasiconvex at x0, then

f(x)− f(x0) 5 0 =⇒ D+f(x0;x− x0) 5 0.

It is useful to remark that every quasiconvex function is semilocally quasiconvex, but the
vice-versa does not hold.

Example 14. The function f : R −→ R defined by

f(x) =

{
1, for x = 0

0, for x 6= 0

is semilocally quasiconvex on R, but not quasiconvex on R.
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Definition 21. Let be f : X −→ R, withX ⊂ Rn and x0 ∈ X; then f is said to be semilocally
pseudoconvex at x0 if for every x ∈ X, the right-sided directional derivative D+f(x0;x − x0)
exists for all x ∈ X and

D+f(x0;x− x0) = 0 =⇒ f(x)− f(x0) = 0.

If f is pseudoconvex on X (in the usual sense of Mangasarian), then f is semilocally
pseudoconvex on X, but the vice-versa does not hold.

Example 15. The function f : R −→ R defined by f(x) = |x| is semilocally pseudoconvex
on R, but not pseudoconvex on R.

For other properties of the classes of generalized convex functions introduced above, the
reader is referred to Kaul and Kaur (1982a) and for applications to optimality conditions for a
nonlinear programming problem, to Kaul and Kaur (1982b, 1984), Kaul and Lyall (1988, 1990),
and to Preda, Stancu-Minasian and Batatorescu (1996), Yang (1994) and to Weir (1982). For
applications to multiple objective optimization problems (i. e. Pareto optimization problems),
see, e. g., Preda (1996), Mukherjee and Mishra (1996), Mukhherjee and Singh (1990).

4. Directional Derivatives in Unconstrained Optimization Problems
and in Set-Constrained Optimization Problems
We give first some definitions and properties concerning some local cone approximations

frequently used in optimization theory, of a set S ⊂ Rn at a point x0 ∈ S. Other local cone
approximations will be considered in Section 6, within a more general context. For more notions
on this subject the reader may consult Aubin and Frankowska (1990), Bazaraa and Shetty
(1976), Giorgi and Guerraggio (1992a,b, 2002), Giorgi, Guerraggio and Thierfelder (2004),
Palata (1989).

Definition 22. Let be S ⊂ Rn, S non empty, and x0 ∈ S.
a) The Bouligand tangent cone to S at x0 or contingent cone to S at x0 or cone of tangent
directions to S at x0 is given by

T (S, x0) =
{
y ∈ Rn : ∃tn −→ 0+, ∃yn −→ y such that x0 + tny

n ∈ S, ∀n
}
,

or, in terms of neighborhoods,

T (S, x0) =

{
y ∈ Rn : ∀N(y), ∀λ > 0, ∃t ∈ (0, λ), ∃ȳ ∈ N(y)

such that x0 + tȳ ∈ S

}
.

b) The radial tangent cone to S at x0 or cone of radial directions to S at x0 or cone of weakly
feasible directions to S at x0 is given by

WF (S, x0) =
{
y ∈ Rn : ∃tn −→ 0+ such that x0 + tny ∈ S, ∀n

}
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or, in terms of neighborhoods,

WF (S, x0) =
{
y ∈ Rn : ∀λ > 0, ∃t ∈ (0, λ) such that x0 + ty ∈ S

}
.

c) The cone of feasible directions to S at x0 or cone of radial interior directions to S at x0

is given by
F (S, x0) =

{
y ∈ Rn : ∃ε > 0, ∀t ∈ (0, ε) it holds x0 + ty ∈ S

}
.

d) The cone of interior displacements to S at x0 or cone of interior directions to S at x0 or
inner tangent cone to S at x0 is given by

I(S, x0) =
{
y ∈ Rn : ∃ε > 0, ∀t ∈ (0, ε), ∀z ∈ N(y, ε) it holds x0 + tz ∈ S

}
.

It is easy to note that the above defined sets are indeed cones and that the following
inclusion relations hold:

I(S, x0) ⊂ F (S, x0) ⊂ WF (S, x0) ⊂ T (S, x0).

We note also that 0 ∈ F (S, x0) and hence 0 ∈ WF (S, x0) and 0 ∈ T (S, x0), whereas
I(S, x0) may be empty. If x0 ∈ int(S), all these cones coincide with the whole space Rn.
Moreover, if N(x0) is a neighborhood of x0, then T (S, x0) = T (S ∩N(x0), x0). Similarly for the
other cones of Definition 22. In general these cones are not convex.

Example 16. Let be

S1 =
{

(x1, x2) ∈ R2 : x1 = 0,−(x1)2 5 x2 <
√
x1

}
.

Let be x0 = (0, 0)>. We have

F (S1, x
0) = WF (S1, x

0) =
{

(y1, y2) ∈ R2 : y1 > 0, y2 = 0
}
∪ {(0, 0)} .

T (S1, x
0) = R2

+.

I(S1, x
0) =

{
(y1, y2) ∈ R2 : y1 > 0, y2 > 0

}
.

Example 17. Let be

S2 =
{

(x1, x2) ∈ R2 : x1 = 0, x2 = −(x1)2 or x2 =
√
x1

}
.

Let be x0 = (0, 0). We have I(S2, x
0) = ∅.

Theorem 27. T (S, x0) is a closed cone, I(S, x0) is an open cone, whereas WF (S, x0) and
F (S, x0) have not such topological properties.

Theorem 28. Let S ⊂ Rn be a nonempty convex set. Then it holds:
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(i)
I(S, x0) = cone

[
int(S)− x0

]
;

(ii)
WF (S, x0) = F (S, x0) = cone(S − x0);

(iii)
T (S, x0) = cl

[
cone(S − x0)

]
.

If, moreover, int(S) 6= ∅, then
(iv)

I(S, x0) = int(T (S, x0));

T (S, x0) = cl(I(S, x0)).

Theorem 29. Let be given A ⊂ Rn and B ⊂ Rn, with A ∩ B 6= ∅; let be x0 ∈ A ∩ B. It
holds

F (A, x0) ∩ F (B, x0) = F (A ∩B, x0);

I(A, x0) ∩ I(B, x0) = I(A ∩B, x0);

WF (A, x0) ∩ F (B, x0) ⊂ WF (A ∩B, x0);

T (S, x0) ∩ I(B, x0) ⊂ T (A ∩B, x0).

Finally, we note that it is possible to characterize the Bouligand tangent cone T (S, x0) by
means of the lower Dini directional derivative of the distance function. We recall that, given a
set S ⊂ Rn and a point x ∈ Rn, the distance function x −→ dS(x) is defined by

dS(x) = inf
y∈S
‖x− y‖ , x ∈ Rn,

being inf(∅) = +∞.
Theorem 30. It holds

T (S, x0) =

{
y ∈ Rn : lim inf

t−→0+

dS(x0 + ty)

t
= 0

}
.

Now we consider an unconstrained minimization problem, i. e. the problem

(P ) : min f(x), x ∈ X ⊂ Rn,

where either X is an open set or X is arbitrary and x0 ∈ int(X), with x0 optimal point for (P ).
The following result is now quite classical. See, e. g., Ben-Tal and Zowe (1985), Demyanov and
Rubinov (1995).

Theorem 31. Let x0 be a local solution of problem (P ) and let f admit the (finite) right-
sided directional derivative D+f(x0; v) for all directions v ∈ Rn. Then it holds

D+f(x0; v) = 0, ∀v ∈ Rn. (7)

26



This result is an immediate consequence of the definition of D+f(x0; v). Some authors
call a point x0 satisfying (7) an “inf-stationary point of f on X”. A “sup-stationary point”is
defined in a similar way. Obviously, if the (bilateral) directional derivative Df(x0; v) exists for
all v ∈ Rn, from the fact that x0 is a local solution of (P ) it follows Df(x0; v) = 0, ∀v ∈ Rn.
The same holds if f is Gâteaux differentiable at x0 : we have ∇f(x0)>v = 0, ∀v ∈ Rn, i. e.
∇f(x0 = 0 ∈ Rn.

It is possible, following Demyanov and Pevnyi (1974) and Hiriart-Urruty (1982), to define
also a second-order one-sided directional derivative:

D2+f(x0; v) = lim
t−→0+

f(x0 + tv)− f(x0)− tD+f(x0; v)

t2
,

provided that this limit exists (finite or not). Then, we have the following refinement of Theorem
31: if x0 is a local solution of (P) and D+f(x0; v) and D2+f(x0; v) exist (finite) for all v ∈ Rn,
then we have

D+f(x0; v) = 0, ∀v ∈ Rn

and
D+f(x0; v) = 0 =⇒ D2+f(x0; v) = 0.

For other questions and applications of second-order directional derivatives to nonsmooth
optimization problems, see, e. g., Huang and Ng (1994), Huang (2005), Studniarski (1991),
Yang (1996, 1999). Also for this topic the literature bis abundant.

A famous error of J. L. Lagrange is contained in his claim that if a smooth function
f : Rn −→ R has all its directional derivatives at a point x0, that are nonnegative for all
directions, then x0 is a local minimum point for f. Only at the end of the 18th century Giuseppe
Peano gave the following counterexample. Take f : R2 −→ R, with

f(x1, x2) = (x2 − 2(x1)2)(x2 − (x1)2),

and consider x0 = (0, 0). This function satisfies at x0 the assumptions of Lagrange, but it
changes its sign on every neighborhood of x0, hence x0 cannot be a local minimizer for f. In
order to obtain suffi cient (first-order) optimality conditions for (P), we have to make further
assumptions.

Theorem 32. Let f : X ⊂ Rn −→ R be locally Lipschitz at x0 ∈ X. If

D+f(x0; v) > 0, ∀v ∈ Rn, v 6= 0,

then x0 is a strict local minimizer for (P).

We shall give the proof under a more general assumption (Theorem 35).
We now revert to convex optimization, i. e. in problem (P ) the function f isa convex on

the open convex set X ⊂ Rn.We recall that in this case D+f(x0; v) exists finite for all v ∈ Rn.
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Theorem 33. Let X ⊂ Rn be an open convex set and f : X −→ R a convex function; let
x0 ∈ X. Then the following assertions are equivalent.
(a) f admits a local minimum point at x0;

(b) f admits a global minimum point at x0;

(c) It holds 0 ∈ ∂f(x0);

(d) It holds D+f(x0; v) = 0, ∀v ∈ Rn.

Proof. The relations (a) ⇐⇒ (b) =⇒ (d) are evident. The implication (d)=⇒(c) follows
from Theorem 15. The implication (c)=⇒(b) follows at once from the definition of subdifferen-
tial of f at x0 : the inequality f(x)− f(x0) = s>(x− x0), ∀x ∈ X, when s = 0 gives condition
(b). �

Theorem 31 can be generalized by using other types of (more general) directional deriv-
atives. As a consequence of a general result of Elster and Thierfelder (1988b) we have the
following necessary optimality conditions for (P ). See also Section 6 of the present paper.

Theorem 34. Let x0 be a local solution for problem (P ). Then it holds

fD
+

(x0; v) = 0, ∀v ∈ Rn,

or also the sharper condition
fD+(x0; v) = 0, ∀v ∈ Rn.

Or also, in terms of Hadamard directional derivatives,

fH
+

(x0; v) = 0, ∀v ∈ Rn,

or also the sharper condition
fH+(x0; v) = 0, ∀v ∈ Rn.

We recall that if f is locally Lipschitz, then the Dini and the correspondent Hadamard
directional derivatives are finite and coincide (see Aubin and Cellina (1984)).

Now we turn to suffi cient first-order optimality conditions for (P ) in terms of Dini direc-
tional derivatives. See, e. g., Qi (2001), Demyanov and Rubinov (1995).

Theorem 35. Suppose that in problem (P ) f : X −→ R is a locally Lipschitz function. If
it holds

fD+(x0; v) > 0, ∀v ∈ Rn, v 6= 0,

then x0 is a strict local minimizer for (P ).

Proof. By assumption, there exist a neighborhood N(x0) and a constant L = 0 such that,
for any x, y ∈ N(x0)

|f(x)− f(y)| 5 L ‖x− y‖ .
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Ab absurdo, assume that x0 is not a strict local minimum point of f. Then, there exists a
sequence

{
xk
}
⊂ N(x0) such that xk −→ x0, but xk 6= x0 and f(xk) 5 f(x0) for all k.Without

loss of generality, assume that {
(xk − x0)�

∥∥xk − x0
∥∥} −→ v.

Then ‖v‖ = 1. Let be
yk ≡ x0 + v

∥∥xk − x0
∥∥ .

Then, ∥∥yk − x0
∥∥ =

∥∥xk − x0
∥∥

and ∣∣f(yk)− f(xk)
∣∣ 5 L

∥∥yk − xk∥∥ = L
∥∥xk − x0

∥∥∥∥∥∥ xk − x0

‖xk − x0‖ − v
∥∥∥∥ .

This implies that

lim
k−→∞

f(yk)− f(x0)

‖xk − x0‖ 5 lim
k−→∞

f(yk)− f(xk)

‖xk − x0‖ 5 lim
k−→∞

L

∥∥∥∥ xk − x0

‖xk − x0‖ − v
∥∥∥∥ = 0.

This shows that the Dini lower directional derivative of f at x0 in the direction v is
nonpositive, contradicting the assumption. �

Analogously the upper Dini directional derivative can be used to obtain suffi cient conditions
for a maximum. We remark finally that if

fD+(x0; v) = 0, ∀v ∈ Rn

and if f is lower Dini-pseudoconvex (Definition 16) on the open convex set X ⊂ Rn, then x0 is
a global minimizer of f over X.

If in (P ) the objective function f is not locally Lipschitz, then in order to obtain first-order
suffi cient local optimality conditions in terms of directional derivatives, it is possible to use the
Hadamard directional derivative. See Demyanov and Rubinov (1995, page 236), Studniarski
(1986).

Theorem 36. Let be given f : X ⊂ Rn −→ R, X open and x0 ∈ X; if

fH+(x0; v) > 0, ∀v ∈ Rn, v 6= 0,

then x0 is a strict local minimum point for (P ).

Note that in the above theorem the function is not assumed to be locally Lipschitz, nor
continuous. If f is locally Lipschitz on X, then Theorem 36 collapses to Theorem 35, being,
under the said assumption, fD+(x0; v) = fH+(x0; v). Note that all the first-order suffi cient
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conditions for the strict optimality of x0 in problem (P ) have an inevitable nonsmooth nature.
In the smooth case they would make no sense.

Now we consider a constrained minimization problem with a set constraint (or abstract
constraint), i. e.

(P0) : min f(x), x ∈ S ⊂ X ⊂ Rn,

where S is a closed subset of the open set X. When f is differentiable on X and x0 is a local
minimizer of f over S, then a well known necessary optimality condition for (P0) is

∇f(x0)>y = 0, ∀y ∈ T (S, x0),

or, equivalently,
−∇f(x0) ∈ (T (S, x0))∗,

where (T (S, x0))∗ is the (negative) polar cone of T (S, x0). The following necessary optimality
conditions for (P0) are due to D. E. Ward (1987) and are special cases of a more general result.

Theorem 37. Let x0 ∈ S be a local solution for (P0). Then we have

i)

fH
+

(x0; y) = 0, ∀y ∈ T (S, x0);

ii)
fH+(x0; y) = 0, ∀y ∈ I(S, x0);

iii)

fD
+

(x0; y) = 0, ∀y ∈ WF (S, x0);

iv)
fD+(x0; y) = 0, ∀y ∈ F (S, x0).

We recall that if f is locally Lipschitz on the open set X ⊂ Rn, then

fH
+

(x0; y) = fD
+

(x0; y)

and
fH+(x0; y) = fD+(x0; y).

(See, e. g., Aubin and Cellina (1984)).
We now assume that f is locally Lipschitz on X. We have also the following result (see

Castellani and Pappalardo (1995)).

Theorem 38. Assume that in (P0) the objective function f is locally Lipschitz on the open
set X ⊂ Rn and that x0 ∈ S is a local solution for (P0). Then we have

fD
+

(x0; y) = 0, ∀y ∈ T (S, x0).
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Moreover, being fD
+

(x0; y) = fD+(x0; y), we have also the more accurate necessary optimality
condition

fD+(x0; y) = 0, ∀y ∈ T (S, x0).

Obviously, under the assumptions of Theorem 38, if f is right-sided directionally differen-
tiable at x0, then we have

D+f(x0; y) = 0, ∀y ∈ T (S, x0).

Under the assumptions of Theorem 37, if D+f(x0; y) exists (finite) for all y ∈ WF (S, x0),
then we have

D+f(x0; y) = 0, ∀y ∈ WF (S, x0)

and if f is Gâteaux differentiable at x0, then we have

∇f(x0)>y = 0, ∀y ∈ (WF (S, x0))∗∗,

where (WF (S, x0))∗∗ is the bipolar cone ofWF (S, x0). Indeed, in this case we have∇f(x0)>y =
0, ∀y ∈ WF (S, x0). But from the linearity we obtain also the last written inequality with the
bipolar cone, a sharper result, as, for any set S ⊂ Rn, it always holds S ⊂ S∗∗ (see, e. g.,
Ben-Israel (1969), Uzawa (1958a)).

For what concerns first-order suffi cient optimality conditions for (P0), we have some nice
results, due to Correa and Hiriart-Urruty (1989), Penot (1984) and Studniarski (1986).

Theorem 39. Let x0 ∈ S in problem (P0). If

fH+(x0; y) > 0, ∀y ∈ T (S, x0), y 6= 0,

then x0 is a strict local minimizer for (P0).

It can be proved that the above condition assures that x0 is also an isolated local minimum
point of order 1, i. e. there exist α > 0 and N(x0) such that

f(x) > f(x0) + α
∥∥x− x0

∥∥ , ∀N(x0) ∩ S.

If we assume that f is locally Lipschitz on X, then the thesis of Theorem 39 holds under
the condition

fD+(x0; y) > 0, ∀y ∈ T (S, x0), y 6= 0.

Always under the assumption that f is locally LIpschitz on X, then

D+f(x0; y) > 0, ∀y ∈ T (S, x0), y 6= 0,

is a suffi cient condition for the strict local optimality of x0 for (P0).
A “converse”of Theorem 39 is provided by Studniarski (1986).

Theorem 40. Let x0 ∈ S in problem (P0). If x0 is an isolated local minimum point of order
1, then

fH
+

(x0; y) > 0, ∀y ∈ T (S, x0), y 6= 0.
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Now suppose that in (P0) f is convex on the open convex set X ⊂ Rn and that S is
convex. Then we have the following result.

Theorem 41. Let be in (P0) the set S ⊂ X a nonempty convex set and let X ⊂ Rn be an
open convex set. Let f : X −→ R be convex onX. Then the following properties are equivalent.
(a) x0 is a global minimum point of f over S.
(b) x0 is a local minimum point of f over S.
(c) It holds D+f(x0;x− x0) = 0, ∀x ∈ S.
Proof. We recall that, being f convex overX, the right-sided directional derivativeD+f(x0; y)
exists finite for every y ∈ Rn. The equivalence (a) ⇐⇒ (b) is well known. The implication
(b)=⇒(c) stems form Theorem 38 and Theorem 28. The implication (c)=⇒(a) follows from
the convexity of f :

D+f(x0;x− x0) 5 f(x)− f(x0), ∀x ∈ S. �
Theorem 41 is often given in terms of the subdifferential of f at x0 : see, e. g., Rockafellar

(1970), Dhara and Dutta (2012), Durea and Strugariu (2014). If we impose another suitable
inequality on the Dini directional derivatives of f, we can obtain suffi cient global optimality
conditions for (P0), without assuming that f is convex or generalized convex. The following
result is due to Correa and Hiriart-Urruty (1989).

Theorem 42. Assume that in (P0) the set S ⊂ X is convex and that f : X −→ R is
continuos on X. A suffi cient condition for x0 ∈ S to be a global minimum point of f on S is
that

fD+(x;x0 − x) 5 0, ∀x ∈ S.
If, moreover, the above inequality is strict, whenever x ∈ S� {x0} , then x0 is a strict

global minimum point of f on S.

Note that in Theorem 42 the Dini lower directional derivative is taken at the (variable)
point x, not at the point x0. Theorem 42 is a nonsmooth generalization of a result of Boisko
(1986) for the differentiable case.

5. Directional Derivatives in Optimization Problems with
Functional Constraints
Optimality conditions in terms of subdifferentials or directional derivatives for a con-

strained convex optimization problem (i. e. a constrained optimization problem with convex
objective function and convex constraints) have been obtained since the beginning of mod-
ern Convex Analysis and modern Nonsmooth Calculus. The reader is referred to the works
quoted at the beginning of the previous section. Let us consider, for example, the following
mathematical programming problem.

(P1) :


min f(x)

subject to: gi(x) 5 0, i = 1, ...,m,

x ∈ X ⊂ Rn,
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where f : X −→ R and every gi : X −→ R, i = 1, ...,m, are convex on the open convex set
X ⊂ Rn. The feasible set of (P1) is denoted by K :

K = {x ∈ X : gi(x) 5 0, i = 1, ...,m} .

If x0 ∈ K, the set of the indices of the active constraints at x0 is denoted by I(x0) :

I(x0) =
{
i : gi(x

0) = 0
}
.

In terms of (unilateral) directional derivatives, under the assumptions made above, we
have the following Fritz John-type necessary optimality conditions.

Theorem 43. If x0 ∈ K is a local solution of the convex problem (P1), then there exist
multipliers u0 = 0, u1 = 0, ..., um = 0, not all zero, such that

u0D
+f(x0; v) +

m∑
i=1

uiD
+gi(x

0; v) = 0, ∀v ∈ Rn;

uigi(x
0) = 0, i = 1, ...,m.

We recall that, under our assumptions, the right-sided directional derivatives which appear
in the above inequality, exist finite at every point of the open convex set X ⊂ Rn. In order
to obtain that in Theorem 43 the multiplier u0 is positive, i. e. u0 = 1, we must impose
some constraint qualification. Under our assumptions, the most natural and simple constraint
qualification is the Slater c. q.:

• There exists a point x̄ ∈ K such that gi(x̄) < 0, i ∈ I(x0).

Theorem 44. Let x0 ∈ K be a local solution of the convex problem (P1) and let the Slater
c. q. be verified. Then there exist multipliers u1 = 0, ..., um = 0 such that the following
Karush-Kuhn-Tucker-type necessary optimality conditions hold:

D+f(x0; v) +

m∑
i=1

uiD
+gi(x

0; v) = 0, ∀v ∈ Rn;

uigi(x
0) = 0, i = 1, ...,m.

Theorems 43 and 44 will be proved further, under more general assumptions.

Remark 5. If in the convex problem (P1), besides the functional constraints, we have also
a set constraint, i. e. x ∈ C ⊂ X, where C is a closed convex set, the Fritz John conditions of
Theorem 43 are expressed as follows: there exist multipliers u0 = 0, u1 = 0, ..., um = 0, not all
zero, such that

u0D
+f(x0;x− x0) +

m∑
i=1

uiD
+gi(x

0;x− x0) = 0, ∀x ∈ C;
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uigi(x
0) = 0, i = 1, ...,m.

Similarly for Theorem 44, under the Slater constraint qualification:

• There exists x̄ ∈ C such that gi(x̄) < 0, i ∈ I(x0).

One of the first authors to consider explicitly nonconvex nonsmooth constrained optimiza-
tion problems of the type (P1), has been B. N. Pshenichnyi (1971). If we consider, as almost
always usual in the present paper, a real-valued function f : X ⊂ Rn −→ R, where X is
an open set, then f is said to be quasi-differentiable at x0 ∈ X in the sense of Pshenichnyi,
if D+f(x0; v) exists (finite) for all v ∈ Rn and there exists a nonempty closed convex subset
Mf(x0) ⊂ Rn such that

D+f(x0; v) = max
y∈Mf(x0)

{
y>v

}
, ∀v ∈ Rn.

The setMf(x0) is also called the quasi-differential of f at x0.Hence the quasi-differentiability
condition of Pshenichnyi imposes that the function v −→ D+f(x0; v) is convex for every v ∈ Rn.
Obviously, a convex function on the open convex set X ⊂ Rn is quasi-differentiable on X, with
Mf(x0) = ∂f(x0), however a function may be quasi-differentiable in the sense of Pshenichnyi,
i. e. D+f(x0; v) is convex, ∀v ∈ Rn, without being itself convex.
Example 18. The function f : R −→R defined by

f(x) =


x+ x2 sin 1

x
, for x > 0;

0, for x = 0;

x2 sin 1
x
, for x < 0,

is not convex, however at x0 = 0 has a right-sided directional derivative

D+f(x0; v) =

{
v, for v > 0,

0, for v 5 0,

which is convex for v ∈ R.
We consider now (P1) under the assumptions that f and every gi, i = 1, ...,m, admit at

x0 ∈ K finite and convex right-sided directional derivatives, with respect to every direction
v ∈ Rn, and that the constraints gi, i /∈ I(x0), are continuous at x0. The weaker assumption
that the directional derivatives are finite and convex, in the direction v, on a convex cone
C(x0) ⊂ Rn, requires only formal variants in what follows.

Let be x0 ∈ K; the generalized linearizing cone at x0 for the above problem (P1) is defined
as

L(x0) =
{
v ∈ Rn : D+gi(x

0; v) 5 0, ∀i ∈ I(x0)
}
.

Now we fit to (P1) the approach adopted by Berge and Ghouila-Houri (1965) for the
differentiable case. We define therefore the following problems.
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(P2) (Local minimum problem along directions). Find x0 ∈ K such that for every v ∈ Rn
there exists λ0 > 0 such that{

x0 + λv ∈ K, λ ∈ (0, λ0]
}

=⇒ f(x0 + λv) = f(x0).

(P3) (Feasible directions problem). Find a point x0 ∈ K such that

v ∈ L(x0) =⇒ D+f(x0; v) = 0.

(P4) (Generalized Karush-Kuhn-Tucker problem). Find a pair (x0, u0) ∈ K × Rm+ such that

D+f(x0; v) +
∑
i∈I(x0)

u0
iD

+gi(x
0; v) = 0, ∀v ∈ Rn,

u0
i gi(x

0) = 0, i = 1, ...,m.

(P5) (Saddle points problem). Find a pair (x0, u0) ∈ X × Rm+ such that, with L(x, u) =
f(x) +

∑m
i=1 uigi(x), it holds

L(x0, u) 5 L(x0, u0) 5 L(x, u0), ∀(x, u) ∈ X × Rm+ .

For the developments of our analysis we need two preliminary lemmas. The first result
is due to Fan, Glicksberg and Hoffman (1957) and may be considered a generalization to the
nonlinear (convex) case of the theorem of the alternative of Gordan (see Mangasarian (1969)).

Lemma 1. Let be S ⊂ Rn a nonempty convex set and let f : S −→ Rm be convex. Then,
either the system 

f1(x) < 0
...

fm(x) < 0

has a solution x ∈ S, or it holds

p1f1(x) + p2f2(x) + ...+ pmfm(x) = 0, ∀x ∈ S,

for some p1 = 0, p2 = 0, ..., pm = 0, not all zero, but never both.

Lemma 2. If x0 ∈ K is a local solution of (P1), then the system{
D+f(x0; v) < 0

D+gi(x
0; v) < 0, i ∈ I(x0),

admits no solution v ∈ Rn.
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Proof. Ab absurdo let us suppose that the system admits a solution v̄ ∈ Rn. Let us consider
the constraints gi, with i /∈ I(x0). Being these constraints continuous at x0, there will exist a
suffi ciently small number, say λ0 > 0, such that

gi(x
0 + λv̄) < 0, ∀i /∈ I(x0), λ ∈ (0, λ0] .

For i ∈ I(x0), it is possible to find λ0 > 0 such that

gi(x
0 + λv̄) < 0, ∀i ∈ I(x0), λ ∈ (0, λ0] ,

being
gi(x

0 + λv̄) = λD+gi(x
0 + λv̄) + o(λ), for λ −→ 0+.

Similarly, for the objective function we can find λ0 > 0 such that

f(x0 + λv̄)− f(x0) < 0, λ ∈ (0, λ0] . (8)

So we have found a point x0 + λv̄ ∈ K such that (8) holds, in contradiction with the local
optimality of x0 on K. �

The following result is a generalization of the well known Fritz John Theorem to a nonlinear
programming problem of the type (P1), where the related functions are endowed with (finite)
convex right-sided directional derivatives.

Theorem 45. Let in (P1) the directional derivatives D+f(x0; v) and D+gi(x
0; v), i ∈ I(x0),

be convex in v for all v ∈ Rn. If x0 is a local solution of (P1), then there exist numbers p̄0 = 0,
p̄i = 0, i ∈ I(x0), not all zero, such that

p̄0D
+f(x0; v) +

∑
i∈I(x0)

p̄iD
+gi(x

0; v) = 0, ∀v ∈ Rn;

p̄igi(x
0) = 0, i = 1, ...,m.

Proof. It is suffi cient to apply Lemma 2 and subsequently Lemma 1. By choosing p̄i = 0,
i /∈ I(x0), we obtain the second part of the thesis. �

Note that the convexity assumption of D+gi(x
0; v) with respect to v, is required only

for the active constraints at x0. Obviously Theorem 45 applies also to the convex case: we
recall that a convex function on an open convex set X ⊂ Rn, has finite (right-sided) sublinear
directional derivatives on X, for every direction v ∈ Rn. Note, moreover, that if the functions
involved in (P1) are Gâteaux differentiable at x0, then we have the usual Fritz John conditions

p̄0∇f(x0) +
∑
i∈I(x0)

p̄i∇gi(x0) = 0 ∈ Rn,

p̄igi(x
0) = 0, i = 1, ...,m.
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In order to obtain Karush-Kuhn-Tucker-type necessary optimality conditions for (P1),
expressed by (right-sided) directional derivatives, we have to consider some constraint qualifi-
cations. For example:

• (CQ)1 : Slater constraint qualification. The constraints gi, i = 1, ...,m, are convex on the
open convex set X ⊂ Rn and there exists x̄ ∈ K, with gi(x̄) < 0, ∀i = 1, ...,m.

• (CQ)2 : Karlin constraint qualification. The functions gi, i = 1, ...,m, are convex on the
open convex set X ⊂ Rn and for every vector p ∈ Rm+ , p 6= 0, there exists x̄ ∈ Rn such that

m∑
i=1

pigi(x̄) < 0.

It is well known (see, e. g., Mangasarian (1969)) that the two above constraint qualifications
are equivalent: it is suffi cient to apply Lemma 1. Other two constraint qualifications which do
not require convexity assumptions on the constraints are the following ones.

• (CQ)3. The directional derivatives D+gi(x
0; g), i ∈ I(x0), are convex in v, for all v ∈ Rn,

and there exists v̄ ∈ Rn such that

D+gi(x
0; v̄) < 0, ∀i ∈ I(x0).

• (CQ)4. The directional derivatives D+gi(x
0; g), i ∈ I(x0), are convex in v, for all v ∈ Rn

and for all ui = 0, i ∈ I(x0), ui not all zero, there exists v̄ ∈ L(x0) with∑
i∈I(x0)

uiD
+gi(x

0; v̄) < 0.

Being (CQ)1 ⇐⇒ (CQ)2, we have also (CQ)3 ⇐⇒ (CQ)4. Then we have (CQ)1 =⇒
(CQ)3 : being gi, i = 1, ...,m, convex, also D+gi(x

0; v) is a convex function of v ∈ Rn, for
i = 1, ...,m. Choose v̄ = x̄− x. For each i ∈ I(x0) we have

D+gi(x
0; v̄) = lim

λ−→0+

gi(x
0 + λ(x̄− x0)− gi(x0)

λ
5

5 lim
λ−→0+

λgi(x̄) + (1− λ)gi(x
0)− gi(x0)

λ
= gi(x̄) < 0.

It is now possible to obtain a Karush-Kuhn-Tucker-type necessary optimality condition
for (P1).

Theorem 46. Let in (P1) the directional derivatives D+f(x0; v), D+gi(x
0; v), i ∈ I(x0), be

convex in v, for all v ∈ Rn. If x0 ∈ K is a local solution of (P1) and one of the above constraint
qualifications is satisfied, then there exists a vector u0 ∈ Rm+ such that the pair (x0, u0) is
solution of problem (P4).
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Proof. From Theorem 45 there exist multipliers p̄0 = 0, p̄i = 0, i ∈ I(x0), not all zero, such
that

p̄0D
+f(x0; v) +

∑
i∈I(x0)

p̄iD
+gi(x

0; v) = 0, ∀v ∈ Rn.

Let us suppose that (CQ)4 holds and suppose that in the above inequality it holds p̄0 = 0.
Then we have ∑

i∈I(x0)

p̄iD
+gi(x

0; v) = 0, ∀v ∈ Rn,

being p̄i = 0, i ∈ I(x0), not all zero. This is in contradiction with (CQ)4, hence p̄0 > 0 and
with the choice

u0
i =

p̄i
p̄0

, i ∈ I(x0)

we obtain
D+f(x0; v) +

∑
i∈I(x0)

u0
iD

+gi(x
0; v) = 0, ∀v ∈ Rn.

Then, by choosing u0
i = 0 for i /∈ I(x0), we have that (x0, u0) is solution of (P4). �

Theorem 47. If the pair (x0, u0) is solution of (P5), then it is also solution of (P4).

Proof. By assumption, we have

f(x0) +
∑m

i=1 uigi(x
0) 5 f(x0) +

∑m
i=1 u

0
i gi(x

0) 5 f(x) +
∑m

i=1 u
0
i gi(x),

∀(x, u) ∈ X × Rm+ .

From these inequalities it follows (see, e. g., Mangasarian (1969))

m∑
i=1

u0
i gi(x

0) = 0

and hence also gi(x0) 5 0, i = 1, ...,m. On the other hand we have

L(x0 + λv, u0) = L(x0, u0), ∀v ∈ Rn, ∀λ > 0.

Hence
L(x0 + λv, u0)− L(x0, u0)

λ
= 0, ∀v ∈ Rn.

For λ −→ 0+ we have that the pair (x0, u0) is solution of (P4). �
Theorem 48. Let in (P1) the objective function f and every constraint gi, i = 1, ...,m, be
convex on the open convex set X ⊂ Rn. If (x0, u0) is a solution of (P4), then (x0, u0) is also a
solution of (P5).
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Proof. It is suffi cient to choose v = x − x0 and take into account the convexity of f and
each gi, i = 1, ...,m :

f(x0 + λv)− f(x0) 5 λf(x) + (1− λ)f(x0)− f(x0) =

= λ
[
f(x)− f(x0)

]
, λ ∈ (0, 1), x ∈ X

and hence
D+f(x0; v) 5 f(x)− f(x0), ∀x ∈ X.

In correspondence it holds

D+gi(x
0; v) 5 gi(x)− gi(x0), ∀i = 1, ...,m, ∀x ∈ X.

Being (x0, u0) solution of (P4), it holds

0 5 D+f(x0; v) +
m∑
i=1

u0
iD

+gi(x
0; v) 5 f(x)− f(x0) +

m∑
i=1

[
gi(x)− gi(x0)

]
,

that is
L(x0, u0) 5 L(x, u0), ∀x ∈ X.

The inequality
L(x0, u) 5 L(x0, u0), ∀u ∈ Rm+ ,

follows immediately form the conditions

m∑
i=1

u0
i gi(x

0) = 0;
m∑
i=1

uigi(x
0) 5 0. �

Theorem 49. If (x0, u0) is solution of (P4), then x0 is also solution of (P3).

Proof. From the assumptions we have

D+f(x0; v) = −
∑
i∈I(x0)

u0
iD

+gi(x
0; v), ∀v ∈ Rn.

It follows
D+f(x0; v) = 0, ∀v ∈ L(x0). �

Theorem 50. Let the directional derivatives D+f(x0; v) and D+gi(x
0; v), i ∈ I(x0), be convex

in v for every v ∈ Rn. Suppose that the constraint qualification (CQ)3 is satisfied. If x0 ∈ K is
solution of (P3), then there exists u0 ∈ Rm+ such that (x0, u0) is solution of (P4).

Proof. By assumption, the system{
D+f(x0; v) < 0

D+gi(x
0; v) 5 0, i ∈ I(x0),
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has no solution v ∈ Rn. A fortiori the system{
D+f(x0; v) < 0

D+gi(x
0; v) < 0, i ∈ I(x0),

has no solution v ∈ Rn. By Lemma 1, there exist nonnegative multipliers, not all zero, u0,
u0

1, ..., u
0
m, such that

u0D
+f(x0; v) +

∑
i∈I(x0)

u0
iD

+gi(x
0; v) = 0, ∀v ∈ Rn.

But being (CQ)3 verified, it will be u0 = 1, i. e. (x0, u0), with u0
i = 0 for i /∈ I(x0), is

solution of (P4). �
Theorem 51. If x0 ∈ K is solution of (P3), then it is also solution of (P2).

Proof. Let us consider any direction v ∈ Rn. We have two cases.
a) v /∈ L(x0). Therefore it will exist an index i∗ ∈ I(x0) such that D+gi∗(x

0; v) > 0. For λ1

suffi ciently small we have then

gi∗(x
0 + λv) > gi∗(x

0) = 0, ∀λ ∈ (0, λ1] .

Therefore in this case x0 + λv ∈ K only for λ = 0, and trivially we have

f(x0 + λv) = f(x0).

b) v ∈ L(x0). We have therefore

D+f(x0; v) = 0

D+gi(x
0; v) 5 0, ∀i ∈ I(x0).

For λ2 suffi ciently small it follows, with λ v (0, λ2] ,

f(x0 + λv) = f(x0)

gi(x
0 + λv) 5 0, ∀i ∈ I(x0)

and also
gi(x

0 + λv) 5 0, ∀i /∈ I(x0).

Hence there exists λ∗ > 0 such that, for every v ∈ Rn it holds{
λ ∈ (0, λ∗] , x0 + λv ∈ K

}
=⇒ f(x0 + λv) = f(x0),

i. e. x0 is solution of (P2). �
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Remark 6. The assumption on the convexity of the (right-sided) directional derivatives
involved in (P1) can be weakened, but not completely skipped, if we wish to obtain a Fritz John
or a Karush-Kuhn-Tucker multipliers rule. A proposal of weakening the above assumption is
given by the class of preinvex functions: see Ben-Israel and Mond (1986) and Weir and Mond
(1988).

Definition 23. Let S ⊂ Rn be a nonempty set. The function ϕ : S −→ R is preinvex on S if
there exists an n-dimensional vector function η(x, y) : S × S −→ Rn such that, for all x, y ∈ S
and all λ ∈ [0, 1], we have

ϕ(y + λη(x, y)) 5 λϕ(x) + (1− λ)ϕ(y).

It can be shown (see Weir and Mond (1988)) that convex functions are preinvex, but the
converse does not hold. The main tool which allows a generalization of the previous results is
the following lemma, which is in turn a generalization of Lemma 1.

Lemma 3. Let S ⊂ Rn be a nonempty set and let f : S −→ Rm be preinvex on S, with
respect to η(·, ·), i. e. each component of f is preinvex on S, with respect to the same vector
function η(·, ·). Then, either the system

f1(x) < 0
...

fm(x) < 0

has a solution x ∈ S, or it holds

λ1f1(x) + ...+ λmfm(x) = 0, ∀x ∈ S,

with λ1 = 0, ..., λm = 0, not all zero, but never both.

Without any convexity (or generalized convexity) assumptions on the directional deriva-
tives of the functions involved in (P1), it is not in general possible to obtain multipliers rules of
the Fritz John-type or of the Karush-Kuhn-Tucker-type for (P1). However, it is possible to ob-
tain other types of multipliers rules. An interesting result has been obtained by Craven (2000),
by means of variable multipliers, i. e. multipliers which depend on the directions v ∈ Rn. See
also the papers of Dinh, Lee and Tuan (2005) and Dinh and Tuan (2003). More precisely, we
have the following necessary optimality conditions for (P1).

Theorem 52. Let be given problem (P1), where f and every gi, i = 1, ...,m, admit finite
right-sided directional derivatives at x0 ∈ K; moreover, let every gi, i /∈ I(x0), be continuous at
x0. If x0 ∈ K is a local solution of (P1), then for each direction v ∈ Rn, there exist multipliers
λ0(v) = 0, λ1(v) = 0, ..., λm(v) = 0, not all zero, such that

λ0(v)D+f(x0; v) +
∑m

i=1 λi(v)D+gi(x
0; v) = 0,

λi(v)gi(x
0) = 0, i = 1, ...,m.
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We again point out that the multiplier vector λ = [λ0, λ1, ..., λm] ∈ Rm+1 depends on the
direction v ∈ Rn, i. e. λ(·) : Rn −→ Rm+1

+ � {0} , with 0 ∈ Rm+1.

Another approach which avoids convexity assumptions on the functions involved in (P1)
or on their directional derivatives, is offered by Jeyakumar (1987) by means of what he calls
“approximately quasidifferentiable functions”.

Definition 24. A function f : X ⊂ Rn −→ R, X open set, is said to be approximately
quasidifferentiable at x0 ∈ X, if f is continuous in a neighborhood of x0 and if there exists a
convex compact subset Qf(x0) ⊂ Rn such that

fD
+

(x0; v) 5 max
y∈Qf(x0)

{
y>v

}
, ∀v ∈ Rn.

Jeyakumar calls Qf(x0) an approximate quasidifferential of f at x0. It must be noted
that an approximate quasidifferential at a point is not necessarily unique. It can be shown that
the class of approximately quasidifferentiable functions strictly contains the class of locally
Lipschitz functions and the class of quasidifferentiable functions (in the sense of Pshenichnyi).
The author proves the following Fritz John-type theorem for (P1).

Theorem 53. Consider problem (P1), with x0 ∈ K, X open set and with f and every
gi, i = 1, ...,m, approximately quasidifferentiable at x0. Denote by Qf(x0) and by Qgi(x0),
i = 1, ...,m, the related approximate quasidifferentials. If x0 is a local solution of (P1), then
there exist multipliers λ0 = 0, λ1 = 0, ..., λm = 0, not all zero, such that

0 ∈ λ0Qf(x0) +
m∑
i=1

λiQgi(x
0);

λigi(x
0) = 0, i = 1, ...,m.

Under an appropriate constraint qualification, then Jeyakumar (1987) obtain also for (P1)
a Karush-Kuhn-Tucker-type theorem. In the same paper also suffcient optimality conditions,
in terms of approximate quasidifferentials, are obtained. For further comments on the vari-
ous differentiability assumptions used to obtain multiplier rules for a nonlinear programming
problem, see, e. g., Blot (2016), Fernandez (1997), Giorgi and Zuccotti (2016), Halkin (1974),
Pourciau (1980).

Directional derivatives are also important in the study of stability and sensitivity of a
parametric nonlinear programming problem. Also for these topics the literature is abundant.
We recommend the classical books of Fiacco (1983a), and Shimitzu, Ishizuka and Bard (1997),
and the more advanced book of Bonnans and Shapiro (2000). The interested reader may consult
the following papers: Fiacco (1983b), Fiacco and Hutzler (1982), Gauvin and Dubeau (1982,
1984), Gauvin and Tolle (1977), Gauvin and Janin (1990), Gollan (1984), Hogan (1973), Janin
(1984), Kaul (1985), Rockafellar (1984), Ralph and Dempe (1995).
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We report only the following classical result, which maybe goes back to Uzawa (1958). See
also Gauvin (1980) and Horst (1984a,b).

Let us consider the nonlinear parametric programming problem
max f(x)

subject to: gi(x) 5 bi, i = 1, ...,m,

x ∈ X ⊂ Rn,

where f : X −→ R is concave on the open convex set X and every gi, i = 1, ...,m, is convex on
the same set X.

It can be shown that the optimal value function (or marginal function)

ϕ(b) ≡ max {f(x) : gi(x) 5 bi, i = 1, ...,m}

is concave on its domain

B ≡
{
b ∈ Rm : ∃x(b) such that f(x(b)) ≡ max

x
{f(x) | g(x) 5 b}

}
and that, under the said assumptions, the set

B0 ≡ {b ∈ Rm : ∃x̄ ∈ Rn such that g(x̄) < b}

is open and convex. Moreover, it holds, for b ∈ B ∩B0,[
∂ϕ

∂bi
(b)

]
+

5 yi(b) 5
[
∂ϕ

∂bi
(b)

]
−
,

where
[
∂ϕ
∂bi

(b)
]

+
and

[
∂ϕ
∂bi

(b)
]
−
are, respectively, the right-sided and the left-sided partial deriva-

tive of ϕ with respect to bi, and yi(b) is the i-th Lagrangian multiplier associated to the optimal
value x(b) which satisfies the saddle point conditions of the Lagrangian function.

6. The Axiomatic Approach of K.-H. Elster and J. Thierfelder to
Nonsmooth Optimization
As we have previously mentioned, starting from the 60’s and 70’s of the last century,

several mathematicians have studied the possibility to generalize the classical concepts of dif-
ferentiability (Gâteaux, Fréchet, Hadamard, etc.) in order to treat problems described by
nonsmooth functions. Besides the approaches of Rockafellar (1970) to convex functions and
of Pshenichnyi (1971), mentioned previously, it is worth mentioning the approaches of Clarke
(1983), Demyanov and Rubinov (1995), Mordukhovich (2006) and Rockafellar (1980, 1981),
that will not be treated in the present paper.

The variety of the various approaches, proposed to study nonsmooth functions and non-
smooth optimization problems, has led to define axiomatic constructions which include, as
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particular cases, several of the said above approaches. We briefly examine the axiomatic ap-
proach of K.-H. Elster and J. Thierfelder (1985, 1988a,b, 1989), but we point out also the
interesting approaches of Giannessi (1989, 2005) and Komlosi and Pappalardo (1994).

The approach of Elster and Thierfelder is based on an axiomatic definition of local cone
approximation of a set at a point. In a previous section we have introduced and used various
local cone approximations. Elster and Thierfelder give the following general axiomatic definition
(they consider a locally convex Hausdorffspace, but we continue to consider the Euclidean space
Rn). See also the papers of Giorgi and Guerraggio (2002), Ioffe (1986) and Ward (1987, 1988,
1989).

Definition 25. A map K : 2R
n × Rn −→ 2R

n
is a local cone approximation if for each set

S ⊂ Rn and each point x0 ∈ Rn a cone K(S, x0) is associated such as the following properties
are fulfilled:
1. K(S, x0) = K(S − x0, 0);

2. K(S ∩N(x0, ε), x0) = K(S, x0), ∀ε > 0;

3. K(S, x0) = ∅, ∀x0 /∈ cl(S);

4. K(S, x0) = Rn, ∀x0 ∈ int(S);

5. K(ϕ(S), ϕ(x0)) = ϕ(K(S, x0)), for any linear homeomorphism ϕ : Rn −→ Rn;

6. 0+S ⊂ 0+K(S, x0), ∀x0 ∈ cl(S), where

0+S = {y ∈ Rn : a+ ty ∈ S, ∀t > 0, ∀a ∈ S}

is the recession cone of S (see Rockafellar (1970)). Moreover, we set 0+∅ = Rn.
Theorem 54. The axioms 1.-6. are independent, i. e. for each axiom there exists a map
K(·, ·) whic fails exactly the said axiom and satisfies the remaining axioms.

Almost all local cone approximations used in optimization theory verify the previous ax-
ioms. We give below a list of the most used local cone approximations which are a particular case
of the axiomatic definition described above (some of these cones have already been presented
and used in the present paper). We adopt the various descriptions in terms of neighborhoods.

Definition 26. Let be S ⊂ Rn and x0 ∈ Rn.
• The cone

F (S, x0) =
{
y ∈ Rn : ∃δ > 0, ∀t ∈ (0, δ) : x0 + ty ∈ S

}
is called cone of feasible directions to S at x0.

• The cone
WF (S, x0) =

{
y ∈ Rn : ∀δ > 0 ∃t ∈ (0, δ) : x0 + ty ∈ S

}
is called cone of weakly feasible directions or radial tangent cone to S at x0.

• The cone

T (S, x0) =
{
y ∈ Rn : ∀δ > 0 ∃ȳ ∈ N(y, δ), ∃t ∈ (0, δ) : x0 + tȳ ∈ S

}
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is called Bouligand tangent cone or contingent cone to S at x0.

• The cone

I(S, x0) =
{
y ∈ Rn : ∃δ > 0, ∀ȳ ∈ N(y, δ), ∀t ∈ (0, δ) : x0 + tȳ ∈ S

}
is called cone of interior directions or cone of interior displacements to S at x0.

• The cone

A(S, x0) =
{
y ∈ Rn : ∀N(y) ∃λ > 0, ∀t ∈ (0, λ) ∃ȳ ∈ N(y) : x0 + tȳ ∈ S

}
is called cone of attainable directions or Kuhn-Tucker tangent cone or Ursescu tangent cone to
S at x0.

• The cone

Q(S, x0) =
{
y ∈ Rn : ∃N(y), ∀λ > 0, ∃t ∈ (0, λ), ∀ȳ ∈ N(y) : x0 + tȳ ∈ S

}
is called cone of quasi-interior directions to S at x0.

• The cone

T o(S, x0) =

{
y ∈ Rn : ∀N(y), ∃N(x0), ∃λ > 0, ∀t ∈ (0, λ),

∀x̄ ∈ N(x0) ∩ S ∪ {x0} , ∃ȳ ∈ N(y) : x̄+ tȳ ∈ S

}

is called Clarke tangent cone to S at x0.

• The cone

H(S, x0) =

{
y ∈ Rn : ∃N(x0), ∃λ > 0, ∀t ∈ (0, λ),

∀x̄ ∈ N(x0) ∩ S ∪ {x0} , : x̄+ ty ∈ S

}
is called Rockafellar hypertangent cone to S at x0.

• The cone

E(S, x0) =

{
y ∈ Rn : ∃N(y), ∃N(x0), ∃λ > 0, ∀t ∈ (0, λ),

∀x̄ ∈ N(x0) ∩ S ∪ {x0} , ∀ȳ ∈ N(y) : x̄+ tȳ ∈ S

}

is called cone of epi-Lipschitzian directions to S at x0

Remark 7. The descriptions of the cones T o(S, x0), H(S, x0) and E(S, x0) are slightly
different from the original definitions (see. e. g., Aubin and Frankowska (1990)), where the
point x̄ belongs to the set S∩N(x0). The present description, taken from Elster and Thierfelder
(1985, 1988a, b), allows to verify the third axiom of Definition 25. However, the consideration
of the set S ∩N(x0)∪{x0} does not involve the original behaviour of the map. More precisely,
Giorgi and Guerraggio (1992a) have shown that if x0 ∈ cl(S), the descriptions given in Definition
26 for T o(S, x0), H(S, x0) and E(S, x0) coincide with the original definitions.
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For a quick overview of the main properties of the cones previously defined, it is useful
the following scheme.

E(S, x0) ⊂ I(S, x0) ⊂ Q(S, x0)
∩ ∩ ∩

H(S, x0) ⊂ F (S, x0) ⊂ WF (S, x0)
∩ ∩ ∩

T o(S, x0) ⊂ A(S, x0) ⊂ T (S, x0)

With regard to this scheme the following assertions hold true.

• The cones of the first row are open and it holds

x0 ∈ int(S) ⇐⇒ 0 ∈ K(S, x0).

• The cones of the third row are closed and it holds

x0 ∈ cl(S) ⇐⇒ 0 ∈ K(S, x0).

The cones of the second row verify the property

x0 ∈ S ⇐⇒ 0 ∈ K(S, x0).

• The cones of the first column are convex; the cones of the second and third column are
isotone, i. e.

S1 ⊂ S2 =⇒ K(S1, x
0) ⊂ K(S2, x

0), ∀x0 ∈ Rn.

By means of the axiomatic characterization of a local cone approximation, always following
Elster and Thierfelder (1988a,b), but see also Ward (1987, 1988, 1989), it is possible to give
the following definition of generalized directional derivative.

Definition 27. Let be f : Rn −→ [−∞,+∞], x0 ∈ Rn such that |f(x0)| < +∞ and K(·, ·)
a local cone approximation, according to Definition 25. Then the function fK(x0; ·) : Rn −→
[−∞,+∞] defined by

fK(x0; y) = inf
{
β ∈ R : (y, β) ∈ (epi f, (x0f(x0)))

}
, ∀y ∈ Rn,

is called the K-directional derivative of f at x0. It is assumed inf(∅) = +∞.
It is worth noting that Bazaraa and Goode (1973) were perhaps the first authors to

notice the connection between the Dini directional derivatives and an appropriate local cone
approximation of the epigraph of f at (x0, f(x0)). It is quite immediate to remark that fK(x0; ·)
is positively homogeneous. Moreover, it can be proved that the topological properties of the
local cone approximation K(·, ·) are reflected on the K-directional derivatives, as described in
the following theorem, due to Elster and Thierfelder (1988b).
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Theorem 55. Let be f : Rn −→ R, x0 ∈ Rn and K(·, ·) a local cone approximation. Then:
(i) If K(epi f, (x0, f(x0))) is convex, then fK(x0; ·) is sublinear.
(ii) It holds

epi fK(x0; ·) =
{

(y, β) ∈ Rn × R : ∀ε > 0, (y, β + ε) ∈ K(epi f, (x0, f(x0)))
}
.

In particular, if K(epi f, (x0, f(x0))) is closed, it holds

epi fK(x0; ·) = K(epi f, (x0, f(x0)))

and fK(x0; ·) is lower semicontinuous.
(iii) It holds

epio fK(x0; ·) =
{

(y, β) ∈ Rn × R : ∀ε > 0, (y, β − ε) ∈ K(epi f, (x0, f(x0)))
}
,

where
epio fK(x0; y) =

{
(y, β) : fK(x0; y) < β

}
is the strict epigraph of the K-directional derivative.

In particular, if K(epi f, (x0, f(x0))) is open, it holds

epio fK(x0; y) = K(epi f, (x0, f(x0))

and fK(x0; ·) is upper semicontinuous.
By means of Definition 27 it is possible to get a family of generalized directional derivatives.

In particular, if we make use of the local cone approximations previously recalled, we obtain
the following results. We use the following notations, taken from Rockafellar (1980, 1981):

(x̄, α) ↓ x0 ⇐⇒ (x̄, α) −→ (x0, f(x0)) and α = f(x̄);

(x̄, α) ↑ x0 ⇐⇒ (x̄, α) −→ (x0, f(x0)) and α 5 f(x̄);

x̄ −→f x
0 ⇐⇒ (x̄, f(x̄)) −→ (x0, f(x0)).

Also the definitions of “lim sup inf”and “lim inf sup”operations are taken from Rockafellar
(1980, 1981). Let g : Rn −→ [−∞,+∞] and h : Rn × Rm −→ [−∞,+∞] extended real-valued
functions. We have

lim inf
ȳ−→y

g(ȳ) = sup inf
U(y), ȳ∈U(y)

g(ȳ);

lim sup
ȳ−→y

= inf sup
U(y), ȳ∈U(y)

g(ȳ);

lim sup inf
z̄−→z, ȳ−→y

h(ȳ, z̄) = sup inf sup inf
U1(y) U2(y) z̄∈U2(z) ȳ∈U1(y)

h(ȳ, z̄);
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lim inf sup
z̄−→z, ȳ−→y

h(ȳ, z̄) = inf sup inf sup
U1(y) U2(y) z̄∈U2(z) ȳ∈U1(y)

h(ȳ, z̄).

Let be f : Rn −→ [−∞,+∞] and x0 ∈ Rn. Then:
• The lower Hadamard directional derivative at x0 in the direction y ∈ Rn is

fH+(x0; y) = fT (x0; y) = lim inf
(ȳ,t)−→(y,0+)

f(x0 + tȳ)− f(x0)

t
, ∀y ∈ Rn.

• The upper Hadamard directional derivative at x0 in the direction y ∈ Rn is

fH
+

(x0; y) = f I(x0; y) = lim sup
(ȳ,t)−→(y,0+)

f(x0 + tȳ)− f(x0)

t
, ∀y ∈ Rn.

• The lower Dini directional derivative at x0 in the direction y ∈ Rn is

fD+(x0; y) = fWF (x0; y) = lim inf
t−→0+

f(x0 + ty)− f(x0)

t
, ∀y ∈ Rn.

• The upper Dini directional derivative at x0 in the direction y ∈ Rn is

fD
+

(x0; y) = fF (x0; y) = lim sup
t−→0+

f(x0 + ty)− f(x0)

t
, ∀y ∈ Rn.

• The lower Ursescu directional derivative at x0 in the direction y ∈ Rn is

fA(x0; y) = lim sup inf
t−→0+, ȳ−→y

f(x0 + tȳ)− f(x0)

t
, ∀y ∈ Rn.

• The upper Ursescu directional derivative at x0 in the direction y ∈ Rn is

fQ(x0; y) = lim inf sup
t−→0+, ȳ−→y

f(x0 + tȳ)− f(x0)

t
, ∀y ∈ Rn.

• The Clarke generalized directional derivative at x0 in the direction y ∈ Rn is

f o(x0; y) = fH(x0; y) = lim sup
(x̄,α)↓x0, t−→0+

f(x̄+ ty)− α
t

, ∀y ∈ Rn,

Here H is the hypertangent cone (do not make confusion with the upper Hadamard directional
derivative!).
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• The Clarke-Rockafellar generalized directional derivative at x0 in the direction y ∈ Rn is

f ↑(x0; y) = fT
o

(x0; y) = lim sup inf
(x̄, α) ↓ x0 ȳ −→ y

t −→ 0+

f(x̄+ tȳ)− α
y

, ∀y ∈ Rn.

• The epi-Lipschitzian directional derivative at x0 in the direction y ∈ Rn is

fE(x0; y) = lim sup
(x̄, α) ↓ x0, ȳ −→ y

t −→ 0+

f(x̄+ tȳ)− α
y

, ∀y ∈ Rn.

Remark 8. When f is lower semicontinuous, the convergence (x̄, α) ↓ x0 becomes simply
x̄ −→f x

0 and, moreover, if f is continuous, it becomes x̄ −→ x0.
If f is locally Lipschitz, then:

a)

f o(x0; y) = f ↑(x0; y) = lim sup
x−→x0, t−→0+

f(x̄+ ty)− f(x̄)

t
,

i. e. we obtain the usual definition of the Clarke directional derivative (see Clarke (1983)).

b)
fA(x0; ·) = f+

D (x0; y) = fH+(x0; y).

c)
fQ(x0; y) = fD

+

(x0; y) = fH
+

(x0; y).

It follows that f is (right-sided) directionally differentiable at x0 in the direction y ∈ Rn
if and only if

fWF (x0; ·) = fF (x0; ·).
Moreover, f is Gâteaux differentiable at x0 in the direction y ∈ Rn if and only if

fWF (x0; ·) = fF (x0; ·)

is linear.

Similarly to the inclusion scheme concerning the various local cone approximations, we ob-
tain the following scheme showing the relationships between the various generalized directional
derivatives previously considered.

fE(x0; ·) = fH
+

(x0; ·) = fQ(x0; ·)
‖∨ ‖∨ ‖∨

f o(x0; ·) = fD
+

(x0; ·) = fD+(x0; ·)
‖∨ ‖∨ ‖∨

f ↑(x0; ·) = fA(x0; ·) = fH+(x0; ·)
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The following assertions hold true.

1) The directional derivatives of the first row of the scheme are upper semicontinuous and it
holds

fK(x0; 0) = 0.

The directional derivatives of the third row of the scheme are lower semicontinuous and it
holds

fK(x0; 0) 5 0.

For the directional derivatives of the second row of the scheme it holds

fK(x0; 0) = 0.

2) The directional derivatives of the first column of the scheme are convex (more precisely:
sublinear). The directional derivatives of the second and third column are isotone, in the sense
that they verify the following property:

f1(·) 5 f2(·)
f1(x0) = f2(x0)

}
=⇒ fK1 (x0; ·) 5 fK2 (x0; ·).

In a similar way with respect to the definition of K-directional derivative, it is possible to
introduce the concept of K-subdifferential.

Definition 28. Let be f : Rn −→ R, x0 ∈ Rn and K(x0, y) be a local cone approximation.
The set (possibly empty)

∂Kf(x0) =
{
ξ ∈ Rn : fK(x0; y) = ξ>y, ∀y ∈ Rn

}
is said theK -subdifferential of f at x0 and the elements ξ ∈ ∂Kf(x0) are said theK-subgradients
of f at x0.

Note that 0 ∈ ∂Kf(x0) if and only if fK(x0; y) = 0, ∀y ∈ Rn. When ∂Kf(x0) 6= ∅, then
∂Kf(x0) is a closed and convex set. As the K-directional derivative of f is directly related to
the local cone approximation K(·, ·) of its epigraph, something similar holds true also for the
K-subdifferential.

Theorem 56. Let be f : Rn −→ R, x0 ∈ Rn and K(x0, ·) a local cone approximation. Then
it holds

∂Kf(x0) =
{
ξ ∈ Rn : (ξ − 1) ∈ K∗(epi f, (x0, f(x0)))

}
,

where K∗ is the polar cone of K.

Proof. We have the following chain of equivalences:

x0 ∈ ∂Kf(x0) ⇐⇒ inf
{
β ∈ R : (y, β) ∈ K(epi f, (x0, f(x0)))

}
=
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= ξ>y, ∀y ∈ Rn ⇐⇒ β = ξ>y, ∀(y, β) ∈ K(epi f, (x0, f(x0))) ⇐⇒

⇐⇒ (ξ,−1)>(y, β) 5 0, ∀(y, β) ∈ K(epi f, (x0, f(x0))) ⇐⇒

⇐⇒ (ξ,−1) ∈ K∗(epi f, (x0, f(x0))). �

Now we consider briefly some optimality conditions expressed in terms of K-directional
derivatives. We begin with an unconstrained minimization problem.

Theorem 57. Let be f : X ⊂ Rn −→ R and let x0 ∈ int(X) be a local minimum point of f
over X. If K(·, ·) is any local cone approximation such that K(·, ·) ⊂ T (·, ·), then it holds

i) fK(x0; y) = 0, ∀y ∈ Rn;

ii) 0 ∈ ∂Kf(x0).

Proof.

i) Let us assume fK(x0; y) < 0 for a vector y ∈ Rn. Then, because K(·, ·) ⊂ T (·, ·), we have

fT (x0; y) 5 fK(x0; y) < 0

and hence

lim inf
ȳ−→y, t−→0+

f(x0 + tȳ)− f(x0)

t
< 0,

which means ∀N(y), ∀λ > 0, ∃t ∈ (0, λ), ∃ȳ ∈ N(y) :

f(x0 + tȳ)− f(x0)

t
< 0,

which contradicts the assumption that x0 is an unconstrained local minimum point of f.

ii) The assertion follows from Definition 28. �
For example, we have, under the assumptions of Theorem 57,

fF (x0; y) = fD
+

(x0; y) = lim sup
t−→0+

f(x0 + ty)− f(x0)

t
= 0, ∀y ∈ Rn,

or also the sharper condition

fWF (x0; y) = fD+(x0; y) = lim inf
t−→0+

f(x0 + ty)− f(x0)

t
= 0, ∀y ∈ Rn,

or also, in terms of upper Hadamard directional derivatives,

f I(x0; y) = fH
+

(x0; y) = lim sup
(ȳ,t)−→(y,0+)

f(x0 + tȳ)− f(x0)

t
= 0, ∀y ∈ Rn,
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or also the sharper condition

fT (x0; y) = fH+(x0; y) = lim inf
(ȳ,t)−→(y,0+)

f(x0 + tȳ)− f(x0)

t
= 0, ∀y ∈ Rn.

Now we consider a minimization problem of the type (P0), i. e. with a set constraint, and
of type (P1), i. e. with inequality constraints. First we introduce the following sets.

•
DK
f (x0) =

{
y ∈ Rn : fK(x0; y) < 0

}
is the cone of descent directions of f at x0.

•
CK
f (x0) =

{
y ∈ Rn : fK(x0; y) 5 0

}
is the linearizing cone of f at x0.

•
DK
M(x0) = ∩

i∈M
DK
gi

(x0);

•
CK
M(x0) = ∩

i∈M
CK
gi

(x0),

where M = {1, ...,m} .
Obviously these cones are convex, if K(x0; ·) is convex.
In the following we assume, when it is necessary, that the local cone approximation K(·, ·)

satisfies the following conditions.

(A1) K is convex and closed.

(A2) z ∈ S ⇐⇒ 0 ∈ K(S, z).

(A3) K(·, ·) ⊂ T (·, ·).
(A4) int(K(·, ·)) ⊂ I(·, ·).

Let us consider problem (P0) :

min f(x), x ∈ S ⊂ Rn.

Theorem 58. If x0 ∈ S is a local solution of (P0) and K(·, ·) satisfies conditions (A3) and
(A4), then

i)

D
int(K)
f (x0) ∩K(S, x0) = ∅;
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ii)
DK
f (x0) ∩ int(K(S, x0)) = ∅.

Theorem 59. If x0 ∈ S is a local solution of (P0), if (A1), (A3) and (A4) are verified, and if
one of the following conditions is verified:

(B1) dom f int(K)(x0; ·) ∩K(S, x0) = ∅;

(B2) dom fK(x0; ·) ∩ int(K(S, x0)) = ∅,

then it holds
0 ∈ ∂Kf(x0) +K∗(s, x0).

Now let us consider problem (P1), i. e.

(P1) :


min f(x)

subject to: gi(x) 5 0, i = 1, ...,m,

x ∈ X ⊂ Rn,

with X open set of Rn. In order to avoid confusion with the cones K(·, ·), we denote by S1 the
feasible set of (P1). Elster and Thierfelder (1988b) obtain for (P1) the following Karush-Kuhn-
Tucker-type necessary optimality conditions.

Theorem 60. Let x0 ∈ S1 be a local solution of (P1) and let (A1), (A3), (A4), either (B1) or
(B2) be verified. Moreover, the following constraint qualification is satisfied:

(CQ)1 : K∗(S4, x
0) ⊂ BK

I(x0)(x
0),

where

BK
I(x0)(x

0) =

ξ ∈ Rn : ξ =
∑
i∈I(x0)

λiξ
i, λi = 0, ξi ∈ ∂Kgi(x0), i ∈ I(x0)


is the cone of K-gradients of gi, i ∈ I(x0), at x0.

Then, there exist multipliers λi = 0, i ∈ I(x0), such that

i)

0 ∈ ∂Kf(x0) +
∑
i∈I(x0)

λi∂
Kgi(x

0);

ii)

fK(x0; y) +
∑
i∈I(x0)

λig
K
i (x0; y) = 0, ∀y ∈ Rn.

Let us now consider the following further constraint qualifications (x0 ∈ S1).
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• (CQ)2. Generalized Guignard-Gould-Tolle constraint qualification:

(K(S4, x
0))∗ ⊂ (CK

I(x0)(x
0))∗,

∂Kgi(x
0) 6= ∅, ∀i ∈ I(x0),

BK
I(x0)(x

0) closed, either (B1) or (B2).

• (CQ)3. Generalized Abadie constraint qualification:

CK
I(x0)(x

0) ⊂ K(S4, x
0),

∂Kgi(x
0) 6= ∅, ∀i ∈ I(x0),

BK
I(x0)(x

0) closed, either (B1) or (B2).

• (CQ)4. First generalized Slater constraint qualification:

D
int(K)

I(x0) (x0) 6= ∅, ∂Kgi(x
0) 6= ∅, ∀i ∈ I(x0),

BK
I(x0)(x

0) closed, either (B1) or (B2).

(CQ)5. Second generalized Slater constraint qualification:

dom fK(x0, ·) ∩Dint(K)

I(x0) (x0) 6= ∅,

∂Kgi(x
0) 6= ∅, ∀i ∈ I(x0), BK

I(x0)(x
0) closed.

We have the following result.

Theorem 61. (Elster and Thierfelder (1988b)). Let be x0 ∈ S1 and let conditions (A1)−(A4)
be verified. Moreover, let be verified the condition

(A5) : DK
I(x0)(x

0) ⊂ K(S4, x
0).

Then we have the following implications:

(CQ)5 =⇒ (CQ)4 =⇒ (CQ)3 =⇒ (CQ)2 =⇒ (CQ)1.

The same authors obtain also Fritz John-type optimality conditions for (P1) in trems of
K-directional derivatives.

Theorem 62. Let x0 ∈ S1 be a local solution of (P1) and let the conditions (A1)− (A5) be
verified. Then:

(i) There exist multipliers λi = 0, i ∈ {0} ∪ I(x0), not all zero, such that

λ0f
int(K)(x0; y) +

∑
i∈I(x0)

λig
K
i (x0; y) = 0,
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∀y ∈ dom f int(K)(x0; ·) ∩
i∈I(x0)

dom gKi (x0; ·).

(ii) There exist multipliers λ′i = 0, i ∈ {0} ∪ I(x0), not all zero, such that

λ′0f
K(x0; y) +

∑
i∈I(x0)

λ′ig
int(K)
i (x0; y) = 0,

∀y ∈ dom fK(x0; ·) ∩
i∈I(x0)

dom g
int(K)
i (x0; ·).

Under other appropriate conditions, the same authors obtain the following version of the
Fritz John necessary optimality conditions for (P1) :

• There exist multipliers u0 = 0, ui = 0, not all zero, such that

u0f
K(x0; y) +

∑
i∈I(x0)

uig
K
i (x0; y) = 0, ∀y ∈ Rn;

0 ∈ u0∂
Kf(x0) +

∑
i∈I(x0)

ui∂
Kgi(x

0).

Under an appropriate constraint qualification, it is possible to obtain u0 6= 0, i. e. u0 = 1,
in the above conditions.

7. Applications to Vector Optimization Problems
The literature on applications of Nonsmooth Analysis and classical directional deriva-

tives to Vector Optimization Problems is huge. We quote only the following papers for what
concerns “classical directional derivatives”(usual directional derivatives, Dini and Hadamard
directional derivatives): Aggarwal and Bhatia (1989), Bector, Bhatia and Jain (1993), Bhatia
and Aggarwal (1992), Giorgi, Jimenez and Novo (2004), Ginchev, Guerraggio and Rocca (2006),
Jimenez and Novo (2002a, b, 2003, 2008), Jimenez, Novo and Sama (2009), Ishizuka (1992),
Kaul, Lyall and Kaur (1988), Mukherjee and Mishra (1996), Mukherjee and Singh (1990), Novo
and Jimenez (2004), Preda and Stancu-Minasian (1997), Preda and Chitescu (1999), Luu and
Nguyen (2009), Khan and Tuan (2007), Nguyen and Luu (2007), Taa (1999).

The main reference books on vector optimization are Ehrgott (2005), Jahn (2005), Luc
(1989), Miettinen (1999), Sawaragi, Nakayama and Tanino (1985). Here we give only some hints
on necessary optimality conditions for a vector optimization problem, expressed by means of
“classical”directional derivatives.

We consider the following multiobjective (or Pareto) nonlinear programming problem with
equality and inequality constraints.

min f(x), subject to x ∈ S, (9)
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where
S = {x ∈ Rn : g(x) 5 0, h(x) = 0} ,

and f : Rn −→ Rp, g : Rn −→ Rm, h : Rn −→ Rr, r < n.
We denote by

fi, i ∈ I = {1, 2, ..., p} ;

gj, j ∈ J = {1, 2, ...,m} ;

hk, k ∈ K = {1, 2, ..., r} ,
the components of the functions f, g and h, respectively. The set

J0 =
{
j ∈ J : gj(x

0) = 0
}

is the set of the active indices of g at x0 ∈ S.
We denote

G = {x ∈ Rn : g(x) 5 0} ;

H = {x ∈ Rn : h(x) = 0} ;

S = G ∩H
and we consider the following conditions:

• (H1) f and g are Hadamard directionally differentiable at x0 ∈ S, with convex derivative (i.
e. each component of f and g is Hadamard directionally differentiable at x0 ∈ S, with convex
derivative).

• (H2) h is Fréchet differentiable at x0 ∈ S, with the Jacobian ∇h(x0) having maximal
row-rank (i. e. ∇hk(x0), k ∈ K, are linearly independent).

We recall that f : Rn −→ R is Hadamard directionally differentiable at x0 if its Hadamard
directional derivative

DHf(x0; v) = lim
(t,u)−→(0+,v)

f(x0 + tu)− f(x0)

t

exists for all directions v ∈ Rn.
We recall that f : Rn −→ R is (right-sided) directionally differentiable at x0 if D+f(x0; v)

exists for all directions v ∈ Rn. Moreover (see Section 2):
• If f is Fréchet differentiable at x0, then ∇f(x0)>v = DHf(x0; v).

• If there exists DHf(x0; v), then there exists D+f(x0; v) and both derivatives are equal.

• In particular, if f is locally Lipschitz at x0 and there exists D+f(x0; v), then there exists
DHf(x0; v).

• If f is Hadamard directionally differentiable at x0, then f is continuous at x0 andDHf(x0; ·)
is continuous over Rn. This property is not true for D+f(x0; v).
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Some authors (e. g. Penot (1978)) have introduced the notion of Dini subdifferential.

Definition 29. Let f : Rn −→ R be directionally differentiable at x0. TheDini subdifferential
of f at x0 is

∂Df(x0) =
{
ξ ∈ Rn : ξ>v 5 D+f(x0; v), ∀v ∈ Rn

}
.

If D+f(x0; ·) is a convex function, then there exists the Dini subdifferential. If D+f(x0; ·)
is not a convex function, then ∂Df(x0) may be the empty set.

We recall that, given problem (9), a point x0 ∈ S is said to be a local weak effi cient point
for the same problem (or also a local weak Pareto solution), if there exists a neighborhood
B(x0, δ) of x0 such that

Sf ∩ S ∩B(x0, δ) = ∅,

where
Sf =

{
x ∈ Rn : f(x) < f(x0)

}
.

In other words,
f(x) /∈ f(x0)− int(Rp+), ∀x ∈ S ∩B(x0, δ)

or
f(x) ∈ f(x0) + Rp�− int(Rp+), ∀x ∈ S ∩B(x0, δ).

We define also the strict critical cone for the objective function

C0(f, x0) =
{
v ∈ Rn : DHfi(x

0; v) < 0, ∀i ∈ I
}

and the strict critical cone for the set of inequality constraints

C0(G, x0) =
{
v ∈ Rn : DHgj(x

0; v) < 0, ∀j ∈ J0

}
.

The following two results are essential in obtaining a Fritz John-type multiplier rule for
problem (9).

Theorem 63. (Jimenez and Novo (2002b). Under the assumptions (H1) and (H2), we have

C0(G, x0) ∩ ker(∇h(x0)) ⊂ T (S, x0).

(Here T (S, x0) is, as usual, the Bouligand tangent cone to S at x0 ∈ S).
Theorem 64. (Jimenez and Novo (2002a)). Let us suppose that ϕ1, ϕ2, ..., ϕq : Rn −→ R
are sublinear functions and ψ1, ψ2, ..., ψr : Rn −→ R are linear functions given by ψk(u) = cku,
k ∈ K = {1, 2, ..., r} . Then, one and only one of the following assertions is true.
(a) There exists v ∈ Rn such that{

ϕi(x
0; v) < 0, ∀i = 1, 2, ..., q;

ψk(v) = 0, ∀k = 1, 2, ..., r.
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(b) There exists (ξ, ν) = (ξ1, ξ2, ..., ξq, ν1, ν2, ..., νr) ∈ Rq+r, ξ 6= 0, ξ = 0, such that

0 ∈
q∑
i=1

ξi∂ϕi(0) +

r∑
k=1

νkc
k.

(Here ∂ϕ(·) is the usual subdifferential of Convex Analysis).

Finally, we recall a classical first-order necessary optimality condition for a vector problem
of the type (9), where the constraint set S is not specified. See, e. g., Taa (1999).

Theorem 65. Let f : Rn −→ Rp be Hadamard directionally differentiable at x0 ∈ S. If x0

is a local weak effi cient point for f over S, then

T (S, x0) ∩ C0(f, x0) = ∅.

Proof. Let be v ∈ T (S, x0); then there exist sequences {tn} −→ 0+, {vn} −→ v such that
x0 + tnv

n ∈ S for all n. Since x0 is a local effi cient solution of our problem, then there exists
an integer n0 such that for all n = n0,

f(x0 + tnv
n) ∈ f(x0) + Rp�− int(Rp+).

Then by our assumptions it follows that

(DHf1(x0; v), ..., DHfp(x
0; v)) ∈ Rp�− int(Rp+),

i. e. C0(f, x0) ∩ T (S, x0) = ∅. �
We are now ready to prove the main result of the present section.

Theorem 66. Let us consider problem (9) and assume that the previous conditions (H1)
and (H2) are satisfied. If x0 is a local weak effi cient solution of (9), then there exists (λ, µ, ν) ∈
Rp × Rm × Rr such that

(λ, µ) = 0, (λ, µ) 6= 0, (10)

0 ∈
p∑
i=1

λi∂Dfi(x
0) +

m∑
j=1

µj∂gj(x
0) +

r∑
k=1

νk∇hk(x0), (11)

µjgj(x
0) = 0, j = 1, ...,m. (12)

If, in addition, C0(S, x0) 6= ∅, then λ 6= 0.

Proof. As x0 is a local weak effi cient point for (9), we have (Theorem 65)

T (S, x0) ∩ C0(f, x0) = ∅, (13)
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i. e. there exists no v ∈ Rn such that{
DHfi(x

0; v) < 0, ∀i ∈ I
v ∈ T (S, x0).

(14)

Now, from Theorem 63 we have

C0(G, x0) ∩ ker(∇h(x0)) ⊂ T (S, x0).

So, taking (14) into account, there exists no v ∈ Rn such that
DHfi(x

0; v) < 0, ∀i ∈ I,
DHgj(x

0; v) < 0, ∀j ∈ J0,

∇hk(x0)>v = 0, ∀k ∈ K
(15)

and using Theorem 64 the conclusion follows by choosing µj = 0 for j /∈ J0.
For the second part, let us suppose that C0(S, x0) 6= ∅, that is there exists w ∈ Rn such

that
DHgj(x

0;w) < 0, ∀j ∈ J0; ∇hk(x0)>w = 0, ∀k ∈ K. (16)

Assume that λ = 0. The conditions (10)-(12) imply that∑
j∈J0

µjD
Hgj(x

0;u) +
r∑

k=1

νk∇hk(x0)>u = 0, ∀u ∈ Rn,

with µ 6= 0. For u = w we have a contradiction, since from (16) it follows that∑
j∈J0

µjD
Hgj(x

0;w) +
r∑

k=1

νk∇hk(x0)>w < 0.

Consequently λ 6= 0. �
Remark 9. It is also possible to obtain the thesis of Theorem 66 under the assumptions
(H1)′ and (H2), where:

• (H1)′ : each component of f is Hadamard directionally differentiable at x0 ∈ S and for
each j ∈ J, gj is either Dini-quasiconvex and continuous on a neighborhood of x0, with convex
derivative or Fréchet differentiable at x0.

See Novo and Jimenez (2004). Here, a function ϕ : Rn −→ R is Dini-quasiconvex at
x0 ∈ X ⊂ Rn, X convex set, if for every x ∈ X,

ϕ(x) 5 ϕ(x0) =⇒ D+ϕ(x0;x− x0) 5 0.

Finally, we point out that Theorem 3.2 of Preda and Chitescu (1999) is not correct, as
shown by Giorgi, Jimenez and Novo (2004). Also the paper of Mukherjee and Mishra (1996)
contains some errors, as shown by Yang (1994).
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